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Abstract

We consider the recently solved problem of Optimal stopping of Seasonal Ob-

servations and its more general version. Informally, there is a finite number of

dice, each for a state of ”underlying” finite MC. If this MC is in a state k, then

k-th die is tossed. A Decision Maker (DM) observes both MC and the value of

a die, and at each moment of discrete time can either continue observations or

to stop and obtain a discounted reward. The goal of a DM is to maximize the

total expected discounted reward. This problem belongs to an important class

of stochastic optimization problems - the problem of optimal stopping of Markov

chains (MCs). The solution was obtained via an algorithm which is based on the

general, so called, State Elimination algorithm developed by the author earlier.

An important role in the solution is played by the relationship between the funda-

mental matrix of a transient MC in the ”large” state space and the fundamental

matrix for the modified underlying transient MC. In this paper such relationship

is presented in a transparent way using the general concept of a projection of a

Markov model. The general relationship between two fundamental matrices is ob-

tained and used to clarify the solution of the optimal stopping problem.

Keywords Markov chain. Optimal Stopping. Elimination algorithm. Seasonal
observations
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1 Introduction

The problem described below was formulated in [7] and dubbed as Optimal stopping

of Seasonal Observations. The solution was published recently in [5]. The goal of this

note is to introduce the notion of a projection of a Markov chain (MC), which is of

interest in its own right, and using this concept to obtain one of the key equalities in [5]

in a more general form.
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Seasonal Observations. Suppose that (Un), n ≥ 0 is a MC with values in a finite

set B = {1, 2, ...,m} and known transition matrix U = {u(s, k), s, k ∈ B}. Suppose that

there are m different ”dice”, each die for a state in B, and the probability that k-th die

takes value j ∈ Z = {1, 2, ...} is f(j|k), k ∈ B, j ∈ Z. If at the moment n the MC (Un)

takes value k, then the k-th die is tossed and a Decision Maker (DM) observes both

U and the value j obtained. At each moment n = 0, 1, 2, ... a DM can either continue

observations or to stop and obtain a discounted reward βng(k, j), where β is a discount

factor, 0 < β ≤ 1, and g(k, j) is the terminal reward function. The goal of a DM is to

maximize the total expected discounted reward. This problem can be generalized if one

introduces a one step cost function c(k), but for simplicity we assume that c(k) = 0 for

all k. Formally, we assume that a DM observes MC (Zn) with values in X = B × Z

and with transition probabilities p(x, y) ≡ p(s, i; k, j) = u(s, k)f(j|k), s, k ∈ B, i, j ∈ Z.
Thus, these probabilities depend only on the first ”horizontal” coordinate of a state

x = (s, i). We can represent this relationship symbolically by the ”factorization equality”

P = U × F, (1)

where U is m×m stochastic matrix and F = {f(·|k), k ∈ B} is a vector of distributions

on Z.

2 Optimal Stopping of MC

The problem described above belongs to an important class of stochastic optimization

problems - the problem of optimal stopping (OS) of MC, where a DM observing a MC,

has two possible actions at each moment of discrete time: to continue observations or

to stop, and then to obtain a terminal reward. Formally, such a problem is specified

by a tuple M = (X,P, c, g, β), where X is a state space, P = {p(x, y)} is a transition

matrix, c(x) is a one step cost function, g(x) is a terminal reward function, and β is a

discount factor, 0 < β ≤ 1. We call such a model OS model and a tuple M = (X,P ),

we call a Markov model. The value function v(x) for OS model is defined as v(x) =

supτ≥0Ex[
∑τ−1

i=0 β
ic(Zi)+βτg(Zτ )], where the sup is taken over all stopping times τ ≤ ∞.

To simplify our presentation we will assume that c(x) = 0 and v(x) <∞ for all x.

It is well-known that in stochastic optimization problems the discounted case can

be treated as undiscounted if an absorbing point e is introduced and the transition

probabilities are modified as follows, pβ(x, y) = βp(x, y) for x, y ∈ X, pβ(x, e) = 1 −
β, pβ(e, e) = 1. In other words, with probability β the Markov chain ”survives” and with

complimentary probability it transits to an absorbing state e. More than that, for our
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method it is convenient and important to consider a more general situation when the

constant β can be replaced by the probability of ”survival”, function β(x) = Px(Z1 6=
e), 0 ≤ β(x) ≤ 1. Further we will assume that this transformation is made and we skip

the superscript β, using again notation Px and Ex.

