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Finite-State
Markov Chains

INTRODUCTORY EXAMPLE

Googling Markov Chains

Google means many things: it is an Internet search
engine, the company that produces the search engine,
and a verb meaning to search on the Internet for a piece
of information. Although it may seem hard to believe,
there was a time before people could “google” to find the
capital of Botswana, or a recipe for deviled eggs, or other
vitally important matters. Users of the Internet depend
on trustworthy search engines—the amount of available
information is so vast that the searcher relies on the search
engine not only to find those webpages that contain the
terms of the search, but also to return first those webpages
most likely to be relevant to the search. Early search
engines had no good way of determining which pages
were more likely to be relevant. Searchers had to check
the returned pages one by one, which was a tedious and
frustrating process. This situation improved markedly in
1998, when search engines began to use the information
contained in the hyperlinked structure of the World Wide
Web to help to rank pages. Foremost among this new
generation of search engines was Google, a project of two
computer science graduate students at Stanford University:
Sergey Brin and Lawrence Page.

Brin and Page reasoned that a webpage was important
if it had hyperlinks to it from other important pages. They
used the idea of the random surfer: a web surfer moving
from webpage to webpage merely by choosing at random
which hyperlink to follow. The motion of the surfer among
the webpages can be modeled using Markov chains, which
were introduced in Section 4.9. The pages that this random
surfer visits more often ought to be more important, and
thus more relevant, if their content matches the terms of a
search. Although Brin and Page did not know it at the time,
they were attempting to find the steady-state vector for a
particular Markov chain whose transition matrix modeled
the hyperlinked structure of the web. After some important
modifications of this impressively large matrix (detailed in
Section 10.2), a steady-state vector can be found, and its
entries can be interpreted as the amount of time a random
surfer will spend at each webpage. The calculation of
this steady-state vector is the basis for Google’s PageRank
algorithm.

So the next time you google the capital of Botswana,
know that you are using the results of this chapter to find
just the right webpage.

Even though the number of webpages is huge, it is still finite. When the link structure
of the World Wide Web is modeled by a Markov chain, each webpage is a state of the
Markov chain. This chapter continues the study of Markov chains begun in Section 4.9,

1



2 CHAPTER 10 Finite-State Markov Chains

focusing on those Markov chains with a finite number of states. Section 10.1 introduces
useful terminology and develops some examples of Markov chains: signal transmission
models, diffusion models from physics, and random walks on various sets. Random
walks on directed graphs will have particular application to the PageRank algorithm.
Section 10.2 defines the steady-state vector for a Markov chain. Although every Markov
chain has a steady-state vector, not every Markov chain converges to a steady-state
vector. When the Markov chain converges to a steady-state vector, that vector can
be interpreted as telling the amount of time the chain will spend in each state. This
interpretation is necessary for the PageRank algorithm, so the conditions under which a
Markov chain converges to a steady-state vector will be developed. The model for the
link structure of the World Wide Web will then be modified to meet these conditions,
forming what is called the Google matrix. Sections 10.3 and 10.4 discuss Markov chains
that do not converge to steady-state vectors. These Markov chains can be used to model
situations in which the chain eventually becomes confined to one state or a set of states.
Section 10.5 introduces the fundamental matrix. This matrix can be used to calculate
the expected number of steps it takes the chain to move from one state to another, as
well as the probability that the chain ends up confined to a particular state. In Section
10.6, the fundamental matrix is applied to a model for run production in baseball: the
number of batters in a half inning and the state in which the half inning ends will be of
vital importance in calculating the expected number of runs scored.

10.1 INTRODUCTION AND EXAMPLES

Recall from Section 4.9 that a Markov chain is a mathematical model for movement
between states. A process starts in one of these states and moves from state to state. The
moves between states are called steps or transitions. The terms “chain” and “process”
are used interchangeably, so the chain can be said to move between states and to be “at
a state” or “in a state” after a certain number of steps.

The state of the chain at any given step is not known; what is known is the proba-
bility that the chain moves from state j to state i in one step. This probability is called
a transition probability for the Markov chain. The transition probabilities are placed
in a matrix called the transition matrix P for the chain by entering the probability of
a transition from state j to state i at the (7, j)-entry of P. So if there were m states

named 1, 2, ...m, the transition matrix would be the m x m matrix
From:
1 J m To
1
P = \A
Dij g L
m

The probabilities that the chain is in each of the possible states after n steps are
listed in a state vector x,,. If there are m possible states, the state vector would be

a

X, = | a; | <— Probability that the chain is at state j after n steps
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State vectors are probability vectors since their entries must sum to 1. The state vector
X is called the initial probability vector.

Notice that the j" column of P is a probability vector—its entries list the proba-
bilities of a move from state j to the states of the Markov chain. The transition matrix
is thus a stochastic matrix since all of its columns are probability vectors.

The state vectors for the chain are related by the equation

X,+1 = PX, (1)
forn = 1,2, .... Notice that Equation (1) may be used to show that
x, = P"xq 2)

Thus any state vector x,, may be computed from the initial probability vector Xy and an
appropriate power of the transition matrix P.

This chapter concerns itself with Markov chains with a finite number of states —that
is, those chains for which the transition matrix P is of finite size. To use a finite-state
Markov chain to model a process, the process must have the following properties, which
are implied by Equations (1) and (2).

1. Since the values in the vector x,+; depend only on the transition matrix P and on
X,,, the state of the chain before time » must have no effect on its state at time n + 1
and beyond.

2. Since the transition matrix P does not change with time, the probability of a tran-
sition from one state to another must not depend on how many steps the chain has
taken.

Even with these restrictions, Markov chains may be used to model an amazing variety
of processes. Here is a sampling.

Signal Transmission

Consider the problem of transmitting a signal along a telephone line or by radio waves.
Each piece of data must pass through a multi-stage process to be transmitted, and at each
stage there is a probability that a transmission error will cause the data to be corrupted.
Assume that the probability of an error in transmission is not affected by transmission
errors in the past and does not depend on time, and that the number of possible pieces of
data is finite. The transmission process may then be modeled by a Markov chain. The
object of interest is the probability that a piece of data goes through the entire multi-stage
process without error. Here is an example of such a model.

EXAMPLE 1 Suppose that each bit of data is either a 0 or a 1, and at each stage
there is a probability p that the bit will pass through the stage unchanged. Thus the
probability is 1 — p that the bit will be transposed. The transmission process is modeled
by a Markov chain, with states 0 and 1 and transition matrix

From:

0 1 To:
p=| P l—p| o
1—-p P 1
It is often easier to visualize the action of a Markov chain by representing its transition
probabilities graphically, as in Figure 1. The points are the states of the chain, and the
arrows represent the transitions.

Suppose that p = .99. Find the probability that the signal 0 will still be a O after a
two-stage transmission process.
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I-p

FIGURE 1 Transition diagram for signal
transmission.

SOLUTION Since the signal begins as 0, the probability that the chain begins at O is

100%, or 1; that is, the initial probability vector is xy = |: ! ] To find the probability

0
of a two-step transition, compute

— pix = 99 0171 19802 0198 [[ 1] | .9802
EEX=101 99 o] T [.0198 98020 |.0198
The probability that the signal O will still be a O after the two-stage process is thus
.9802. Notice that this is not the same as the probability that the O is transmitted without
error; that probability would be (.99)? = .9801. Our analysis includes the very small

probability that the O is erroneously changed to 1 in the first step, then back to 0 in the
second step of transmission. |

Diffusion

Consider two compartments filled with different gases which are separated only by a
membrane that allows molecules of each gas to pass from one container to the other. The
two gases will then diffuse into each other over time, so that each container will contain
some mixture of the gases. The major question of interest is what mixture of gases is in
each container at a time after the containers are joined. A famous mathematical model
for this process was described originally by the physicists Paul and Tatyana Ehrenfest.
Since their preferred term for “container” was urn, the model is called the Ehrenfest
urn model for diffusion.

Label the two urns A and B, and place k molecules of gas in each urn. At each time
step, select one of the 2k molecules at random and move it from its urn to the other urn,
and keep track of the number of molecules in urn A. This process can be modeled by
a finite-state Markov chain: the number of molecules in urn A after n + 1 time steps
depends only on the number in urn A after n time steps, the transition probabilities do
not change with time, and the number of states is finite.

EXAMPLE 2 For this example, let k = 3. Then the two urns contain a total of 6
molecules, and the possible states for the Markov chain are 0, 1, 2, 3, 4, 5, and 6. Notice
first that if there are 0 molecules in urn A at time 7n, then there must be 1 molecule in
urn A at time n + 1, and if there are 6 molecules in urn A at time 7, then there must be
5 molecules in urn A at time n + 1. In terms of the transition matrix P, this means that
the columns in P corresponding to states 0 and 6 are

0

Po and  pg =

(= = e e )

SO O OO =
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If there are i molecules in urn A at time n, with 0 < i < 6, then there must be either
i —lori + 1 molecules in urn A at time n + 1. In order for a transition from i toi — 1
molecules to occur, one of the i molecules in urn A must be selected to move; this event
happens with probability i /6. Likewise, a transition from i to i 4+ 1 molecules occurs
when one of the 6 — i molecules in urn B is selected, and this occurs with probability
(6 —1)/6. Allowing i to range from 1 to 5 creates the columns of P corresponding to
these states, and the transition matrix for the Ehrenfest urn model with k = 3 is thus

1 2 3 4
1/6 0 0 0
0 1/3 0 0
5/66 0 1/2 0
0 2/3 0 2/3
0 0 1/2 0 5/6
o o0 0 1/3
o 0 0 0 0 1/6 0

Figure 2 shows a transition diagram of this Markov chain. Other models for diffusion
will be considered in the Exercises for this section. [ |

S Z 1 1 1
1 6 3 2 3 6
U U W W . W
1 1 2 3 1
3 2 3 6

1
6

S oo O~ O o
OO OO O W
—_ 0 O O O o &

[ I R N =

FIGURE 2 Transition diagram of the Ehrenfest urn model.

Random Walks on {1, ..., n}

Molecular motion has long been an important issue in physics. Einstein and others
investigated Brownian motion, which is a mathematical model for the motion of a
molecule exposed to collisions with other molecules. The analysis of Brownian motion
turns out to be quite complicated, but a discrete version of Brownian motion called a
random walk provides an introduction to this important model. Think of the states
{1,2,...,n} as lying on a line. Place a molecule at a point that is not on the end of the
line. At each step the molecule moves left one unit with probability p and right one unit
with probability 1 — p. See Figure 3. The molecule thus “walks randomly” along the
line. If p = 1/2, the walk is called simple, or unbiased. If p # 1/2, the walk is said

to be biased.
1-p 1-p 1-p 1-p
P P p P

FIGURE 3 A graphical representation of a random walk.

The molecule must move to either the left or the right at the states 2, ...,n — 1, but
it cannot do this at the endpoints 1 and n. The molecule’s possible movements at the
endpoints 1 and » must be specified. One possibility is to have the molecule stay at an
endpoint forever once it reaches either end of the line. This is called a random walk
with absorbing boundaries, and the endpoints 1 and n are called absorbing states.
Another possibility is to have the molecule bounce back one unit when an endpoint is
reached. This is called a random walk with reflecting boundaries.
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2 4
5 6
7
FIGURE 4

A graph with seven vertices.

EXAMPLE 3 A random walk on {1,2,3,4,5} with absorbing boundaries has a
transition matrix of

1 2 3 4 5

1 p 0 0 071

0 0 p 0 0]:
P=|0 1-p 0 p 03

0 0 1—p 0 04

0 0 0 1-p 1]s

since the molecule at state 1 has probability 1 of staying at state 1, and a molecule at
state 5 has probability 1 of staying at state 5. A random walk on {1,2,3,4,5} with
reflecting boundaries has a transition matrix of

kN O O &

0 1-p 0
0 0 0 1-p

S = O O O w
w

5

since the molecule at state 1 has probability 1 of moving to state 2, and a molecule at
state 5 has probability 1 of moving to state 4. [ |

In addition to their use in physics, random walks also occur in problems related to
gambling and its more socially acceptable variants: the stock market and the insurance
industry.

EXAMPLE 4 Consider a very simple casino game. A gambler (who still has some
money left with which to gamble) flips a fair coin and calls heads or tails. If the gambler
is correct, he wins a dollar; if he is wrong, he loses a dollar. Suppose that the gambler
will quit the game when he has either won n dollars or lost all of his money.

Suppose that n = 7 and the gambler starts with $4. Notice that the gambler’s
winnings move either up or down $1 for each coin flip, and once the gambler’s winnings
reach 0 or 7, they do not change any more since the gambler has quit the game. Thus
the gambler’s winnings may be modeled by a random walk on {0, 1,2, 3,4, 5, 6, 7} with
absorbing boundaries. Since a move up or down is equally likely in this case, p = 1/2
and the walk is simple. [ ]

Random Walks on Graphs

It is useful to perform random walks on geometrical objects other than the one-dimen-
sional line. For example, a graph is a collection of points and lines connecting some
of the points. The points of a graph are called vertices, and the lines connecting the
vertices are called the edges. In Figure 4, the vertices are labeled with the numbers 1
through 7.

To define a simple random walk on a graph, allow the chain to move from vertex
to vertex on the graph. At each step, the chain is equally likely to move along any of
the edges attached to the vertex. For example, if the molecule is at state 5 in Figure 4, it
has probability 1/2 of moving to state 2 and probability 1/2 of moving to state 6. This
Markov chain is called a simple random walk on a graph.
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EXAMPLE 5 The simple random walk on the graph in Figure 4 has transition matrix

1 2 3 4 5 6
0 1/3 1/4 0 0 0
1/2 0 1/4 0 1/2 0
/2 1/3 0 1 0 1/3
P=|0 0 1/4 0 0 0
0o 1/3 0 0 0 1/3
0 0 1/4 0 1/2 0
o 0 0 0 0 1/3

S = O O O O O =
I

Find the probability that the chain in Figure 4 moves from state 6 to state 2 in exactly
three steps.

SOLUTION Compute

0833 7]

0417

4028

=| o

2778
0

0] | .1944 |

X3=P3X0=P3

—_ o O O OO

Thus the probability of moving from state 6 to state 2 in exactly three steps is .0417. W

Sometimes interpreting a random process as a random walk on a graph can be
useful.

EXAMPLE 6 Suppose a mouse runs through the five-room maze at left in Figure
5. The mouse moves to a different room at each time step. When the mouse is in a
particular room, it is equally likely to choose any of the doors out of the room. Note
that a Markov chain can model the motion of the mouse. Find the probability that a
mouse starting in room 3 returns to that room in exactly five steps.

Gl OE

FIGURE 5 Five-room maze with
overlaid graph.

SOLUTION A graph is overlaid on the maze, as shown at right in Figure 5. Notice
that the motion of the mouse is identical to a simple random walk on the graph, so the
transition matrix is

1 2 3 4 5
0 1/3 1/4 0 0 |1
1/2 0 1/4 1/3 0 |2
P=|1/2 1/3 0 1/3 1/2]3
0 1/3 1/4 0 1/2|4
0 0 1/4 1/3 0 |-
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2 f—< >—4
Y Y
A A
5 & >—<96
Y
7
FIGURE 6

A directed graph with seven
vertices.

and
0 1507
0 2143
xs = P°xg=P°| 1 | =] .2701
0 2143
0 1507
Thus the probability of a return to room 3 in exactly five steps is .2701. [ |

Another interesting object on which to walk randomly is a directed graph. A
directed graph is a graph in which the vertices are not joined by lines but by arrows. See
Figure 6.

To perform a simple random walk on a directed graph, allow the chain to move
from vertex to vertex on the graph but only in the directions allowed by the arrows. At
each step the walker is equally likely to move away from its current state along any of
the arrows pointing away from the vertex. For example, if the molecule is at state 6 in
Figure 6, it has probability 1/3 of moving to state 3, state 5, or state 7.

The PageRank algorithm which Google uses to rank the importance of pages on the
World Wide Web (see the Chapter Introduction) begins with a simple random walk on
a directed graph. The Web is modeled as a directed graph in which the vertices are the
pages and an arrow is drawn from page j to page i if there is a hyperlink from page j to
page i. A person surfs randomly in the following way: when the surfer gets to a page,
he or she chooses a link from the page so that it is equally probable to choose any of
the possible “outlinks.” The surfer then follows the link to arrive at another page. The
person surfing in this way is performing a simple random walk on the directed graph
that is the World Wide Web.

EXAMPLE 7 Consider a set of seven pages hyperlinked by the directed graph in
Figure 6. If the random surfer starts at page 5, find the probability that the surfer will
be at page 3 after four clicks.

SOLUTION The transition matrix for the simple random walk on the directed graph is

1 2 3 4 5 6 7
[0 12 0 0 0 0 0]
0 0 1/3 0 1/2 0 0]:2
1 0 0 0 0 1/3 0]3
P=|0 0 1/3 1 0 0 04
0 12 0 0 0 1/3 0]s
0 0 1/3 0 1/2 0 0]s
(0 0 0 0 0 1/3 1]7

Notice that there are no arrows coming from either state 4 or state 7 in Figure 6. If the
surfer clicks on a link to either of these pages, there is no link to click on next.! For this
reason, the transition probabilities ps4 and p77 are set equal to 1—the chain must stay

! Using the “Back” key is not allowed: the state of the chain before time 7 must have no effect on its state at
time n + 1 and beyond.
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at state 4 or state 7 forever once it enters either of these states. Computing x4 gives

1319
.0833
.0880
.1389
2199
.0833
.2546

X4=P4X0=

so the probability of being at page 3 after exactly four clicks is .0880. [ ]

States 4 and 7 are absorbing states for the Markov chain in the previous example.
In technical terms, they are called dangling nodes and are quite common on the Web;
data pages in particular usually have no links leading from them. Dangling nodes will
appear in the next section, where the PageRank algorithm will be explained.

As noted in Section 4.9, the most interesting questions about Markov chains con-
cern their long-term behavior— that is, the behavior of x,, as n increases. This study will
occupy a large portion of this chapter. The foremost issues in our study will be whether
the sequence of vectors {x, } is converging to some limiting vector as n increases, and
how to interpret this limiting vector if it exists. Convergence to a limiting vector will
be addressed in the next section.

PRACTICE PROBLEMS

1. Fill in the missing entries in the stochastic matrix.

1 * 2
P =1 % 3 3
.6 2 *

2. In the signal transmission model in Example 1, suppose that p = .97. Find the
probability that the signal “1” will be a “0” after a three-stage transmission process.

10.1 EXERCISES

In Exercises 1 and 2, determine whether P is a stochastic matrix.
If P is not a stochastic matrix, explain why not.

3 4 3 7
La'P_L7 ﬁ] b'P_[A 5]

1 5 2 11
pure[) 5] wee[2 M)

In Exercises 3 and 4, compute x; in two ways: by computing X,
and x,, and by computing P3.

3.P=[:i 2}"":[(1)]
=3 3]w-[3]

In Exercises 5 and 6, the transition matrix P for a Markov chain
with states 0 and 1 is given. Assume that in each case the chain
starts in state 0 at time n = 0. Find the probability that the chain
will be in state 1 at time 7.

sor=|yn )=

2/3  1/4
4 2
6. P=[.6 .8i|,n—5

In Exercises 7 and 8, the transition matrix P for a Markov chain
with states 0, 1, and 2 is given. Assume that in each case the chain
starts in state 0 at time n = 0. Find the probability that the chain
will be in state 1 at time 7.

C1/3 1/4 1)2
7. P=|1/3 1/2 1/4|,n=2
| 1/3 1/4 14
1 2 4
8. P=|6 3 4|n=3
3 5 2

9. Consider a pair of Ehrenfest urns labeled A and B. There are
currently 3 molecules in urn A and 1 in urn B. What is the
probability that the exact same situation will apply after
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a. 4 selections? b. 5 selections?

10. Consider a pair of Ehrenfest urns labeled A and B. There are
currently no molecules in urn A and 5 in urn B. What is the
probability that the exact same situation will apply after

a. 4 selections? b. 5 selections?

11. Consider an unbiased random walk on the set {1,2,3,4}.
What is the probability of moving from 2 to 3 in exactly 3
steps if the walk has

a. reflecting boundaries? b. absorbing boundaries?

12. Consider a biased random walk on the set {1,2, 3,4} with
probability p = .2 of moving to the left. What is the prob-
ability of moving from 2 to 3 in exactly 3 steps if the walk
has

a. reflecting boundaries? b. absorbing boundaries?

In Exercises 13 and 14, find the transition matrix for the simple
random walk on the given graph.

13. 1 2 14. 2

4 3

In Exercises 15 and 16, find the transition matrix for the simple
random walk on the given directed graph.

15. 1 R 2 16. 1 4
Y Y
3
2 5
A A
3 N 4

In Exercises 17 and 18, suppose a mouse wanders through the
given maze. The mouse must move into a different room at each
time step, and is equally likely to leave the room through any of
the available doorways.

17. The mouse is placed in room 2 of the maze shown below.

a. Construct a transition matrix and an initial probability
vector for the mouse’s travels.

b. What are the probabilities that the mouse will be in each
of the rooms after 3 moves?

N
e
o Y

2
5

18. The mouse is placed in room 3 of the maze shown below.

a. Construct a transition matrix and an initial probability
vector for the mouse’s travels.

b. What are the probabilities that the mouse will be in each
of the rooms after 4 moves?

1 2

-

I I
I

4 5
In Exercises 19 and 20, suppose a mouse wanders through the
given maze, some of whose doors are “one-way”: they are just
large enough for the mouse to squeeze through in only one direc-
tion. The mouse still must move into a different room at each time

step if possible. When faced with accessible openings into two or
more rooms, the mouse chooses them with equal probability.

19. The mouse is placed in room 1 of the maze shown below.

a. Construct a transition matrix and an initial probability
vector for the mouse’s travels.

b. What are the probabilities that the mouse will be in each
of the rooms after 4 moves?

| |
1 2 3
4 | 5 (6

20. The mouse is placed in room 1 of the maze shown below.

a. Construct a transition matrix and an initial probability
vector for the mouse’s travels.

b. What are the probabilities that the mouse will be in each
of the rooms after 3 moves?

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21. a. The columns of a transition matrix for a Markov chain
must sum to 1.
b. The transition matrix P may change over time.
c. The (i, j)-entry in a transition matrix P gives the proba-
bility of a move from state j to state i.
. The rows of a transition matrix for a Markov chain must
sum to 1.

b. If {x,} is a Markov chain, then x,,+; must depend only on
the transition matrix and x,,.



23.

24.

25.

26.

c. The (i, j)-entry in P3 gives the probability of a move
from state i to state j in exactly three time steps.

The weather in Charlotte, North Carolina can be classified as
sunny, cloudy, or rainy on a given day. Climate data from
20032 reveal that

e [f a day is sunny, then the next day will be sunny with
probability .65, cloudy with probability .1, and rainy
with probability .25.

e [f a day is cloudy, then the next day will be sunny
with probability .25, cloudy with probability .25, and
rainy with probability .5.

e If a day is rainy, then the next day will be sunny with
probability .25, cloudy with probability .15, and rainy
with probability .60.

Suppose it is cloudy on Monday. Use a Markov chain to find
the probabilities of the different kinds of weather on Friday.

Suppose that whether it rains in Charlotte tomorrow depends
on the weather conditions for today and yesterday. Climate
data from 20032 show that

e If it rained yesterday and today, then it will rain
tomorrow with probability .58.

e If it rained yesterday but not today, then it will rain
tomorrow with probability .29.

e If it rained today but not yesterday, then it will rain
tomorrow with probability .47.

e If it did not rain yesterday or today, then it will rain
tomorrow with probability .31.

Even though the weather depends on the last two days in this
case, we can create a Markov chain model using the states

1 itrained yesterday and today

2 itrained yesterday but not today
3 itrained today but not yesterday
4 it did not rain yesterday or today

So, for example, the probability of a transition from state 1

to state 1 is .58, and the transition from state 1 to state 3 is 0.

a. Complete the creation of the transition matrix for this
Markov chain.

b. If it rains on Tuesday and is clear on Wednesday, what is
the probability of no rain on the next weekend?

Consider a set of four webpages hyperlinked by the directed
graph in Exercise 15. If a random surfer starts at page 1, what
is the probability that the surfer will be at each of the pages
after 3 clicks?

Consider a set of five webpages hyperlinked by the directed
graph in Exercise 16. If a random surfer starts at page 2, what
is the probability that the surfer will be at each of the pages
after 4 clicks?

2 http://www.wunderground.com/history/airport/K CLT
/2003/1/1/MonthlyHistory.html

217.

28.

29.

30.

31.
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Consider a model for signal transmission in which data is sent
as two-bit bytes. Then there are four possible bytes, 00, 01,
10, and 11, which are the states of the Markov chain. At each
stage there is a probability p that each bit will pass through
the stage unchanged.

a. Construct the transition matrix for the model.

b. Suppose that p = .99. Find the probability that the signal
“01” will still be “01” after a three-stage transmission.

Consider a model for signal transmission in which data is
sent as three-bit bytes. Construct the transition matrix for
the model.

Another version of the Ehrenfest model for diffusion starts
with & molecules of gas in each urn. One of the 2k molecules
is picked at random just as in the Ehrenfest model in the
text. The chosen molecule is then moved to the other urn
with a fixed probability p and is placed back in its urn with
probability 1 — p. (Note that the Ehrenfest model in the text
is this model with p = 1.)

a. Let k = 3. Find the transition matrix for this model.

b. Let k =3 and p =1/2. If there are currently no
molecules in urn A, what is the probability that there will
be 3 molecules in urn A after 5 selections?

Another model for diffusion is called the Bernoulli-Laplace
model. Two urns (urn A and urn B) contain a total of 2k
molecules. In this case, k of the molecules are of one type
(called type I molecules) and k are of another type (type II
molecules). In addition, & molecules must be in each urn at
all times. At each time step, a pair of molecules is selected,
one from urn A and one from urn B, and these molecules
change urns. Let the Markov chain model the number of
type I molecules in urn A (which is also the number of type
II molecules in urn B).

a. Suppose that there are j type I molecules in urn A with
0 < j < k. Explain why the probability of a transition to
j — 1 type I molecules in urn A is (j/k)?, and why the
probability of a transition to j + 1 type I molecules in urn
Ads ((k — )/ k).

b. Letk = 5. Use the result in part (a) to set up the transition
matrix for the Markov chain which models the number of
type I molecules in urn A.

c. Let k = 5 and begin with all type I molecules in urn A.
What is the distribution of type I molecules after 3 time
steps?

To win a game in tennis, one player must score four points
and must also score at least two points more than his or
her opponent. Thus if the two players have scored an equal
number of points (four or more), which is called “deuce” in
tennis jargon, one player must then score two points in a row
to win the game. Suppose that players A and B are playing a
game of tennis which is at deuce. If A wins the next point
it is called “advantage A,” while if B wins the point it is
“advantage B.” If the game is at advantage A and player A
wins the next point, then player A wins the game. If player



12 CHAPTER 10 Finite-State Markov Chains

B wins the point at advantage A, the game is back at deuce.

a. Suppose the probability of player A winning any point is b.
p. Model the progress of a tennis game starting at deuce
using a Markov chain with the following five states.

deuce

advantage A c.
advantage B

A wins the game

B wins the game

(O N S R S

Find the transition matrix for this Markov chain.

b. Let p = .6. Find the probability that the game will be at
“advantage B” after three points starting at deuce.

32. Volleyball uses two different scoring systems in which a team
must win by at least two points. In both systems, a rally
begins with a serve by one of the teams and ends when the
ball goes out of play or touches the floor or a player commits
a fault. The team that wins the rally gets to serve for the next
rally. Games are played to 15, 25, or 30 points.

a. In rally point scoring, the team that wins a rally is
awarded a point no matter which team served for the
rally. Assume that team A has probability p of winning a d.
rally for which it serves, and that team B has probability
q of winning a rally for which it serves. Model the
progress of a volleyball game using a Markov chain with

Find the transition matrix for this Markov chain.

Suppose that team A and team B are tied 15-15 in a 15-
point game and that team A is serving. Let p = g = .6.
Find the probability that the game will not be finished
after three rallies.

In side out scoring, the team that wins a rally is awarded a
point only when it served for the rally. Assume that team
A has probability p of winning a rally for which it serves,
and that team B has probability g of winning a rally for
which it serves. Model the progress of a volleyball game
using a Markov chain with the following eight states.

tied — A serving

tied — B serving

A ahead by 1 point — A serving
A ahead by 1 point — B serving
B ahead by 1 point — A serving
B ahead by 1 point — B serving
A wins the game

B wins the game

[clEN Be Y N NS

Find the transition matrix for this Markov chain.

Suppose that team A and team B are tied 15-15 in a 15-
point game and that team A is serving. Let p = g = .6.
Find the probability that the game will not be finished
after three rallies.

the following six states. 33. Suppose that P is a stochastic matrix all of whose entries are
1 tied — A serving greater than or equal to p. Show that all of the entries in P”
2 tied — B serving are greater than or equal to p forn = 1,2,....

3 A ahead by 1 point — A serving

4 B ahead by 1 point — B serving

5 A wins the game

6 B wins the game

SOLUTIONS TO PRACTICE PROBLEMS

1. Since a stochastic matrix must have columns that sum to 1,

P

2. The transition matrix for the mo

d 5 2
=3 3 3
6 2 5

del is

97 .03
P‘[.03 .97}

Since the signal begins as “1,” the initial probability vector is

]

To find the probability of a three-step transition, compute

X2=P3X0=|:

9153 0847 ([ O | _ [ .0847
.0847 9153 || 1| | .9153

The probability of a change to “0” is thus .0847.
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10.2 THE STEADY-STATE VECTOR AND GOOGLE'S PAGERANK

As was seen in Section 4.9, the most interesting aspect of a Markov chain is its long-
range behavior: the behavior of x,, as n increases without bound. In many cases, the
sequence of vectors {x,} is converging to a vector which is called the steady-state
vector for the Markov chain. This section will review how to compute the steady-
state vector of a Markov chain, explain how to interpret this vector if it exists, and offer
an expanded version of Theorem 18 in Section 4.9, which describes the circumstances
under which {x,} converges to a steady-state vector. This theorem will be applied to
the Markov chain model used for the World Wide Web in the previous section and will
show how the PageRank method for ordering the importance of webpages is derived.