Let Pf(x) be the averaging operator, Pf(x) =
∑

y p(x, y)f(y). It is well-known

that the value function v is a minimal solution of a corresponding Bellman (optimality)

equation v = max(g, c + Pv). Let A ⊂ B × Z, i.e. A = {A(k)}, A(k) ⊂ Z, k ∈ B and

let us denote by F (A(k)|k) =
∑

j∈A(k) f(j|k) and by Fd(A) the m×m diagonal matrix

Fd(A) = (δskF (A(k)|k)), s, k ∈ B. The complement of a set D∗ is denoted by S∗. The

following theorem was proved in [5].

Theorem 1. There is a vector d∗ = (d∗1, . . . , d
∗
m), such that

a) an optimal stopping time τ ∗ is the moment of first visit of the Markov chain Z to

the set {e} ∪ S∗, where

S∗ = {z = (k, j) : k ∈ B, j ∈ S∗(k)}, S∗(k) = {j : g(k, j) ≥ d∗k};

b) the value function satisfies the equation

v(x) = g(x), x ∈ S∗, v(x) = d∗k > g(k, j), x = (k, j) ∈ D∗ = X�S∗, (2)

and d∗ satisfies the equation

d∗s =
∑
k∈B

l∗(s, k)
∑

j∈D∗(k)

g(k, j) f(j|k), (3)

where the matrix L∗ = {l∗(s, k), s, k ∈ B} is defined by the equality

L∗ = [I − UFd(D∗)]−1U. (4)

The proof of Theorem 1 is obtained via an algorithm which allows one to find the

vector d∗, and, therefore, to construct the value function and the optimal stopping set in

a finite number of steps. This algorithm is based on the general, so called, State Elimi-

nation (SE) algorithm developed by the author earlier and described in [8] (see also [9]).

This algorithm has some features in common with the so called State Reduction (SR)

approach used in computational MCs and which is exemplified by works of Grassmann,

Taksar, Heyman [1] and Sheskin [6], who independently developed GTH/S algorithm to

calculate the invariant distribution for an ergodic MC. The explanation of this approach
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is given in [9]. We first briefly describe this approach and afterwards we explain the SE

algorithm. Our notations in these sections are slightly different than those used in the

original author’s papers.

3 Recursive Calculation of Characteristics of MC and the State Reduction

(SR) Approach

Let us assume that a Markov model M = (X, P ) is given and let D ⊂ X, S = X \D.
Then the matrix P = {p(x, y)} can be decomposed as the first matrix below

P =

[
Q T

R P0

]
, P ′S =

[
0 NT

0 PS

]
(5)

where the substochastic matrix Q describes the transitions inside of D,P0 describes

the transitions inside of S and so on. Let us introduce the sequence of Markov times

τ0, τ1, ..., τn, ..., the moments of zero, first, and so on, return of (Zn) to the set S, i.e.,

τ0 = 0, τn+1 = min{k > τn, Zk ∈ S}. Let us consider the random sequence Yn =

Zτn , n = 0, 1, 2, ...., Z0 ∈ S. The strong Markov property and standard probabilistic

reasoning imply the following basic lemma of the SR approach which probably should

be credited to Kolmogorov and Doeblin.

Lemma 1. (a) The random sequence (Yn) is a Markov chain in a model MS =

(S, PS), where S = X \D and

(b) the transition matrix PS = {pS(x, y), x, y ∈ S} is given by the formula

PS = P0 +RV = P0 +RNDT, (6)

where V = NDT is a matrix of the distribution of the MC at the moment of first

return to S, and ND = N is the fundamental matrix for the substochastic matrix Q =

{p(x, y), x, y ∈ D}.

We remind that N =
∑∞

n=0Q
n = (I−Q)−1, where I is the |D|× |D| identity matrix.

This representation is proved, for example, in the classical text of Kemeny and Snell,

[3]. This matrix N satisfies also the equality

N = I +QN = I +NQ. (7)

An important case is when the set D consists of one nonabsorbing point z. In this case

formula (6) takes the form

pS(x, ·) = p(x, ·) + p(x, z)n(z)p(z, ·), (8)
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where n(z) = 1/(1 − p(z, z)). According to this formula, each row-vector of the new

stochastic matrix PS is a linear combination of two rows of P (with the z-column

deleted). This transformation corresponds formally to one step of the Gaussian elimi-

nation method. This matrix PS describes the behaviour of MC with values in a set S,

or we can extend this matrix to the full size X ×X matrix P ′S, see the second matrix in

(5), assuming that MC (Yn) can have an initial point in set D also. But in both cases,

to obtain the matrix PS, we need to study the behaviour of the related transient MC

with values in D.