Steady-State Vectors

In many cases, the Markov chain x,, and the matrix P” change very little for large values
of n.

EXAMPLE 1 To begin, recall Example 3 in Section 4.9. That example concerned

S5 2 03
a Markov chain with transition matrix P = | .3 .8 .3 [ and initial probability
2 0 4
1 3
vector xog = | O [. The vectors x,, were seen to be converging to the vectorq = | .6
0 N
This result may be written as lim x, = q. Increasing powers of the transition matrix
n—o0
P may also be computed, as follows:
[.3700 2600  .3300 ] [.3200 2820 .3210 ]
P2 = .4500 .7000 .4500 P3 =1 .5250 .6500 .5250
| 1800 .0400  .2200 | | 1460 .0680  .1540 |
3133 2914 3117 ] 3064 2958  .3061 |
P*= 5625 .6250 .5625 P> =1 5813 6125 .5813
| 1242 0836  .1258 | | 11230917 1127 |
[.3002 2999  .3002] [.3000 .3000  .3000 |
P = 5994 6004 .5994 P% =1 .6000 .6000 .6000
| 1004 .0997  .1004 | | 1000 .1000  .1000 |

so the sequence of matrices { P"} also seems to be converging to a matrix as n increases,
and this matrix has the unusual property that all of its columns equal q. The example
also showed that Pq = q. This equation forms the definition of the steady-state vector
and is a straightforward way to calculate it. [ |

If P is a stochastic matrix, then a steady-state vector (or equilibrium vector or
invariant probability vector) for P is a probability vector q such that

Pq=gq

Exercises 36 and 37 will show that every stochastic matrix P has a steady-state
vector q. Notice that 1 must be an eigenvalue of any stochastic matrix, and the steady-
state vector is a probability vector which is also an eigenvector of P associated with the
eigenvalue 1.
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Although the definition of the steady-state vector makes the calculation of q straight-
forward, it has the major drawback that there are Markov chains which have a steady-
state vector q but for which lim x, # q: the definition is not sufficient for x, to

n—>oo

converge. Examples 3 to 5 below will show different ways in which x,, can fail to

converge. Later in this section, the conditions under which lim x, = q will be restated.
n—>0o0

For now, consider what q means when lim x, = q, as it does in the example above.
n—o0

When lim x, = q, there are two ways to interpret this vector.
n—>o0

¢ Since x,, is approximately equal to q for large 1, the entries in q approximate the
probability that the chain is in each state after n time steps. Thus in the example
above, no matter what the value of the initial probability vector is, after many
steps the probability that the chain will be in state 1 is approximately ¢; = .3.
Likewise, the probability that the chain will be in state 2 in the distant future
is approximately g, = .6, and the probability that the chain will be in state 3 in
the distant future is approximately g3 = .1. So the entries in ¢ give long-run
probabilities.

e When N is large, q approximates Xx,, for almost all values of n < N. Thus the
entries in q approximate the proportion of time steps that the chain spends in each
state. In the example above, the chain will end up spending .3 of the time steps
in state 1, .6 of the time steps in state 2, and .1 of the time steps in state 3. So the
entries in q give the proportion of the time steps spent in each state, which are
called the occupation times for each state.

EXAMPLE 2 For an application of computing q, consider the mouse-in-the-maze
example (Example 6, Section 10.1). In this example, the position of a mouse in a five-
room maze is modeled by a Markov chain with states {1, 2, 3, 4, 5} and transition matrix

1 2 3 4 5

0 1/3 1/4 0 0

1/2 0 1/4 1/3 0
p=|1/2 1/3 0 1/3 12
0 1/3 1/4 0 1)2

0 0 1/4 1/3 0

L Y S

The steady-state vector may be computed by solving the system Pq = q, which is
equivalent to the homogeneous system (P — I)q = 0. Row reduction yields

~1 1/3 1/4 0 0 0 1 0 0 0 -1 0
1/2 -1 1/4 13 0 0 0 1 0 0 -3/2 0
1/2 13 -1 1/3 1/2 0|~|0 0 1 0 -2 0
0 1/3 1/4 -1 1/2 0 0 0 0 1 -3/2 0
0 0 1/4 1/3 -1 0 00 0 0 0 0

so a general solution is

Letting g5 be the reciprocal of the sum of the entries in the vector results in the steady-
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state vector

1 1/7 142857

Ll 32 3/14 214286
q=-| 2 | =] 2/7 |~ | .285714
71372 3/14 214286

1 1/7 142857

There are again two interpretations for ¢: long-run probabilities and occupation times.
After many moves, the probability that the mouse will be in room 1 at a given time is
approximately 1/7 no matter where the mouse began its journey. Put another way, the
mouse is expected to be in room 1 for 1/7 (or about 14.3%) of the time.

Again notice that taking high powers of the transition matrix P gives matrices
whose columns are converging to q; for example,

144169 141561  .142613  .144153  .142034
212342 216649 214286 211922 216230
PO = | 285226 285714 .286203 .285714  .285226
216230 211922 214286 216649 212342
142034 144153 142613 .141561  .144169

The columns of P !0 are very nearly equal to each other, and each column is also nearly
equal to q. [ |

Interpreting the Steady-State Vector

As noted above, every stochastic matrix will have a steady-state vector, but in some
cases steady-state vectors cannot be interpreted as vectors of long-run probabilities or
of occupation times. The following examples show some difficulties.

EXAMPLE 3 Consider an unbiased random walk on {1, 2, 3,4, 5} with absorbing
boundaries. The transition matrix is

1 2 3 4 5

1 12 0 0 071

0 0 1/2 0 0]2
P=|0 1/2 0 1/2 0]

0 0 1/2 0 0]a

0o 0 0 1/2 1]s

Notice that only two long-term possibilities exist for this chain: it must end up in state
1 or state 5. Thus the probability that the chain is in state 2, 3, or 4 becomes smaller and
smaller as n increases, as P" illustrates:

1 74951 49951  .24951 0
0 .00049 0 00049 0
PP=1|0 0 .00098 0 0
0 .00049 0 00049 0
| 0 24951 49951 74951 1
(1 749985  .499985  .249985 0
0 .000015 0 000015 0
P =10 0 .000030 0 0
0 .000015 0 000015 0
| 0 249985 499985  .749985 1
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It seems that P" converges to the matrix

175 5 25 0
0 0 o0 0 0
0 0 o0 0 0
0 0 o0 0 O
0o 25 5 75 1

as n increases. But the columns of this matrix are not equal; the probability of ending
up either at 1 or at 5 depends on where the chain begins. Although the chain has steady-
state vectors, they cannot be interpreted as in Example 1. Exercise 31 confirms that if
0 < g <1 the vector

S O

0
I—gq
is a steady-state vector for P. This matrix then has an infinite number of possible steady-

state vectors, which shows in another way that x,, cannot be expected to have convergent
behavior which does not depend on x. [ |

EXAMPLE 4 Consider an unbiased random walk on {1,2, 3,4, 5} with reflecting
boundaries. The transition matrix is

1 2 3 4 5

0 1/2 0 0 071

1 0 12 0 0f:
P=|0 1/2 0 1/2 0]s

0 0 12 0 1|4

o0 0 0 1/2 0fs

If the chain x,, starts at state 1, notice that it can return to 1 only when 7 is even, while the
chain can be at state 2 only when 7 is odd. In fact, the chain must be at an even-numbered
site when n is odd and at an odd-numbered site when 7 is even. If the chain were to
start at state 2, however, this situation would be reversed: the chain must be at an odd-
numbered site when 7 is odd and at an even-numbered site when 7 is even. Therefore,
P cannot converge to a unique matrix since P" looks very different depending on
whether 7 is even or odd, as shown:

[.2505 0 .2500 0 24957

0 .5005 0 4995 0
P> = | 5000 0 .5000 0 .5000
0 4995 0 .5005 0

| .2495 0 2500 0 2505 |
0 2502 0 .2498 0 ]
.5005 0 .5000 0 .4995

P2 = 0 .5000 0 .5000 0

4995 0 .5000 0 .5005
0 .2498 0 2502 0

Even though P" does not converge to a unique matrix, P does have a steady-state vector.
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In fact,
1/8
1/4
1/4
1/4
1/8

is a steady-state vector for P (see Exercise 32). This vector can be interpreted as
giving long-run probabilities and occupation times in a sense that will be made precise
in Section 10.4. [ |

EXAMPLE 5 Consider a Markov chain on {1, 2, 3, 4, 5} with transition matrix

1 2 3 4 5
/4 1/3 1/2 0 0
1/4 1/3 1/4 0 0
P=|1/2 1/3 1/4 0 0
0 0 0 1/3 3/4
0 0 0 2/3 1/4

QR W N =

If this Markov chain begins at state 1, 2, or 3, then it must always be at one of those
states. Likewise if the chain starts at state 4 or 5, then it must always be at one of those
states. The chain splits into two separate chains, each with its own steady-state vector.
In this case P" converges to a matrix whose columns are not equal. The vectors

4/11 0

3/11 0

4/11 and 0
0 9/17
0 8/17

both satisfy the definition of steady-state vector (Exercise 33). The first vector gives the
limiting probabilities if the chain starts at state 1, 2, or 3, and the second does the same
for states 4 and 5. |

Regular Matrices

Examples 1 and 2 show that in some cases a Markov chain x,, with transition matrix P
has a steady-state vector q for which

n—>00

In these cases, q can be interpreted as a vector of long-run probabilities or occupation
times for the chain. These probabilities or occupation times do not depend on the initial
probability vector; that is, for any probability vector X,

lim P"xy = lim x, = q

n—oo n—>00
Notice also that q is the only probability vector which is also an eigenvector of P
associated with the eigenvalue 1.

Examples 3, 4, and 5 do not have such a steady-state vector q. In Examples 3 and

5, the steady-state vector is not unique; in all three examples the matrix P" does not
converge to a matrix with equal columns as 7 increases. The goal is then to find some
property of the transition matrix P that leads to these different behaviors, and to show
that this property causes the differences in behavior.
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THEOREM 1

A little calculation shows that in Examples 3, 4, and 5, every matrix of the form Pk
has some zero entries. In Examples 1 and 2, however, some power of P has all positive
entries. As was mentioned in Section 4.9, this is exactly the property that is needed.

A stochastic matrix P is regular if some power P* contains only strictly positive
entries.

Since the matrix P* contains the probabilities of a k-step move from one state to
another, a Markov chain with a regular transition matrix has the property that, for some
k, it is possible to move from any state to any other in exactly k steps. The following
theorem expands on the content of Theorem 18 in Section 4.9. One idea must be defined
before the theorem is presented. The limit of a sequence of m x n matrices is the m x n
matrix (if one exists) whose (i, j)-entry is the limit of the (i, j)-entries in the sequence
of matrices. With that understanding, here is the theorem.

If P is a regular m X m transition matrix with m > 2, then the following state-
ments are all true.
a. There is a stochastic matrix IT such that lim P”" = II.
n—>00
b. Each column of IT is the same probability vector q.

c. For any initial probability vector Xo, lim P"xy = q.
n—oo

d. The vector q is the unique probability vector which is an eigenvector of P
associated with the eigenvalue 1.

e. All eigenvalues A of P other than 1 have |A| < 1.

A proof of Theorem 1 is given in Appendix 1. Theorem 1 is a special case of the
Perron-Frobenius Theorem, which is used in applications of linear algebra to economics,
graph theory, and systems analysis. Theorem 1 shows that a Markov chain with a regular
transition matrix has the properties found in Examples 1 and 2. For example, since the
transition matrix P in Example 1 is regular, Theorem 1 justifies the conclusion that P"
3

converges to a stochastic matrix all of whose columns equal q = | .6 |, as numerical
1

evidence seemed to indicate.

PageRank and the Google Matrix

In Section 10.1, the notion of a simple random walk on a graph was defined. The
World Wide Web can be modeled as a directed graph, with the vertices representing the
webpages and the arrows representing the links between webpages. Let P be the huge
transition matrix for this Markov chain. If the matrix P were regular, then Theorem 1
would show that there is a steady-state vector q for the chain, and that the entries in q
can be interpreted as occupation times for each state. In terms of the model, the entries
in q would tell what fraction of the random surfer’s time was spent at each webpage.
The founders of Google, Sergey Brin and Lawrence Page, reasoned that “important”
pages had links coming from other “important” pages. Thus the random surfer would
spend more time at more important pages and less time at less important pages. But the
amount of time spent at each page is just the occupation time for each state in the Markov
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chain. This observation is the basis for PageRank, which is the model that Google uses
to rank the importance of all webpages it catalogs:

The importance of a webpage may be measured by the relative size of the
corresponding entry in the steady-state vector q for an appropriately chosen
Markov chain.

Unfortunately, a simple random walk on the directed graph model for the Web is
not the appropriate Markov chain, because the matrix P is not regular. Thus Theorem
1 will not apply. For example, consider the seven-page Web modeled in Section 10.1
using the directed graph in Figure 1. The transition matrix is

1 2 3 4

0 12 0 0

0 0 1/3 0

1 0 0 0 0 1/3
P=|0 0 1/3 1

0 0

0 0

1/2 0
0 1/3
o 0 0 0 0 1/3

6

- o O O o o O =
w

7

Pages 4 and 7 are dangling nodes, and so are absorbing states for the chain. Just as
in Example 3, the presence of absorbing states implies that the state vectors x,, do not
approach a unique limit as n — co. To handle dangling nodes, an adjustment is made
to P:

ADJUSTMENT 1: If the surfer reaches a dangling node, the surfer will pick any page
in the Web with equal probability and will move to that page. In terms of the transition
matrix P, if state j is an absorbing state, replace column j of P with the vector

1/n
1/n

1/n
where 7 is the number of rows (and columns) in P.

In the seven-page example, the transition matrix is now

2 3 4 5 6 7

12 0 17 0 0 1/7]1
0o 1/3 1/7 1/2 0 1/7]:>2
0 o 17 0 1/3 1/7] 3
0 1/3 1/7 0 0 1/7]| 4
12 0 17 0 1/3 1/7]|s
0o 1/3 1/7 1/2 0 1/7]|s
0 0 1/7 0 1/3 1/7] 7

~
*
Il
o oo o~ o o -

Yet even this adjustment is not sufficient to ensure that the transition matrix is
regular: while dangling nodes are no longer possible, it is still possible to have “cycles”
of pages. If page j linked only to page i and page i linked only to page j, a random
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surfer entering either page would be condemned to spend eternity linking from page i
to page j and back again. Thus the columns of P¥ corresponding to these pages would
always have zeros in them, and the transition matrix P, would not be regular. Another
adjustment is needed.