The matrix N , a fundamental matrix for this transient MC with transition ma-

trix Q, has the following well known probabilistic interpretation, N = {n(x, y), x, y ∈
D}, n(x, y) = Ex

∑τS
n=0 Iy(Zn), where τS is the moment of the first visit to S, i.e.

τS = min(n ≥ 0 : xn ∈ S) (moment of first exit from D), i.e. the expected number

of visits to y starting from x till τS. In this case, i.e. when the transition matrix P is

changed in such a way that S become an absorbing set, we shall say that MC (Zn) is

stopped at S = X \D, and we shall denote this new MC as (ZD
n ).

The recursive calculation of the second fundamental matrix, for the ergodic MC was

described in [10].

If an initial Markov model M1 = (X1, P1), is finite, |X1| = k, and only one point

is eliminated each time, then a sequence of stochastic matrices (Pn), n = 2, ..., k, can

be calculated recursively on the basis of formula (8). Generally, a set of points D can

be eliminated using formula (6). In both cases such sequence of stochastic matrices

provides an opportunity to calculate many characteristics of the initial Markov model

M1 recursively starting from some reduced model Ms, 1 < s ≤ k.

4 State Elimination (SE) Algorithm

In this section we describe briefly the SE algorithm (for the case of c(x) = 0). Let

an OS model M = (X,P, g), be given, and suppose that an optimal stopping set S∗ =

{x : v(x) = g(x)} does exists. Let a subset D ⊂ {x : g(x) < Pg(x)}. Since g(x) ≤ v(x),

and Pg(x) ≤ Pv(x) the optimality equation implies that D ∩ S∗ = ∅. It was proved in

[8] that the optimal stopping set in the reduced OS model MS = (XS = X \ D,PS, g)

will be the same as in the initial OS model and the value functions will be the same

for all points in XS. After that we can repeat the process by eliminating points in a

set D′ ⊂ {x : g(x) − PSg(x) < 0} and so on. If at some stage after k steps, with

D1 = D,D2 = D′ ∪D1 and so on, we obtain that g(x)− PSk
g(x) ≥ 0 for all remaining

points, then S∗ = Sk = X \ Dk. For the finite space X this algorithm solves the OS

5



problem in no more than |X| steps, and allows us also to find the distribution of the MC

at the moment of stopping in an optimal stopping set S∗. Recently E. Presman modified

this idea and applied to the case of OS in continuous time, see [4].

5 Projection of MC and Seasonal Observations

Note that the matrix [I − UFd(D∗)]−1 from formula (4) is the fundamental matrix

for the transient MC obtained from the underlying MC (Un) by modifying its transition

matrix U. An important role in the proof of Theorem 1 is played by the relationship

between the fundamental matrix of a transient MC in the state space X and the funda-

mental matrix for the modified transient MC in the state space B. This relationship can

be presented in a transparent way using the concept of projection of a Markov model,

and, correspondingly of projection of a MC.

Let Mi = (Xi, Pi) be two Markov models, i = 1, 2 and let h : X1 −→ X2 be a

mapping. If (Zn) is a MC in model M1 then generally random sequence (Un), Un = h(Zn)

is not a MC in model M2. In [2] Howard introduced a notion of a ”mergeable” Markov

chain when the random sequence (Un) is a MC. In terms of two models, model M1 is

mergeable if the transitional probabilities in these models for any x, x′ ∈ h−1(s) ⊂ X1

and any s, k ∈ X2 satisfy the following equality:
∑

y∈h−1(k) p1(x, y) =
∑

y∈h−1(k) p1(x
′, y).

If these two Markov models have terminal reward functions g1(x), x ∈ X1, g2(k), k ∈ X2

and terminal reward function g1 is also ”mergeable”, i.e. if g1(x) = g2(h(x)) for all

x ∈ h−1(k), k ∈ X2 then of course the solution of the OS in M1 can be reduced to the

solution in M2, but this is a trivial situation. To be able to consider the OS problem for

the seasonal observations we need a stronger assumption.