ADJUSTMENT 2: Let p be a number between 0 and 1. Assume the surfer is now at
page j. With probability p the surfer will pick from among all possible links from page
j with equal probability and will move to that page. With probability 1 — p, the surfer
will pick any page in the Web with equal probability and will move to that page. In
terms of the transition matrix P, the new transition matrix will be

where K is an n x n matrix all of whose columns are?

1/n

1/n

1/n
The matrix G is called the Google matrix, and G is now a regular matrix since all entries
in G' = G are positive. Although any value of p between 0 and 1 is allowed, Google is

said to use a value of p = .85 for their PageRank calculations. In the seven-page Web
example, the Google matrix is thus

/2 0 17 0 0 1/77
o 1/3 1/7 1/2 0 1/7
0 o 17 0 1/3 1/7
0 1/3 1/7 0 0 1/7

/2 0 17 0 1/3 1/7
o 1/3 1/7 1/2 0 1/7
0 o 17 0 1/3 1/7

/7 17 17 17 17 1)7  1)77]
/7 17 17 17 17 1)1 1]7
7 17 17 17 1)1 1)1 1)7
+ .15\ 1/7 17 17 17 1)1 1)1 1)7
/7 17 17 17 17 1)1 1)1
/7 17 17 17 1)1 1)1 1)7
IRV Vi AR VoA Vo A Vo R VY R Ve
021429 446429 021429 .142857 .021429 .021429 .142857 ]
021429 021429 304762 .142857 .446429 .021429 .142857
871429 021429 .021429 .142857 .021429 .304762 .142857
= | .021429 .021429 .304762 .142857 .021429 .021429 .142857
021429 446429 021429 .142857 .021429 304762 .142857
021429 .021429 304762 .142857 .446429 .021429 .142857
021429 .021429 .021429 .142857 .021429 .304762 .142857

Q
I
o0
O
=R == i)

3 PageRank really uses a K that has all its columns equal to a probability vector v, which could be linked to
an individual searcher or group of searchers. This modification also makes it easier to police the Web for
websites attempting to generate Web traffic. See Google’s PageRank and Beyond: The Science of Search
Engine Rankings by Amy N. Langville and Carl D. Meyer (Princeton: Princeton University Press, 2006) for
more information.
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It is now possible to find the steady-state vector by the methods of this section:

116293 7]
.168567
191263
q=|.098844
.164054
.168567
092413

so the most important page according to PageRank is page 3, which has the largest entry
in q. The complete ranking is 3, 2 and 6, 5, 1, 4, and 7.

every month.

— NUMERICAL NOTE

The computation of q is not a trivial task, since the Google matrix has over 8
billion rows and columns. Google uses a version of the power method introduced
in Section 5.8 to compute q. While the power method was used in that section to
estimate the eigenvalues of a matrix, it can also be used to provide estimates for
eigenvectors. Since q is an eigenvector of G corresponding to the eigenvalue 1,
the power method applies. It turns out that only between 50 and 100 iterations
of the method are needed to get the vector q to the accuracy that Google needs
for its rankings. It still takes days for Google to compute a new q, which it does

PRACTICE PROBLEM

1. Consider the Markov chain on {1, 2, 3} with transition matrix

12 0 1)2
P=|1/2 1/2 0
0o 1/2 1)2

a. Show that P is a regular matrix.

b. Find the steady-state vector for this Markov chain.

c. What fraction of the time does this chain spend in state 2? Explain your answer.

10.2 EXERCISES

In Exercises 1 and 2, consider a Markov chain on {1, 2} with the
given transition matrix P. In each exercise, use two methods to
find the probability that, in the long run, the chain is in state 1.
First, raise P to a high power. Then directly compute the steady-

state vector.
[2 4 T4 23
L P‘[.s .6} 2 P‘[3/4 1/3}

In Exercises 3 and 4, consider a Markov chain on {1, 2, 3} with
the given transition matrix P. In each exercise, use two methods
to find the probability that, in the long run, the chain is in state 1.
First, raise P to a high power. Then directly compute the steady-
state vector.

1/3 1/4 0 1 2 3
3.Pp=|1/3 1/2 1 4. P=|2 3 4
1/3 1/4 0 7 5 3

In Exercises 5 and 6, find the matrix to which P" converges as n
increases.
/4  3/5 0
5. P = [;jj %jg} 6. P=|1/4 0 1/3
/2  2/5 2/3

In Exercises 7 and 8, determine whether the given matrix is
regular. Explain your answer.
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10.

11.

12.
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f1/3 0 1)2

P=\1/3 12 1)2

13 12 0
12 0 1/3 0
p_| 0 25 0 37
12 0 23 0
L0 35 0 47

Consider a pair of Ehrenfest urns with a total of 4 molecules

divided between them.

a. Find the transition matrix for the Markov chain which
models the number of molecules in urn A, and show that
this matrix is not regular.

b. Assuming that the steady-state vector may be interpreted
as occupation times for this Markov chain, in what state
will this chain spend the most steps?

Consider a pair of Ehrenfest urns with a total of 5 molecules

divided between them.

a. Find the transition matrix for the Markov chain which
models the number of molecules in urn A, and show that
this matrix is not regular.

b. Assuming that the steady-state vector may be interpreted
as occupation times for this Markov chain, in what state
will this chain spend the most steps?

Consider an unbiased random walk with reflecting bound-

aries on {1,2,3,4}.

a. Find the transition matrix for the Markov chain and show
that this matrix is not regular.

b. Assuming that the steady-state vector may be interpreted
as occupation times for this Markov chain, in what state
will this chain spend the most steps?

Consider a biased random walk with reflecting boundaries on

{1,2, 3,4} with probability p = .2 of moving to the left.

a. Find the transition matrix for the Markov chain and show
that this matrix is not regular.

b. Assuming that the steady-state vector may be interpreted

as occupation times for this Markov chain, in what state
will this chain spend the most steps?

In Exercises 13 and 14, consider a simple random walk on the
given graph. In the long run, what fraction of the time will the
walk be at each of the various states?

13.

1 2 14. | 2

4 3

In Exercises 15 and 16, consider a simple random walk on the
given directed graph. In the long run, what fraction of the time
will the walk be at each of the various states?

15.

17.

18.

19.

20.

1 \ 2 16. 1 4
Y 4
3
2 5
A A
3 ) 4
Consider the mouse in the following maze from Section 10.1,

Exercise 17.

N
e
Y

The mouse must move into a different room at each time
step, and is equally likely to leave the room through any of
the available doorways. If you go away from the maze for a
while, what is the probability that the mouse will be in room
3 when you return?

2
5

Consider the mouse in the following maze from Section 10.1,
Exercise 18.
I 5 I
1 1
4 iR 5

1 3

What fraction of the time does it spend in room 3?

Consider the mouse in the following maze, which includes
“one-way” doors, from Section 10.1, Exercise 19.

A
I

3
/]
6
[

Show that

-_ o O O OO

is a steady-state vector for the associated Markov chain, and
interpret this result in terms of the mouse’s travels through
the maze.

Consider the mouse in the following maze, which includes



“one-way” doors.

C
1 2
L 3 ]
4 Y 5
h

What fraction of the time does the mouse spend in each of
the rooms in the maze?

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21.

22.

23.

24.

a. Every stochastic matrix has a steady-state vector.

b. If its transition matrix is regular, then the steady-state
vector gives information on long-run probabilities of the
Markov chain.

c. If A = lisaneigenvalue of a matrix P, then P is regular.

®

Every stochastic matrix is regular.

b. If P is aregular stochastic matrix, then P" approaches a
matrix with equal columns as 7 increases.

c. If lim x, = q, then the entries in q may be interpreted
n—00

as occupation times.

Suppose that the weather in Charlotte is modeled using the
Markov chain in Section 10.1, Exercise 23. Over the course
of a year, about how many days in Charlotte are sunny,
cloudy, and rainy according to the model?

Suppose that the weather in Charlotte is modeled using the
Markov chain in Section 10.1, Exercise 24. Over the course
of a year, about how many days in Charlotte are rainy accord-
ing to the model?

In Exercises 25 and 26, consider a set of webpages hyperlinked by
the given directed graph. Find the Google matrix for each graph
and compute the PageRank of each page in the set.

25.

26.

27.

1 R 2 N
A 4 Y
A A
3 b 4
1 4
3
2 5 6

A genetic trait is often governed by a pair of genes, one
inherited from each parent. The genes may be of two types,
often labeled A and a. An individual then may have three
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28.

29.

30.

31.

32.

different pairs: AA, Aa (which is the same as aA), or aa. In
many cases the AA and Aa individuals cannot be otherwise
distinguished; in these cases gene A is dominant and gene a
is recessive. Likewise, an AA individual is called dominant
and an aa individual is called recessive. An Aa individual is
called a hybrid.

a. Show that if a dominant individual is mated with a hybrid,
the probability of an offspring being dominant is 1/2 and
the probability of an offspring being a hybrid is 1/2.

b. Show thatif a recessive individual is mated with a hybrid,
the probability of an offspring being recessive is 1/2 and
the probability of an offspring being a hybrid is 1/2.

c. Show that if a hybrid individual is mated with another
hybrid, the probability of an offspring being dominant is
1/4, the probability of an offspring being recessive is 1/4,
and the probability of an offspring being a hybrid is 1/2.

Consider beginning with an individual of known type and
mating it with a hybrid, then mating an offspring of this
mating with a hybrid, and so on. At each step, an offspring
is mated with a hybrid. The type of the offspring can be
modeled by a Markov chain with states AA, Aa, and aa.

a. Find the transition matrix for this Markov chain.

b. If the mating process in Exercise 27 is continued for an
extended period of time, what percent of the offspring will
be of each type?

Consider the variation of the Ehrenfest urn model of diffusion

studied in Section 10.1, Exercise 29, where one of the 2k

molecules is chosen at random and is then moved between

the urns with a fixed probability p.

a. Let k = 3 and suppose that p = 1/2. Show that the
transition matrix for the Markov chain that models the
number of molecules in urn A is regular.

b. Let k = 3 and suppose that p = 1/2. In what state will
this chain spend the most steps, and what fraction of the
steps will the chain spend at this state?

c. Does the answer to part (b) change if a different value of
pwith0 < p < 1isused?

Consider the Bernoulli-Laplace diffusion model studied in
Section 10.1, Exercise 30.

a. Let k =5 and show that the transition matrix for the
Markov chain that models the number of type I molecules
in urn A is regular.

b. Let k = 5. In what state will this chain spend the most
steps, and what fraction of the steps will the chain spend
at this state?

S O

Let 0 < g < 1. Show that is a steady-state vector

0

l—gq
for the Markov chain in Example 3.

Consider the Markov chain in Example 4.
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33.

34.

35.

36.

1/8
1/4
1/4
1/4
1/8
Markov chain.

a. Show that is a steady-state vector for this

b. Compute the average of the entries in P?° and P?' given
in Example 4. What do you find?

4/11 0
3/11 0
Show that | 4/11 | and 0 are steady-state vectors
0 9/17
0 8/17

for the Markov chain in Example 5. If the chain is equally
likely to begin in each of the states, what is the probability of
being in state 1 after many steps?

Let 0 < p,q <1, and define

Pz[ p 1—4}
I=p q
a. Show that 1 and p + g — 1 are eigenvalues of P.

b. By Theorem 1, for what values of p and ¢ will P fail to
be regular?

c. Find a steady-state vector for P.

Let0 < p,g <1, and define

P q I—-p—gq
P = q I-p—gq P
l-p—gq P q

a. For what values of p and ¢ is P a regular stochastic
matrix?

b. Given that P is regular, find a steady-state vector for P.

Let A be an m x m stochastic matrix, let X be in R”, and let

37.

38.

39.

y = Ax. Show that
il lyml < xal 4+ L

with equality holding if and only if all of the nonzero entries
in x have the same sign.

Show that every stochastic matrix has a steady-state vector

using the following steps.

a. Let P be a stochastic matrix. By Exercise 30 in Section
4.9, A = lisaneigenvalue for P. Let v be an eigenvector
of P associated with A = 1. Use Exercise 36 to conclude
that the nonzero entries in v must have the same sign.

b. Show how to produce a steady-state vector for P from v.

Consider a simple random walk on a finite connected graph.

(A graph is connected if it is possible to move from any vertex

of the graph to any other along the edges of the graph.)

a. Explain why this Markov chain must have a regular
transition matrix.

b. Use the results of Exercises 13 and 14 to hypothesize
a formula for the steady-state vector for such a Markov
chain.

By Theorem 1(e), all eigenvalues A of a regular matrix

other than 1 have the property that |A| < I; that is, the

eigenvalue 1 is a strictly dominant eigenvalue. Suppose that

P is an n X n regular matrix with eigenvalues A; =1, ...,

A, ordered so that [A;| > |A,| > |A;] > ... > |A,|. Suppose

thatxg = ¢1q + ¢2v2 + -+ + ¢, V, is a linear combination of

eigenvectors of P.

a. Use Equation (2) in Section 5.8 to derive an expression
for x;, = P¥x,.

b. Use the result of part (a) to derive an expression for
X; — c1q, and explain how the value of |A,| affects the
speed with which {x; } converges to ¢,q.

SOLUTION TO PRACTICE PROBLEM

1. a. Since

1/4 1/4 1)2
PX=|1/2 1/4 1/4
1/4 1/2  1/4

P is regular by the definition with k = 2.

b. Solve the equation Pq = q, which may be rewritten as (P — /)q = 0. Since

—-1/2 0 1/2
P—-1= 1/2 —-1/2 0
0 1/2 —-1/2
and row reducing the augmented matrix gives
—-1/2 0 /2 0 1 0 -1 0
1/2 —-1/2 0 0O|~(0 1 -1 0
0 /2 =-1/2 0 0 0 0 O
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1
the general solution is g3 | 1 |. Since q must be a probability vector, set g3 =

1
1/(1 + 1+ 1) = 1/3 and compute that
g 1/3
q=-|1|=|1/3
31 1/3

c. The chain will spend 1/3 of its time in state 2 since the entry in q corresponding
to state 2 is 1/3, and we can interpret the entries as occupation times.

10.3 COMMUNICATION CLASSES

Section 10.2 showed that if the transition matrix for a Markov chain is regular, then x,

converges to a unique steady-state vector for any choice of initial probability vector.

That is, lim x, = q, where q is the unique steady-state vector for the Markov chain.
n—o00

Examples 3, 4, and 5 in Section 10.2 illustrated that, even though every Markov chain
has a steady-state vector, not every Markov chain has the property that lim x, = q.
n—oo

The goal of the next two sections is to study these examples further, and to show that
Examples 3, 4, and 5 in Section 10.2 describe all the ways in which Markov chains fail
to converge to a steady-state vector. The first step is to study which states of the Markov
chain can be reached from other states of the chain.

Communicating States

Suppose that state j and state i are two states of a Markov chain. If state j can be
reached from state i in a finite number of steps and state i can be reached from state
J in a finite number of steps, then states j and i are said to communicate. If P is the
transition matrix for the chain, then the entries in P¥ give the probabilities of going
from one state to another in k steps:

From:
1 J m To
. 1
Pk = \
pij coe — i

and powers of P can be used to make the following definition.

Leti and j be two states of a Markov chain with transition matrix P. Then state i
communicates with state j if there exist nonnegative integers m and n such that
the (j,i)-entry of P and the (i, j)-entry of P" are both strictly positive. That
is, state i communicates with state j if it is possible to go from state i to state j
in m steps and from state j to state i in n steps.

This definition implies three properties that will allow the states of a Markov chain
to be placed into groups called communication classes. First, the definition allows the
integers m and n to be zero, in which case the (i,i)-entry of PO =1 is 1, which is
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positive. This ensures that every state communicates with itself. Because both (i, j)
and (j,i) are included in the definition, it follows that if state i communicates with
state j then state j communicates with state 7. Finally, you will show in Exercise 36
that if state i communicates with state j and state j communicates with state k, then
state / communicates with state k. These three properties are called, respectively, the
reflexive, symmetric, and transitive properties:

a. (Reflexive Property) Each state communicates with itself.

b. (Symmetric Property) If state i communicates with state j, then state j communi-
cates with state i.

c. (Transitive Property) If state i communicates with state j, and state j communicates
with state k, then state i communicates with state k.

A relation with these three properties is called an equivalence relation. The communi-
cation relation is an equivalence relation on the state space for the Markov chain. Using
the properties listed above simplifies determining which states communicate.

EXAMPLE 1 Consider an unbiased random walk with absorbing boundaries on
{1,2,3,4,5}. Find which states communicate.

SOLUTION The transition matrix P is given below, and Figure 1 shows the transition
diagram for this Markov chain.

1 2 3 4 5
1 1/2 0 0 011
0 0 1/2 0 0]:2
P=|0 1/2 0 1/2 0| 3
0 0 1/2 0 0] 4
0 0 0 1/2 1]s
3 3 3
3 3 3
FIGURE 1 Unbiased random walk with absorbing
boundaries.

First note that, by the reflexive property, each state communicates with itself. It is
clear from the diagram that states 2, 3, and 4 communicate with each other. The same
conclusion may be reached using the definition by finding that the (2, 3)-, (3, 2)-, (3, 4)-,
and (4, 3)-entries in P are positive, thus states 2 and 3 communicate, as do states 3 and
4. States 2 and 4 must also communicate by the transitive property. Now consider
state 1 and state 5. If the chain starts in state 1, it cannot move to any state other than
itself. Thus it is not possible to go from state 1 to any other state in any number of
steps, and state 1 does not communicate with any other state. Likewise, state 5 does not
communicate with any other state. In summary,

State 1 communicates with state 1.
State 2 communicates with state 2, state 3, and state 4.
State 3 communicates with state 2, state 3, and state 4.
State 4 communicates with state 2, state 3, and state 4.
State 5 communicates with state 5.
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Notice that even though states 1 and 5 do not communicate with states 2, 3, and 4, it is
possible to go from these states to either state 1 or state 5 in a finite number of steps:
this is clear from the diagram, or by confirming that the appropriate entries in P, P2, or
P3 are positive. [

In Example 1, the state space {1,2, 3,4, 5} can now be divided into the classes {1},
{2,3,4}, and {5}. The states in each of these classes communicate only with the other
members of their class. This division of the state space occurs because the communi-
cation relation is an equivalence relation. The communication relation partitions the
state space into communication classes. Each state in a Markov chain communicates
only with the members of its communication class. For the Markov chain in Example
1, the communication classes are {1}, {2, 3,4}, and {5}.

EXAMPLE 2 Consider an unbiased random walk with reflecting boundaries on
{1,2,3,4,5}. Find the communication classes for this Markov chain.

SOLUTION The transition matrix P for this chain, as well as P2, P>, and P*, is shown
below.

1 2 3 4 5 1 2 3 4 5
[0 172 0 0 0] [1/2 0 1/4 0 0 1
1 0 1/2 0 02 0 3/4 0 1/4 0 |2
P=|01/2 0 1/2 0|5 P2=1|1/2 0 1/2 0 1/2]3
0 0 1/2 0 14 0 1/4 0 3/4 0 |4
(0 0 0 1/2 0]s L0 0 1/4 0 1/2]5

1 2 3 4 5 1 2 3 4 5
0 3/8 0 1/8 0 |1 [3/8 0 1/4 0 1/8]1
3/4 0 1/2 0 1/4 |2 0 5/8 0 3/8 0 |2
Pi=| 0 1/2 0 1/2 0 |3 P'=11/2 0 1/2 0 1/2]53
1/4 0 1/2 0 3/4|4 0 3/8 0 5/8 0 |4
| 0 1/8 0 3/8 0 |5 | 1/8 0 1/4 0 3/8]s

The transition diagram for this Markov chain is given in Figure 2.

s 1 s
1 2 2 2

>

FIGURE 2 Unbiased random walk with
reflecting boundaries.

Notice that the (i, j)-entry in at least one of these matrices is positive for any choice
of i and j. Thus every state is reachable from any other state in four steps or fewer,
and every state communicates with every state. There is only one communication class:
{1,2,3,4,5}. ]
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THEOREM 2

EXAMPLE 3 Consider the Markov chain given in Example 5 in Section 10.2. Find
the communication classes for this Markov chain.

SOLUTION The transition matrix for this Markov chain is

1 2 3 4

1/4 1/3 1/2 0

1/4 1/3 1/4 0

P=11/2 1/3 1/4 0

0 0 0 1/3 3/4] 4

0 0 0 2/3 1/4] s

—_

5
0
0 2
0

and a transition diagram is shown in Figure 3.

FIGURE 3 Transition diagram for Example 3.

It is impossible to move from any of the states 1, 2, or 3 to either of the states 4 or 5, so
these states must be in separate communication classes. In addition, state 1, state 2, and
state 3 communicate; state 4 and state 5 also communicate. Thus the communication
classes for this Markov chain are {1,2, 3} and {4, 5}. |

The Markov chains in Examples 1 and 3 have more than one communication
class, while the Markov chain in Example 2 has only one communication class. This
distinction leads to the following definitions.

A Markov chain with only one communication class is irreducible. A Markov
chain with more than one communication class is reducible.

Thus the Markov chains in Examples 1 and 3 are reducible, while the Markov chain in
Example 2 is irreducible. Irreducible Markov chains and regular transition matrices are
connected by the following theorem.

If a Markov chain has a regular transition matrix, then it is irreducible.

PROOF Suppose that P is a regular transition matrix for a Markov chain. Then, by
definition, there is a k such that P* is a positive matrix. That is, for any states i and
j, the (i, j)- and (j,i)-elements in P* are strictly positive. Thus there is a positive
probability of moving from i to j and from j to 7 in exactly k steps, and so i and j
communicate with each other. Since i and j were arbitrary states and must be in the
same communication class, there can be only one communication class for the chain, so
the Markov chain must be irreducible. [ |
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Example 2 shows that the converse of Theorem 2 is not true, because the Markov chain
in this example is irreducible, but its transition matrix is not regular.

EXAMPLE 4 Consider the Markov chain whose transition diagram is given in
Figure 4. Determine whether this Markov chain is reducible or irreducible.

FIGURE 4 Transition diagram for
Example 4.

SOLUTION The diagram shows that states 1 and 2 communicate, as do states 4 and 5.
Notice that states 1 and 2 cannot communicate with states 3, 4, or 5 since the probability
of moving from state 2 to state 3 is 0. Likewise states 4 and 5 cannot communicate with
states 1, 2, or 3 since the probability of moving from state 4 to state 3 is 0. Finally, state
3 cannot communicate with any state other than itself since it is impossible to return to
state 3 from any other state. Thus the communication classes for this Markov chain are
{1,2}, {3}, and {4, 5}. Since there is more than one communication class, this Markov
chain is reducible. u

Mean Return Times

Let q be the steady-state vector for an irreducible Markov chain. It can be shown

using advanced methods in probability theory that the entries in q may be interpreted

as occupation times; that is, g; is the fraction of time steps that the chain will spend

at state 7. For example, consider a Markov chain on {1, 2, 3} with steady-state vector
2

q = | .5 [. In the long run, the chain will spend about half of its steps in state 2. If
3

the chain is currently in state 2, it should take about two (1/.5) steps to return to state

2. Likewise, since the chain spends about 1/5 of its time in state 1, it should visit state

1 once every five steps.

Given a Markov chain and states i and j, a quantity of considerable interest is the
number of steps n;; that it will take for the system to first visit state i given that it starts in
state j. The value of n;; cannot be known—it could be any positive integer depending
on how the Markov chain evolves. Such a quantity is known as a random variable.
Since n;; is unknowable, the expected value of 7;; is studied instead. The expected
value of a random variable functions as a type of average value of the random variable.
The following definition will be used in subsequent sections.
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THEOREM 3

The expected value of a random variable X which takes on the values x, x5, . ..
is

EX]=xiP(X =x)+ uP(X =x)+--=) xPX =x) ()
k=1

where P(X = x;) denotes the probability that the random variable X equals the
value xy.

Now let t;; = E[n;;] be the expected value of n;;, which is the expected number
of steps it will take for the system to return to state i given that it starts in state
i. Unfortunately, Equation (1) will not be helpful at this point. Instead, proceeding
intuitively, the system should spend one step in state i for each ¢#;; steps on average. It
seems reasonable to say that the system will, over the long run, spend about 1/z;; of the
time in state ;. But that quantity is ¢;, so the expected number of time steps needed to
return, or mean return time to a state i, is the reciprocal of g;. This informal argument
may be made rigorous using methods from probability theory; see Appendix 2 for a
complete proof.

Consider an irreducible Markov chain with a finite state space, let n;; be the
number of steps until the chain first visits state ¢ given that the chain starts in
state j, and let #;; = E[n;;]. Then

1
qi
where ¢; is the entry in the steady-state vector q corresponding to state i.

tii (2)

The example above matches Equation 2: t1; = 1/.2 =5, =1/.5=2, and 133 =
1/.3 = 10/3. Recall that the mean return time is an expected value, so the fact that
t33 is not an integer ought not be troubling. Section 10.5 will include a discussion of
tij = E[n;j], where i # j.

PRACTICE PROBLEM

1. Consider the Markov chain on {1, 2, 3, 4} with transition matrix
1/4 1/3 1/2 0
0 1/3 0 1/3
3/4 0 1/2  1/3
0 1/3 0 1/3

Determine the communication classes for this chain.
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In Exercises 1-6, consider a Markov chain with state space with
{1,2,...,n} and the given transition matrix. Find the commu-
nication classes for each Markov chain, and state whether the
Markov chain is reducible or irreducible.

f1/4 0 1/3 1/4 1/2  1/3
L|12 1 13 2. (12 172 13
L1/4 0 13 1/4 0 1/3
112 12
.00 172 0
Lo 0 12
[0 0 o 1 1
1/3 0 0 0 0
4. [2/3 0 0 0 0
0 1/4 2/3 0 0
0 3/4 1/3 0 0
rTo o0 4 0 8 0
o 0 o0 7 0 5
s [3 0 0 0 2 o0
“lo 1 o o o0 5
7 0 6 0 0 0
L0 9 0 3 0 0
ro 1/3 0 2/3 1/2 0 0
12 0 12 0 0 1/3 0
0 2/3 0 1/3 0 0 2/5
6. [1/2 0 1/2 0 0 0 0
0 0 0 0 0 0 3/5
0 0 0 0o 12 0 0
| 0 0 0 0 0 2/3 0 |

7. Consider the mouse in the following maze from Section 10.1,
Exercise 19.

| |
1 2 3
I\ / \ /|
4 5 6
I C
Find the communication classes for the Markov chain that

models the mouse’s travels through this maze. Is this Markov
chain reducible or irreducible?

8. Consider the mouse in the following maze from Section 10.1,
Exercise 20.

Find the communication classes for the Markov chain that
models the mouse’s travels through this maze. Is this Markov
chain reducible or irreducible?

In Exercises 9 and 10, consider the set of webpages hyperlinked
by the given directed graph. Find the communication classes for
the Markov chain that models a random surfer’s progress through
this set of webpages. Use the transition matrix derived from the
graph itself instead of the Google matrix.

9. 1 R 2 R 5
Y Y
AN A
3 N 4
10. 1 4
3
2 5 6

11. Consider an unbiased random walk with reflecting bound-
aries on {1,2,3,4}. Find the communication classes for
this Markov chain and determine whether it is reducible or
irreducible.

12. Consider an unbiased random walk with absorbing bound-
aries on {1,2,3,4}. Find the communication classes for
this Markov chain and determine whether it is reducible or
irreducible.

In Exercises 13 and 14, consider a simple random walk on the
given graph. Show that the Markov chain is irreducible and
calculate the mean return times for each state.

13. 1 2 14. 2

In Exercises 15 and 16, consider a simple random walk on the
given directed graph. Show that the Markov chain is irreducible
and calculate the mean return times for each state.

15. 1 R 2 16. 1 4
Y Y
3
2 5
A A
3 N 4
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17.

18.

Consider the mouse in the following maze from Section 10.1,
Exercise 17.

A
>
\l(s

If the mouse starts in room 3, how long on average will it take
the mouse to return to room 3?

<

Consider the mouse in the following maze from Section 10.1,
Exercise 18.

I I

2
1 1
4 5

1 3

If the mouse starts in room 2, how long on average will it take
the mouse to return to room 27

In Exercises 19 and 20, consider the mouse in the following maze
from Section 10.2, Exercise 20.

ro:

1
Y
N

N
2

19.

20.

If the mouse starts in room 1, how long on average will it take
the mouse to return to room 17?7

If the mouse starts in room 4, how long on average will it take
the mouse to return to room 47

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21.

22,

a. If it is possible to go from state i to state j in n steps,
where n > 0, then states i and j communicate with each
other.

b. If a Markov chain is reducible, then it cannot have a
regular transition matrix.

c. The entries in the steady-state vector are the mean return
times for each state.

a. An irreducible Markov chain must have a regular transi-
tion matrix.

b. Ifthe (i, j)-and (j,i)-entries in P¥ are positive for some
k, then the states i and j communicate with each other.

c. If state i communicates with state j and state j commu-
nicates with state k, then state ; communicates with state

k.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Suppose that the weather in Charlotte is modeled using the
Markov chain in Section 10.1, Exercise 23. About how many
days elapse in Charlotte between rainy days?

Suppose that the weather in Charlotte is modeled using the
Markov chain in Section 10.1, Exercise 24. About how many
days elapse in Charlotte between consecutive rainy days?

The following set of webpages hyperlinked by the directed
graph was studied in Section 10.2, Exercise 25.