We say that model M2 is a projection of a model M1 (under h) if the transitional

probabilities in these models satisfy the following property for all x, y ∈ X1,

p1(x, y) = p2(h(x), h(y))f1(y|h(y)), (9)

where f1(y|t) is a probability distribution on a set h−1(t) = {y ∈ X1 : h(y) = t}, defined

for each t ∈ X2. In other words, the state space X1 is partitioned into classes Tt = h−1(t),

t ∈ X2 and transitions from state x in class Ts to state y in Tk depend only on s, k and y

but not on x. A reader may think about model M1 as a ”large”, basic model and about

model M2 as a ”small”, more manageable model. It is easy to check that if (Zn) is a

MC in model M1 then the random sequence (Un), Un = h(Zn) is a MC in model M2.

To simplify our presentation we will assume that sets X1 and X2 are discrete and

that Markov model M2 has an absorbing state e. Let |X2| = m+ 1, where m,m ≤ ∞ is
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the number of proper states, i.e. x 6= e. Let the set D ⊂ X1, S = X1 \D. We consider

MC (ZD
n ) stopped at S = X \ D. According to the SE algorithm if a set D should

be eliminated then in order to find the matrix PS by formula (6), we have to find the

fundamental matrix N1,D = {n1,D(x, y), x, y ∈ D}.
To accomplish this goal we will introduce MC (UD

n ) in model M2, the ”projection”of

MC (ZD
n ), defined by the equality UD

n = hD(ZD
n ), where function hD(x) = h(x) if x ∈ D

and hD(X) = e if x ∈ X1 \D. In Theorem 2 we will relate the fundamental matrix N2,D

for this MC with the matrix N1,D.

If P is an m × m stochastic matrix, D ⊂ X1 and Fd(D) is the m × m diagonal

matrix with elements F (D(k)) =
∑

j∈D(k) f1(j|k), D(k) = D ∩ h−1(k), then we denote

substochastic matrix P F
D = PFd(D) and we denote the fundamental matrix for P F

D as

(I − P F
D )−1 =

∑∞
n=0(P

F
D )n.

We denote M2,D = (X2, P
∗
2,D) a Markov model obtained from model M2 as follows.

The state space is the same, X2 and the transition matrix P ∗2,D = P2F
∗(D), where

F ∗(D) is the (m + 1) × (m + 1) matrix, which has in the upper left corner the m ×m
diagonal matrix Fd(D) described above, and the last column of matrix F ∗(D) contains

entries f ∗(s, e) = 1 −
∑

k p2(s, k)F (D(k)), s 6= e, f ∗(e, e) = 1. In other words, in this

model the transitional probabilities are: p2,D(s, k) = p2(s, k)F (D(k)), for k 6= e, and

p2,D(s, e) = p2(s, e) +
∑

k p2(s, k)F (S(k)). We denote the m × m upper left corner of

matrix P ∗2,D by P2,D. According to the definition of P ∗2,D, we have P2,D = P2Fd(D) ≡ P F
D .

This is a substochastic matrix for the transient MC in model M2,D with absorption in e.

Let us consider N2,D = {n2,D(s, k), s, k ∈ X2, s, k 6= e}, the fundamental matrix for

P2,D. The following theorem holds.

Theorem 2. If (Zn) is a Markov chain in model M1 and D ⊂ X1 then

(a) the random sequence (Un), Un = h(Zn) is a MC in model M2 with the transition

matrix P2; the random sequence (UD
n ), UD

n = hD(ZD
n ) is a MC in model M2,D with the

transition matrix (for the proper states) P F
2,D described above;

(b) the fundamental matrices in the original and the projected models, N1,D and N2,D

are related by the equalities valid for all x, y ∈ D ⊂ X1, s, k ∈ X2, s, k 6= e,

n1,D(x, y) = n2,D(s, k)f1(y|k)/F (D(k)), s = h(x), k = h(y); (10)

(c) stochastic matrix P1,S has factorization

P1,S = P2,S × FS, (11)
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where FS = {f1,S(y|k) = f1(y|k)/F (S(k))}, k ∈ X2 and

P2,S = P F
2,S + P F

2,D(I − P F
2,D)−1P F

2,S = (I − P F
2,D)−1P F

2,S. (12)

Proof. We omit the proof of point (a) which can be obtained using standard probabil-

ity reasoning. To prove (b) note that by the definition of a fundamental matrix for a MC

(ZD
n ) stopped at S = X1 \D, we have n1,D(x, y) = E1,x

∑∞
n=0 Iy(Z

D
n ) =

∑∞
n=0 P1,x(Z

D
n =

y). According to (9) we have P1,x(Z
D
n = y) = P2,s(U

D
n = k)P1,x(Z

D
n = y|h(ZD

n ) = k) =

P2,s(U
D
n = k)f1(y|k)/F (D(k)). Using the equality n2,D(s, k) =

∑∞
n=0 P2,s(U

D
n = k), we

obtain (10).

Point (c). Using (6), factorization (1), (9) and notations x = (s, x′), y = (k, y′), z =

(l, z′) and v = (t, v′), we have

p1,S(x, y) = p1(x, y) +
∑
z

p1(x, z)
∑
v

n1,D(z, v)p1(v, y) =

= p2(s, k)f1(y
′|k) +

∑
l

p2(s, l)
∑

z′∈D(l)

f1(z
′|l)

∑
v

n1,D(z, v)p2(t, k)f1(y
′|k).

Using point (b), i.e. replacing n1,D(z, v) by n2,D(l, t)f1(y
′|t)/F1(D(t)), and using the

equality
∑

z′∈D(t) f1(z
′|t) = F (D(t)), t ∈ X2, we have

∑
v=(t,v′)

n1,D(z, v)p2(t, k) =
∑
t

n2,D(l, t)
∑

v′∈D(t)

f1(v
′|t)

F (D(t))
p2(t, k) =

∑
t

n2,D(l, t)p2(t, k).

(13)

Using the equalities
∑

z′∈D(l) f1(z
′|l) = F (D(l)), l ∈ X2, P2,D = P2F1,d(D), and (13), we

obtain finally

p1,S(x, y) = [p2(s, k)F (S(k))+
∑
l

p2,D(s, l)
∑
t

n2,D(l, t)p2(t, k)F (S(k))]f1(y
′|k)/F (S(k)).

The expression in square brackets in matrix notation is P2,S + P2,D(I − P2,D)−1P2,S,

which equals the last term in (12) by the first equality in (7). The expression outside of

square brackets corresponds to the term FS. Theorem 2 is proved.

6 Open problem

Let Mi = (Xi, Pi) be two Markov models, i = 1, 2 and let h : X1 −→ X2 be a map-

ping. An open problem is to find all relationships between the transitional probabilities

in these two models such that the solution of the OS problem for the ”large” model M1

can be simplified using the projection model M2. For example, a potential candidate is
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the case when the transition probabilities for all x, y ∈ X1 satisfy

p1(x, y) = p2(s, k)
N∑
i=1

αi(s, k)f1(y|k, i), (14)

where s = h(x), k = h(y), αi(s, k) ≥ 0,
∑N

i=1 αi(s, k) = 1, s, k ∈ X2. In other words,

instead of one die for each state of k ∈ X2, there are sets of N dice, and transitions are

defined using randomization over these sets.

The author would like to thank Joe Quinn, Ernst Presman, and an anonymous referee

for valuable comments.

References

[1] Grassmann, W. K., Taksar, M., Heyman, D., 1985. Regenerative analysis and steady

state distributions for Markov chains. Oper. Res. 33, 5, 1107-1116.

[2] Howard, R., 1971. Dynamic probabilistic systems. Markov Models., John Wiley &

Sons, NY-London.

[3] Kemeny, J., Snell L.,(1960, 1983), Finite Markov Chains. Springer-Verlag.

[4] Presman E, 2010. The solution of optimal stopping problem based on a modification

of a payoff function, this volume.

[5] Presman, E., Sonin I., 2010. On optimal stopping of random sequences modulated

by Markov chain, Theory of Probability and Its Applications, 54, 3, 534-542.

[6] Sheskin, T. 1985. A Markov chain partitioning algorithm for computing steady state

probabilities. Oper. Res. 33, 1, 228–235.

[7] Sonin, I., 2001. The optimal stopping of ”Seasonal observations”. In: Proc.11th

INFORMS Appl. Prob. Conf., N ew York, 18.

[8] Sonin, I., 1999. The Elimination Algorithm for the Problem of Optimal Stopping,

Math. Meth. of Oper. Res., 4, 1, 111-123.

[9] Sonin, I., 1999. The State Reduction and related algorithms and their applications

to the study of Markov chains, graph theory and the Optimal Stopping problem,

Advances in Mathematics, 145, 2, 159-188.

9



[10] Sonin I, Thornton J., 2001. Recursive Algorithm for the Fundamental/Group In-

verse Matrix of a Markov Chain from an Explicit Formula, SIAM J. on Matrix

Analysis and Appl. 23, 1, 209 - 224.

10