1 R 2 5
Y Y
A A
3 N 4

Consider randomly surfing on this set of webpages using the
Google matrix as the transition matrix.

a. Show that this Markov chain is irreducible.

b. Suppose the surfer starts at page 1. How many mouse

clicks on average must the surfer make to get back to page
1?

The following set of webpages hyperlinked by the directed
graph was studied in Section 10.2, Exercise 26.

1 4

2 5 6
Repeat Exercise 25 for this set of webpages.

Consider the pair of Ehrenfest urns studied in Section 10.2,
Exercise 9. Suppose that there are now 2 molecules in urn
A. How many steps on average will be needed until there are
again 2 molecules in urn A?

Consider the pair of Ehrenfest urns studied in Section 10.2,
Exercise 10. Suppose that urn A is now empty. How many
steps on average will be needed until urn A is again empty?

A variation of the Ehrenfest model of diffusion was studied
in Section 10.2, Exercise 29. Consider this model with k = 3
and p = 1/2 and suppose that there are now 3 molecules in
urn A. How many draws on average will be needed until there
are again 3 molecules in urn A?

Consider the Bernoulli-Laplace model of diffusion studied
in Section 10.2, Exercise 30. Let k = 5. Suppose that all of
the type I molecules are now in urn A. How many draws on
average will be needed until all of the type I molecules are
again in urn A?

A Markov chain model for scoring a tennis game was studied
in Section 10.1, Exercise 31. What are the communication
classes for this Markov chain?



32. A Markov chain model for the rally point method for scoring
a volleyball game was studied in Section 10.1, Exercise 32.
What are the communication classes for this Markov chain?

In Exercises 33 and 34, consider the Markov chain on
{1,2,3,4,5} with transition matrix

0 0 0o 1/2
1/3 0 0 0
P=|2/3 0 0 0
0o 2/5 1/5 1)2
0 3/5 4/5 0

S oo o~

33.
34.

35.

36.
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Show that this Markov chain is irreducible.

Suppose the chain starts in state 1. What is the expected
number of steps until it is in state 1 again?

How does the presence of dangling nodes in a set of hy-
perlinked webpages affect the communication classes of the
associated Markov chain?

Show that the communication relation is transitive. Hint:
Show that the (i, k)-entry of P"T” must be greater than or
equal to the product of the (i, j)-entry of P” and the (j, k)-
entry of P".

SOLUTION TO PRACTICE PROBLEM

1. First note that states 1 and 3 communicate with each other, as do states 2 and 4.
However, there is no way to proceed from either state 1 or state 3 to either state 2 or
state 4, so the communication classes are {1, 3} and {2, 4}.

10.4 CLASSIFICATION OF STATES AND PERIODICITY

The communication classes of a Markov chain have important properties which help
determine whether the state vectors converge to a unique steady-state vector. These
properties are studied in this section, and it will be shown that Examples 3, 4, and 5 in
Section 10.2 are examples of all the ways that the state vectors of a Markov chain can
fail to converge to a unique steady-state vector.

Recurrent and Transient States

One way to describe the communication classes is to determine whether it is possible
for the Markov chain to leave the class once it has entered it.

Let C be a communication class of states for a Markov chain, and let j be a state
in C. If there is a state i not in C and k > 0 such that the (i, j)-entry in P¥
is positive, then the class C is called a transient class and each state in C is a
transient state. If a communication class is not transient, it is called a recurrent
class and each state in the class is a recurrent state.

Suppose that C is a transient class. Notice that once the system moves from C to
another communication class D, the system can never return to C. This is true because
D cannot contain a state / from which it is possible to move to a state in C. If D did
contain such a state 7, then the transitive property of the communication relation would
imply that every state in C communicates with every state in D. This is impossible.

EXAMPLE 1 Consider the Markov chain on {1, 2, 3, 4, 5} studied in Example 4 in
Section 10.3. Its transition diagram is given in Figure 1. Determine whether each of the
communication classes is transient or recurrent.

SOLUTION The communication classes were found to be {1, 2}, {3}, and {4, 5}. First
consider class {3}. There is a positive probability of a transition from state 3 to state
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FIGURE 1 Transition diagram for
Example 1.

2, so applying the definition with & = 1 shows that class {3} is a transient class. Now
consider class {1, 2}. The probability of a one-step transition from either state 1 or state
2 to any of states 3, 4, or 5 is zero, and this is also true for any number of steps. If the
system starts in state 1 or 2, it will always stay in state 1 or 2. Class {1,2} is thus a
recurrent class. A similar argument shows that class {4, 5} is also a recurrent class. W

EXAMPLE 2 Consider the random walk with reflecting boundaries studied in
Example 2 in Section 10.3. Determine whether each of the communication classes is
transient or recurrent.

SOLUTION This Markov chain is irreducible: the single communication class for
this chain is {1, 2, 3,4, 5}. By the definition, this class cannot be transient. Thus the
communication class must be recurrent. [ |

The result of the preceding example may be generalized to any irreducible Markov
chain.

Remark: All states of an irreducible Markov chain are recurrent.

Suppose that a reducible Markov chain has two transient classes C; and C, and
no recurrent classes. Since C; is transient, there must be a state in C, which can be
reached from a state in C;. Since C; is transient, there must be a state in C; which can
be reached from C,. Thus all states in C; and C, communicate, which is impossible.
Thus the Markov chain must have at least one recurrent class. This argument can be
generalized to refer to any reducible Markov chain with any number of transient classes,
which along with the previous remark proves the following.

Remark: Every Markov chain must have at least one recurrent class.

EXAMPLE 3 Consider the Markov chain studied in Example 3 in Section 10.3.
Determine whether each of the communication classes is transient or recurrent.

SOLUTION The transition matrix for this Markov chain is

1 2 3 4 5
1/4 1/3 1/2 0 0 1
1/4 1/3 1/4 0 0 |2
0

P=|1/2 1/3 1/4 0
0 0 0 1/3 3/4|a
0 0 0 2/3 1/4]s



10.4 Classification of States and Periodicity 35

and the two communication classes are {1, 2, 3} and {4, 5}. The matrix P may be written

as the partitioned matrix P = [ Py 0 i|, where

o P
1 2 3
4 5
1/4 1/3 1/2
4132 13 3/47 s
Pr=|1/4 1/3 1/4|2 and P, =
2/3 1/4] s

12 1/3 1/4] s

and O is an appropriately sized zero matrix. Using block multiplication,

Pk _ Pf 0O
o Pf
for all kK > 0. Thus if state j is in one class and state i is in the other class, the (7, j)-

and (j, i)-entries of P¥ are zero for all kK > 0. Thus both classes of this Markov chain
must be recurrent. [ |

EXAMPLE 4 Consider altering the previous example slightly to get a Markov chain
with transition matrix

1 2 3 4 5
1/4 1/3 1/2 0 0 |1
1/4 1/3 1/4 0 0
P=1|1/2 1/3 1/4 0 1/4
o 0 0 1/3 1/2
0 0 0 2/3 1/4]s

and the transition diagram given in Figure 2. Determine whether each of the communi-
cation classes is transient or recurrent.

[}

)

IS

FIGURE 2 Transition diagram for Example 4.

SOLUTION The communication classes are still {1,2,3} and {4, 5}. Now the (3, 5)-
entry is not zero, so {4, 5} is a transient class. By the remark above, the chain must have
at least one recurrent class, so {1,2, 3} must be that recurrent class. This result may
P

0 0

also be proven using partitioned matrices. Let P = [ j|, where P is as in the

previous example,

4 5
4 5
0 0
13 1/2] 4 :
0= and S=1[0 0 2
2/3 14| s
0 1/4] s
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The submatrix P; is a transition matrix in its own right: it describes transitions within
the recurrent class {1,2,3}. Matrix S records the probabilities of transitions from the
transient class {4, 5} into the recurrent class {1, 2, 3}. Matrix Q records the probabilities
of transitions within the transient class {4, 5}. Block multiplication (see Section 2.4)

now gives
pk — PE S
0 ok

for some nonzero matrix Si. Since the lower left block is O for all matrices P*, it
is impossible to leave class {1, 2, 3} after entering it, and class {1, 2, 3} is a recurrent
class. |

In Examples 3 and 4, the states were ordered so that the members of each class were
grouped together. In Example 4, the recurrent classes were listed first followed by the
transient classes. This ordering was convenient, as it allowed for the use of partitioned
matrices to determine the recurrent and transient classes. It is also possible to use block
multiplication to compute powers of the transition matrix P if the states are reordered
in the manner done in Examples 3 and 4: the states in each communication class are
consecutive, and if there are any transient classes, the recurrent classes are listed first,
followed by the transient classes. A transition matrix with its states thus reordered is
said to be in canonical form. To see how this reordering works, consider the following
example.

EXAMPLE 5 The Markov chain in Example 1 has transition matrix

~

Il
(SR =T -t
OO OO =
O~ Wwow
—_0 O O O &
oaprpoOoOC oW
L o S

and its communication classes are {1,2}, {3}, and {4,5}. To place the matrix in
canonical form, reorder the classes {1, 2}, {4, 5}, and {3}; that is, rearrange the states
in the order 1, 2, 4, 5, 3. To perform this rearrangement, first rearrange the columns,
which produces the matrix

rearrange

columns

cCo o ®~—
cCooc o~
O oW o w
— o oo o &
arOCOC O W
L Y S

co o w~—
SO OO =
— o oo o &
aRrOOCOW
O oW o w
L o S

Now rearranging the rows produces the transition matrix in canonical form:

rearrange

TOWS

co o™ ~—
cooc o~
— oo oo &
aroCcOCOWL
=N NI
L T S o S

cCo o™ ~—
SO OO =W
o—oc oo s
oo pr o OWw
NOoO = Wwow
T R N S



FIGURE 3

Transition diagram for Example 6.
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The transition matrix may be divided as follows:

L

In general, suppose that P is the transition matrix for a reducible Markov chain
with r recurrent classes and one or more transient classes. A canonical form of P is

P - O

~

Il
o o ol o~
co oo~
o —oloo s
oo RrocoOw
Do —lwow
W RN =

p—|: s
0 .-« P,
0 0

Here P; is the transition matrix for the i™ recurrent class, O is an appropriately sized
zero matrix, Q records transitions within the transient classes, and S contains the
probabilities of transitions from the transient classes to the recurrent classes. Since P is
a partitioned matrix, it is relatively easy to take powers of it using block multiplication:

Pk 0
10) Prk
9] | OF

for some matrix S;. The matrices Q, S, and Si help to answer questions about the
long-term behavior of the Markov chain which are addressed in Section 10.5.

Periodicity

A final way of classifying states is to examine at what times it is possible for the system
to return to the state in which it begins. Consider the following simple example.

EXAMPLE 6 A Markov chain on {1, 2, 3} has transition matrix

1
2
0f 3

—_—0 ~
O = W

P =

_o O

0

The transition diagram, which is shown in Figure 3, is quite straightforward. The system
must return to its starting point in three steps and every time the number of steps is a
multiple of three. [ |

EXAMPLE 7 A Markov chain on {1, 2, 3, 4} has transition matrix

1 2 3 4

0 0 1 0]:

1 0 0 02
P =

0 1/2 0 1|53

0 1/2 0 04
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FIGURE 4

Transition diagram for Example 7.

and the transition diagram shown in Figure 4. If the system starts in state 1, 2, or 3, the
system may return to its starting point in three steps or in four steps, and may return
every time the number of steps is 3a + 4b for some non-negative integers a and b. It
can be shown that every positive integer greater than 5 may be written in that form, so if
the system starts in state 1, 2, or 3, it may also return to its starting point at any number
of steps greater than 5. If the system starts in state 4, the system may return to its starting
point in four steps or in seven steps, and a similar argument shows that the system may
also return to its starting point at any number of steps greater than 17. [ |

EXAMPLE 8 The unbiased random walk on {1,2,3, 4,5} with reflecting bound-
aries has the transition diagram shown in Figure 5. From this diagram, one can see that
it will always take an even number of steps for the system to return to the state in which
it started.

FIGURE 5 Unbiased random walk with
reflecting boundaries. |

In Examples 6 and 8, the time steps at which the system may return to its initial site are
multiples of a number d: d = 3 for Example 6, d = 2 for Example 8. This number d
is called the period of the state, and is defined as follows.

The period d of a state i of a Markov chain is the greatest common divisor of all
time steps n such that the probability that the Markov chain that started at i visits
i at time step 7 is strictly positive.

Using a careful analysis of the set of states visited by the Markov chain, it may be
shown that the period of each state in a given communication class is the same, so the
period is a property of communication classes. See Appendix 2 for a proof of this fact,
which leads to the following definition.

The period of a communication class C is the period of each state in C. If a
Markov chain is irreducible, then the period of the chain is the period of its single
communication class. If the period of every communication class (and thus every
state) is d = 1, then the Markov chain is aperiodic.

The reason that the greatest common divisor appears in the definition is to allow a
period to be assigned to all states of all Markov chains. In Example 7, the system may
return to its starting state after any sufficiently large number of steps, so the period of
each state is d = 1. That is, the Markov chain in Example 7 is aperiodic. Notice that
this chain does not exhibit periodic behavior, so the term aperiodic is quite apt. Using
the definition confirms that the period of the Markov chain in Example 6 is d = 3, while
the period of the Markov chain in Example 8 is d = 2. The next theorem describes the
transition matrix of an irreducible and aperiodic Markov chain.



THEOREM 4
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Let P be the transition matrix for an irreducible, aperiodic Markov chain. Then
P is a regular matrix.

PROOF Let P be ann X n transition matrix for an irreducible, aperiodic Markov chain.
To show that P is regular, a number k must be found for which every entry in P* is
strictly positive. Let 1 <i,j < n. Since the Markov chain is irreducible, there must
be a number a which depends on i and j such that the (i, j)-element in P? is strictly
positive. Since the Markov chain is aperiodic, there is a number b which depends on
j such that the (J, j)-element in P™ is strictly positive for all m > b. Now note that
since P4t = P4P™ the (i, j)-element in P4*™ must be greater than or equal to the
product of the (7, j)-element in P“ and the (j, j)-element in P™. Thus the (i, j)-
element in P must be strictly positive for all m > b. Now let k be the maximum
over all pairs (i, j) of the quantity a 4+ b. This maximum exists because the state space
is finite, and the (i, j)-element of P* must be strictly positive for all pairs (i, j). Thus
every entry of P is strictly positive, and P is a regular matrix. [ |

So, if P is the transition matrix for an irreducible, aperiodic Markov chain, then P
must be regular and Theorem 1 must apply to P. Thus there is a steady-state vector q
for which

lim P"xy =q
n—>0Q
for any choice of initial probability vector xo. What can be said about the steady-state

vector q if an irreducible Markov chain has period d > 1? The following result is proven
in more advanced texts in probability theory.

Let P be the transition matrix for an irreducible Markov chain with period d > 1,
and let q be the steady-state vector for the Markov chain. Then, for any initial
probability vector X,

lim %(P”Jrl +o P x0=q

n—00

Theorem 5 says that in the case of an irreducible Markov chain with period d > 1, the
vector q is the limit of the average of the probability vectors P"*'xy, P"+2x,, ...,
P"*4xy. When a Markov chain is irreducible with period d > 1, the vector q may still
be interpreted as a vector of occupation times.

EXAMPLE 9 The period of the irreducible Markov chain in Example 8 is d = 2,
so the Markov chain has period d > 1. Let n be an even integer. Taking high powers
of the transition matrix P shows that

1/4 0 1/4 0 1/4]:

P"—|1/2 0 1/2 0 1)2
0 1/2 0 1/2 0
1/4 0 1/4 0 1/4

%)

N

w
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and
1 2 3 4 5
0 1/4 0 1/4 0 |1
/2 0 1/2 0 1/2]|:>
Pt —1 0 12 0 1/2 0 |3
/2 0 1/2 0 1/2|4
0 1/4 0 1/4 0 |s
So for any initial probability vector X,
1/8 1/8 1/8 1/8 1/8 1/8
i 1/4 1/4 1/4 1/4 1/4 1/4
lim = (P"+P" Nxo=| 1/4 1/4 1/4 1/4 1/4 |xo=|1/4
e 1/4 1/4 1/4 1/4 1/4 1/4
1/8 1/8 1/8 1/8 1/8 1/8

But this vector was the steady-state vector for this Markov chain calculated in Exercise
32 in Section 10.2. Theorem 5 is thus confirmed in this case. [ |

The steady-state vector for a reducible Markov chain will be discussed in detail in
the next section.

PRACTICE PROBLEM

1. Consider the Markov chain on {1, 2, 3, 4} with transition matrix

1/4 1/3 1/2 0

p_| 0 13 0 13
134 0 1/2 1/3

0o 1/3 0 1/3

Identify the communication classes of the chain as either recurrent or transient, and
reorder the states to produce a matrix in canonical form.

10.4 EXERCISES

In Exercises 1-6, consider a Markov chain with state space with 0 0 4 0 8 0
{1,2,..., n} and the given transition matrix. Identify the commu- 0 0 0 v 0 5
nication classes for each Markov chain as recurrent or transient, s, 3 0 0 0 2 0
and find the period of each communication class. 0 1 0 0 0 =
_ _ i 0 .6 0 0 0
/4 0 1/3 /4 1/2 1/3 0 9 0 3 0 0
1. | 1/2 1 1/3 2. |12 1/2  1/3 -
/4 0 1/3 |:l/4 0 1/3:| M0 1/3 0 2/3 1/2 0 0 ]
- - 1/2 0 1/2 0 0 1/3 0
M1 1/2 1727 0 2/3 0 1/3 0 0 2/5
3.0 1/2 0 6. | 1/2 0 1/2 0 0 0 0
0 0 1/2 0 0 0 0 0 0 3/5
- - 0 0 0 0 1/2 0 0
m 0 0 0 1 1 L O 0 0 0 0 2/3 0 |
1/3 0 0 0 0 In Exercises 7-10, consider a simple random walk on the given di-
4. |2/3 0 0 0 0 rected graph. Identify the communication classes of this Markov
0 /4 2/3 0 0 chain as recurrent or transient, and find the period of each com-
L O 3/4 /30 0 munication class.




10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

1 - 2 8. 1 4
A Y
3

4 N 3 2 5
1 R 2 N
A 4 A 4
A A
3 N 4
1 4

3
2 5 6

Reorder the states in the Markov chain in Exercise 1 to
produce a transition matrix in canonical form.

Reorder the states in the Markov chain in Exercise 2 to
produce a transition matrix in canonical form.

Reorder the states in the Markov chain in Exercise 3 to
produce a transition matrix in canonical form.

Reorder the states in the Markov chain in Exercise 4 to
produce a transition matrix in canonical form.

Reorder the states in the Markov chain in Exercise 5 to
produce a transition matrix in canonical form.

Reorder the states in the Markov chain in Exercise 6 to
produce a transition matrix in canonical form.

Find the transition matrix for the Markov chain in Exercise
9 and reorder the states to produce a transition matrix in
canonical form.

Find the transition matrix for the Markov chain in Exercise
10 and reorder the states to produce a transition matrix in
canonical form.

Consider the mouse in the following maze from Section 10.1,
Exercise 19.

I I
1 2 3
4 5 6
|
a. Identify the communication classes of this Markov chain
as recurrent or transient.

b. Find the period of each communication class.

c. Find the transition matrix for the Markov chain and re-
order the states to produce a transition matrix in canonical
form.

20.
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Consider the mouse in the following maze from Section 10.1,
Exercise 20.

a. Identify the communication classes of this Markov chain
as recurrent or transient.

b. Find the period of each communication class.

c. Find the transition matrix for the Markov chain and re-
order the states to produce a transition matrix in canonical
form.

In Exercises 21-22, mark each statement True or False. Justify
each answer.

21.

22.

23.

24.

25.

a. If two states i and j are both recurrent, then they must
belong to the same communication class.

b. All of the states in an irreducible Markov chain are recur-
rent.

c. Every Markov chain must have at least one transient class.

a. If state i is recurrent and state i communicates with state
J, then state j is also recurrent.

b. If two states of a Markov chain have different periods,
then the Markov chain is reducible.

c. Every Markov chain must have exactly one recurrent
class.

Confirm Theorem 5 for the Markov chain in Exercise 7 by
taking powers of the transition matrix (see Example 9).

Confirm Theorem 5 for the Markov chain in Exercise 8 by
taking high powers of the transition matrix (see Example 9).

Consider the Markov chain on {1, 2, 3} with transition matrix

0 1/2 0
p=|1 0 1
0 1/2 0

a. Explain why this Markov chain is irreducible and has
period 2.

b. Find a steady-state vector q for this Markov chain.

c. Find an invertible matrix A and a diagonal matrix D such
that P = ADA™!. (See Section 5.3.)

d. Use the result from part (c) to show that P" may be
written as

1/4  1/4 1/4
12 12 1)2
1/4  1/4 1/4
1/4  Z1/4  1/4
+ (=D | =12 172 —1)2
1/4 —1/4  1/4



42 CHAPTER 10 Finite-State Markov Chains

26.

27.
28.

e. Use the result from part (d) to confirm Theorem 5 for P.

Follow the plan of Exercise 25 to confirm Theorem 5 for the
Markov chain with transition matrix

0 P 0
P=1|1 0 1
0 1—-p O

where 0 < p < 1.
Confirm Theorem 5 for the Markov chain in Example 6.

Matrix multiplication can be used to find the canonical form
of a transition matrix. Consider the matrix P in Example 5
and the matrix

1 0 0 0 0
o 1 0 0 O
E=|10 0 0 1 0
o o0 o0 o0 1
o o0 1 0 O

Notice that the rows of E are the rows of the identity matrix

in the order 1, 2, 4, 5, 3.

a. Compute EP and explain what has happened to the
matrix P.

b. Compute PET and explain what has happened to the
matrix P.

c. Compute EPE” and explain what has happened to the
matrix P.

29. Let A be an n x n matrix and let £ be an n x n matrix

resulting from permuting the rows of /,, the n x n identity

matrix. The matrix E is called a permutation matrix.

a. Show that EA is the matrix A with its rows permuted in
exactly the same order that the rows of 7, were permuted
to form E. Hint: Any permutation of rows can be written
as a sequence of swaps of pairs of rows.

b. Apply the result of part (a) to A7 to show that AET is the
matrix A with its columns permuted in exactly the same
order that the rows of I, were permuted to form E.

c. Explain why EAET is the matrix A with its rows and
columns permuted in exactly the same order that the rows
of I, were permuted to form E.

d. In the process of finding the canonical form of a transition
matrix, does it matter whether the rows of the matrix or
the columns of the matrix are permuted first? Why or why
not?

SOLUTION TO PRACTICE PROBLEM

1. First note that states 1 and 3 communicate with each other, as do states 2 and 4.
However, there is no way to proceed from either state 1 or state 3 to either state
2 or state 4, so the communication classes are {1,3} and {2,4}. Since the chain
stays in class {1, 3} after it enters this class, class {1, 3} is recurrent. Likewise,
there is a positive probability of leaving class {2, 4} at any time, so class {2, 4} is
transient. One ordering of the states that produces a canonical form is 1, 3, 2, 4: the
corresponding transition matrix is

1

1/4 1)2

rearrange 0 0

columns 3 / 4 1 / 2
0 0

10.5 | THE FUNDAMENTAL MATRIX

3

2 4 1 3 2 4

1/3 0 |1 1/4 1/2 1/3 0 |1

1/3 132 e | 3/4 1/2 0 1/3 |3
—_——

0 1/3|3  rows 0 0 1/3 1/3 ]2

1/3 1/3 |4 0 0 1/3 1/3 |4

The return time for a state in an irreducible Markov chain was defined in Section 10.3
to be the expected number of steps needed for the system to return to its starting state.
This section studies the expected number of steps needed for a system to pass from
one state to another state, which is called a transit time. Another quantity of interest
is the probability that the system visits one state before it visits another. It is perhaps
surprising that discussing these issues for irreducible Markov chains begins by working
with reducible Markov chains, particularly those with transient states.
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The Fundamental Matrix and Transient States

The first goal is to compute the expected number of visits the system makes to a state
i given that the system starts in state j, where j is a transient state. Suppose that a
Markov chain has at least one transient state. Its transition matrix may be written in

canonical form as
p— R S
=010

Since at least one state is transient, S has at least one nonzero entry. In order for P to
be a stochastic matrix, at least one of the columns of Q must sum to less than 1. The
matrix Q is called a substochastic matrix. It can be shown that
lim 0¥ = 0
k—o00

for any substochastic matrix Q. This fact implies that if the system is started in a
transient class, it must eventually make a transition to a recurrent class and never visit
any state outside that recurrent class again. The system is thus eventually absorbed by
some recurrent class.

Now let j and i be transient states, and suppose that the Markov chain starts at state
J - Let v;; be the number of visits the system makes to state i before the absorption into
a recurrent class. The goal is to calculate £[v;;], which is the expected value of v;;. To
do so, a special kind of random variable called an indicator random variable is useful.
An indicator random variable / is a random variable which is 1 if an event happens
and is 0 if the event does not happen. Symbolically,

0 if the event does not happen

1 if the event happens
The expected value of an indicator random variable may be easily calculated:
E[I1=0-P(I =0)+1-P( =1)= P(I =1) = P(event happens) (1)

Returning to the discussion of the number of visits to state i starting at state j, let [ be
the indicator random variable for the event “the system visits state i at step k.” Then

o0
vi=l+h+hL+...=Y I
k=0

since a visit to state i at a particular time will cause 1 to be added to the running total of
visits kept in v;;. Using Equation (1), the expected value of v;; is

Elvj]=E |:Z Iki| =Y E[I]=) P(y=1) =) P(visittoi atstep k)
k=0 k=0

k=0 k=0
But P(visit to i at step k) is just the (i, j)-entry in the matrix O, so
o0
Efvy] = (0"
k=0

Thus the expected number of times that the system visits state i starting at state j is the
(i, j)-entry in the matrix

I+0+0°+Q%+...=> 0F
k=0
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THEOREM 6

Using the argument given in Section 2.6,
I+0+0*+0Q+...=(U-0)"'

The matrix (I — Q)~! is called the fundamental matrix of the Markov chain and is
denoted by M. The interpretation of the entries in M is given in the following theorem.

Let j and i be transient states of a Markov chain, and let Q be that portion of the
transition matrix which governs movement between transient states.

a. When the chain starts at a transient state j, the (i, j)-entryof M = (I — Q)™!
is the expected number of visits to the transient state i before absorption into
a recurrent class.

b. When the chain starts at a transient state j, the sum of the entries in column j
of M = (I — Q)" is the expected number of time steps until absorption.

An alternative proof of Theorem 6 is given in Appendix 2.

EXAMPLE 1 Consider an unbiased random walk on {1, 2, 3, 4, 5} with absorbing
boundaries. If the system starts in state 3, find the expected number of visits to state 2
before absorption. Also find the expected number of steps until absorption starting at
states 2, 3, and 4.

SOLUTION Placing the states in the order 1, 5, 2, 3, 4 produces a transition matrix in
canonical form:

1 2 3 4 5 1 5 2 3 4
1 1/2 0 0 01 1 0 1/2 o0 0 |1
0 0 1/2 0 0]2 0 0 0 1/2 0 |2
0 12 0 1/2 0 “;“:ge 0 0 1/2 0 1/2]3
0 0 1/2 0 04 0 0 0 1/2 0 |4
0 0 0 1/2 1]s (0 1 0 0 1/2]s

1 5 2 3 4
1 o|1/2 o0 0 |1
0 1|0 0 1/2]s
o o] 0 12 0 |2

rows

0 0|12 0 1/2]3
0 0| 0 1/2 0 |4

The matrix Q and the fundamental matrix M = (I — Q)™ are

2 3 4 2 3 4

0 1/2 0 |2 3/2 1 1/2] 2
o=1|1/2 0 1/213 and M=| 1 2 1 3

0 /2 0 | 4 /2 1 3/2| 4

Starting at state 3, the expected number of visits to state 2 until absorption is the entry
of M whose row corresponds to state 2 and whose column corresponds to state 3. This
value is 1, so the chain will visit state 2 once on the average before being absorbed.
The sum of the column of M corresponding to state 2 (or state 4) is 3, so the expected
number of steps until absorption is three if starting at state 2 (or state 4). Likewise, the
expected number of steps until absorption starting at state 3 is four. [ |
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Transit Times

Consider the problem of calculating the expected number of steps ¢;; needed to travel
from state j to state i in an irreducible Markov chain. If the states i and j are the same
state, the value 7; is the expected return time to state j found in Section 10.4. The value
t;; will be called the transit time (or mean first passage time) from state j to state .
Surprisingly, the insight into transient states provided by Theorem 6 is exactly what is
needed to calculate 7 ;.

Finding the transit time of a Markov chain from state j to state i begins by changing
the transition matrix P for the chain. First reorder the states so that state i comes first.
The new matrix has the form

|:pii S }
X 10

for some matrices S, X, and Q. Next change the first column of the matrix from |: l;i ]

0
now impossible to leave state i after entering it. State i is now an absorbing state for
the Markov chain, and the transition matrix now has the form

1 S
010
The expected number of steps ¢, that it takes to reach state i after starting at state j may

be calculated using Theorem 6(b): it will be the sum of the column of M corresponding
to state j.

to [ :|, where O is a zero vector of appropriate size. In terms of probabilities, it is

EXAMPLE 2 Consider an unbiased random walk on {1,2, 3,4, 5} with reflecting
boundaries. Find the expected number of steps 74 required to get to state 4 starting at
any state j # 4 of the chain.

SOLUTION The transition matrix for this Markov chain is
0 1/2 0 0
1 0 1/2 0
P=10 1/2 0 1/2
0 0 1/2 0
0 0 0 1/2

First reorder the states to list state 4 first, then convert state 4 to an absorbing state.

S = O O O

1 2 3 4 5 4 1 2 3 5
0 1/2 0 0 01 0 o0 1/2 0 0]
1 0 1/2 0|2 0 1 0 1/2 0f:2
0 12 0 1/2 0 l—m‘% 1/2 0 12 0 03
0 0 1/2 0 1|4 0 0 0 1/2 1|4
0 0 0 1/2 0]s 1/2 0 0 0 0]s
4 1 2 3 5
0 0 0 1/2 174
0 0 1/2 0 0]
% 0 1 0 1/2 02
‘ 1/2 0 12 0 0]s
[1/2 0 0 0 0]s
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4 1 2 3 5
1 ‘ 0 0 1/2 1|4
010 1/2 0 011
v, lo |1 0 12 02
state 4
010 1/2 0 0] 3
00 0 0 0] s
The matrix Q and the fundamental matrix M = (I — Q)! are
1 2 3 5 12 3 5
0 1/2 0 O0f1 3 2 1 01
1 0 1/2 0 4 4 2 02
0= and M =
0 1/2 0 0] 3 2 2 2 03
0 0 0 0] s 0O 0 0 1]s
Summing the columns of M gives tj4 = 9,14 = 8,134 = 5, and 154 = 1. |

Absorption Probabilities

Suppose that a Markov chain has more than one recurrent class and at least one transient
state j. If the chain starts at state j, then the chain will eventually be absorbed into one of
the recurrent classes; the probability that the chain is absorbed into a particular recurrent
class is called the absorption probability for that recurrent class. The fundamental
matrix is used in calculating the absorption probabilities.

To calculate the absorption probabilities, begin by changing the transition matrix
for the Markov chain. First write all recurrent classes as single states i with p;; = 1;
that is, each recurrent class coalesces into an absorbing state. (Exercises 37 and 38
explore the information that the absorption probabilities give for recurrent classes with
more than one state.) A canonical form for this altered transition matrix is

<[t

where the identity matrix describes the lack of movement between the absorbing states.

Let j be a transient state and let i be an absorbing state for the changed Markov
chain; to find the probability that the chain starting at j is eventually absorbed by 7,
consider the (i, j)-entry in the matrix P*. This entry is the probability that a system
which starts at state j is at state i after k steps. Since i is an absorbing state, in order for
the system to be at state i, the system must have been absorbed by state i at some step
at or before the k™ step. Thus the probability that the system has been absorbed by state
i at or before the k™ step is just the (i, j)-entry in the matrix P¥, and the probability
that the chain starting at j is eventually absorbed by i is the (i, j)-entry in klim Pk,

—00

Computing P* using rules for multiplying partitioned matrices (see Section 2.4) gives

1 | S+S0 1 | S+50+507
relo o] relo e

and it may be proved by induction (Exercise 39) that

[ 13

Sy =S+ S0+ S0%+ ...+ 850!
=SU+Q+0Q°+...+ 0"

where
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Since j is a transient state and i is an absorbing state, only the entries in S; need be
considered. The probability that the chain starting at j is eventually absorbed by i may
thus be found by investigating the matrix

k—o00 k—o00
=SU+0+0°+..)=5SM

where M is the fundamental matrix for the Markov chain with coalesced recurrent
classes. The (i, j)-entry in A is the probability that the chain starting at j is eventually
absorbed by i. The following theorem summarizes these ideas; an alternative proof is
given in Appendix 2.

Suppose that the recurrent classes of a Markov chain are all absorbing states. Let
j be a transient state and let i be an absorbing state of this chain. Then the
probability that the Markov chain starting at state j is eventually absorbed by
state i is the (i, j)-element of the matrix A = SM, where M is the fundamental
matrix of the Markov chain and § is that portion of the transition matrix that
governs movement from transient states to absorbing states.

EXAMPLE 3 Consider the unbiased random walk on {1, 2, 3, 4, 5} with absorbing
boundaries studied in Example 1. Find the probability that the chain is absorbed into
state 1 given that the chain starts at state 4.

SOLUTION Placing the states in the order {1, 5, 2, 3, 4} gives the canonical form of the
transition matrix:

1 5 2 3 4

1 ol1/2 0o 071
o 1o o 1/2]s
0 0|0 1/2 0 |2
0 0|1/2 0 12|53
0o 0|0 12 0 |4

The matrix Q and the fundamental matrix M = (I — Q)™ are

2 3 4 2 3 4
0 1/2 0 ]2 [3/2 1 1/27] 2
o=1|1/2 0 1/213 and M=| 1 2 1 3
0 1/2 0 |4 [1/2 1 3/2] 4
SO
3/2 1 1/2] ; ’ )
A:SM:[l/z 0 0 } L :[3/4 1/2 1/4} |
0 0 1/2 12 32 1/4 1/2 3/4| s

The columns of A correspond to the transient states 2, 3, and 4 in that order, while the
rows correspond to the absorbing states 1 and 5. The probability that the chain which
started at state 4 is absorbed at state 1 is 1/4. [ |

Absorption probabilities may be used to compute the probability that a system
modeled by an irreducible Markov chain visits one state before another.
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1 EXAMPLE 4 Consider a simple random walk on the graph in Figure 1. What is the
probability that a walker starting at state 1 visits state 4 before visiting state 77?

3 SOLUTION Changing state 4 and state 7 to absorbing states and then computing the
absorption probabilities starting at state 1 will answer this question. Begin by reordering
the states as 4, 7, 1, 2, 3, 5, 6 and rewrite states 4 and 7 as absorbing states:

5 6 1 2 3 4 5 6 7
0 1/3 1/4 0 0 0 0]
7 12 0 1/4 0 1/2 0 0]2
FIGURE 1 1/2 1/3 0 1 0 1/3 0| 3
The graph for Example 4. 0 0 1/4 0 0 0 0l 4
0O 1/3 0 0 0 1/3 0]s
0 0 1/4 0 1/2 0 1]s
e 0 0 0 0 1/3 0]+

4 7 1 2 3 5 6
[0 0 0 1/3 1/4 0 011
0 0 1/2 0 1/4 1/2 0 |2
1 0 1/2 1/3 0 0 1/3]|3
~EES 1o 0 0 0 1/4 0 0 |4

columns

0 0 0 1/3 0 0 1/3]s
0 1 0 0 1/4 1/2 0 |s
[0 0 0 0 0 0 1/3]7

4 7 1 2 3 5 6
[0 0 0 0 1/4 0 0] 4
0 0 0 0 0 0 1/3|7
0 0 0 1/3 1/4 0 0 |1
% 0 0 1/2 0 1/4 1/2 0 |2
1 0 1/2 1/3 0 0 1/3]|3
0 0 0 1/3 0 0 1/3]s
(0 1 0 0 1/4 1/2 0 o

4 7 1 2 3 5 6
1 0 o 0 1/4 0 0|4
0 1 0 0 0 0 1/3]|7
0 0 0 1/3 1/4 0 0 |1
Sm;‘;“:zzﬁ 0 0 1/2 0 1/4 1/2 0 |2
0 0 1/2 1/3 0 0 1/3]|3
0 0 0 1/3 0 0 1/3]s
(0 0 0 0 1/4 1/2 0 o

. - |
The resulting transition matrix is [04’7
3

1 2

0 0 1/4
S =
0 0 0
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and
1 2 3 5 6
0 1/3 1/4 0 0 ]
12 0 1/4 1/2 0 |2
O0=1\1/2 1/3 0 0 1/3]3
0 1/3 0 0 1/3]s
0 0 1/4 1/2 0 |
SO
1 2 3 5 6
[12/5  8/5 6/5 6/5 4/5 11
12/5 31/10 17/10 11/5 13/10 | 2
M=(-0)"'"=]|12/5 34/15 38/15 28/15 22/15| 3
6/5 22/15 14/15 34/15 16/15 | s
| 6/5 13/10 11/10  8/5 19/10 | 6
and
~ 1 2 3 5 6
S — 3/5 17/30 19/30 7/15 11/30} 4
| 2/5 13/30 11/30 8/15 19/30 | 7

Since the first column of A corresponds to state 1 and the rows correspond to states 4
and 7, respectively, the probability of visiting 4 before visiting 7 is 3/5. [ |

A mathematical model that uses Theorems 6 and 7 appears in Section 10.6.

PRACTICE PROBLEMS

1. Consider a Markov chain on {1, 2, 3, 4} with transition matrix

1 12 0 0
p_ |0 U6 12 0
0 1/3 1/6 0
o o0 1/3 1

a. If the Markov chain starts at state 2, find the expected number of steps before the
chain is absorbed.

b. If the Markov chain starts at state 2, find the probability that the chain is absorbed
at state 1.

2. Consider a Markov chain on {1, 2, 3, 4} with transition matrix

2/3  1/2 0 0
1/3 1/6 1/2 0
0 /3 1/6 1/2
0 0 /3 1/2
a. If the Markov chain starts at state 2, find the expected number of steps required
to reach state 4.

b. If the Markov chain starts at state 2, find the probability that state 1 is reached
before state 4.
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10.5 EXERCISES

In Exercises 1-3, find the fundamental matrix of the Markov chain 9. Suppose that the Markov chain in Exercise 3 starts at state
with the given transition matrix. Assume that the state space in 1. How many steps will the chain take on average before
each case is {1,2,...,n}. If reordering of states is necessary, list absorption?
the order in which the states have been reordered.
1 o 1/6 0 10. Suppose that the Markov chain in Exercise 4 starts at state 3.
0 | 0 1/3 What is the probability that the chain is absorbed at state 1?
1.
0 0 173 2/3 11. Suppose that the Markov chain in Exercise 5 starts at state 4.
L 0 0 1/2 0 Find the probabilities that the chain is absorbed at states 1, 2,
_ and 3.
1 0 o0 1/4 1/5
0 1 0 1/8 1/10 12. Suppose that the Markov chain in Exercise 6 starts at state
2 0o 0 1 1/8 1/5 5. Find the probabilities that the chain is absorbed at states 2
0 0 0 1/4 3/10 and 4.
L0 0 0 1/4 1/5 ) . )
13. Consider a simple random walk on the following graph.
(1/5 0 1/10 0 1/5 1 2
/5 1 1/5 0 1/5
3. [1/5 0 1/5 0 1/4
/5 0 1/4 1 1/10 5
L1/5 0 1/4 0 1/4
In Exercises 4-6, find the matrix A = lim,,—. oo S, for the Markov 4 3
chain with the given transition matrix. Assume that the state space o .
in each case is {1, 2,...,n}. If reordering of states is necessary, a. Suppose that the walk%er- begins in state 5. What is the
list the order in which the states have been reordered. expected number of visits to state 2 before the walker
_ visits state 1?
1 0 1/6 0 : s
b. Suppose again that the walker begins in state 5. What
4 0 1 0 1/3 is the expected number of steps until the walker reaches
“lo 0 1/3 2/3 state 17
0 0 1/2 0 c. Now suppose that the walker starts in state 1. What is the
- probability that the walker reaches state 5 before reaching
(1 0 0 1/4 1/5 state 27
o 1 o0 1/8 1/10
5 0o 0 1 1/8 1/5 14. Consider a simple random walk on the following graph.
o o o0 1/4 3/10 1 2
LO 0 0 1/4 1/5
[1/5 0 1/10 0 1/5 4 3
/5 1 1/5 0 1/5
6. | 1/5 0 1/5 0 1/4
1/5 0 1/4 1 1/10 a. Suppose that the walker begins in state 3. What is the
1/5 0 1/4 0 1/4 expected number of visits to state 2 before the walker
- visits state 1?
7. Suppose that the Markov chain in Exercise 1 starts at state 3. b. Suppose again that the walker begins in state 3. What

How many visits will the chain make to state 4 on average
before absorption?

. Suppose that the Markov chain in Exercise 2 starts at state
4. How many steps will the chain take on average before
absorption?

is the expected number of steps until the walker reaches
state 1?

c. Now suppose that the walker starts in state 1. What is the
probability that the walker reaches state 3 before reaching
state 2?7



15.

16.

17.

18.

Consider a simple random walk on the following directed
graph. Suppose that the walker starts at state 1.

1 2
N
>
Y Y
A A
<
<
3 4

a. How many visits to state 2 does the walker expect to make
before visiting state 3?7

b. How many steps does the walker expect to take before
visiting state 3?

Consider a simple random walk on the following directed
graph. Suppose that the walker starts at state 4.

1 4

2 5

a. How many visits to state 3 does the walker expect to make
before visiting state 27

b. How many steps does the walker expect to take before
visiting state 2?

Consider the mouse in the following maze from Section 10.1,
Exercise 17.

1*2
L >
4\|(5

If the mouse starts in room 2, what is the probability that the
mouse Visits room 3 before visiting room 4?

Consider the mouse in the following maze from Section 10.1,
Exercise 18.

If the mouse starts in room 1, what is the probability that the
mouse Visits room 3 before visiting room 4?

19.

20.
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Consider the mouse in the following maze from Section 10.1,
Exercise 19.

I I
1 2 3
4 5 6
|
If the mouse starts in room 1, how many steps on average
will it take the mouse to get to room 67

Consider the mouse in the following maze from Section 10.1,
Exercise 20.

If the mouse starts in room 1, how many steps on average
will it take the mouse to get to room 5?

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21.

22,

23.

24.

a. The (i, j)-element in the fundamental matrix M is the
expected number of visits to the transient state j prior to
absorption, starting at the transient state i.

b. The (j,7)-element in the fundamental matrix gives the
expected number of visits to state ¢ prior to absorption,
starting at state j.

c. The probability that the Markov chain starting at state i
is eventually absorbed by state j is the (j,i)-element of
the matrix A = SM, where M is the fundamental matrix
of the Markov chain and S is that portion of the transition
matrix that governs movement from transient states to
absorbing states.

a. The sum of the column j of the fundamental matrix M is
the expected number of time steps until absorption.

b. Transit times may be computed directly from the entries
in the transition matrix.

c. If A is an m x m substochastic matrix, then the entries in
A" approach 0 as n increases.

Suppose that the weather in Charlotte is modeled using the
Markov chain in Section 10.1, Exercise 23. If it is sunny
today, what is the probability that the weather will be cloudy
before it is rainy?

Suppose that the weather in Charlotte is modeled using the
Markov chain in Section 10.1, Exercise 24. If it rained
yesterday and today, how many days on average will it take
before there are two consecutive days with no rain?
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25. Consider a set of webpages hyperlinked by the given directed
graph that was studied in Section 10.2, Exercise 25.

1 R 2 N
Y Y
A A
3 D 4

If a random surfer starts on page 1, how many mouse clicks
on average will the surfer make before becoming stuck at a
dangling node?

26. Consider a set of webpages hyperlinked by the given directed
graph that was studied in Section 10.2, Exercise 26.

1 4

2 5 6

If arandom surfer starts on page 3, what is the probability that
the surfer will eventually become stuck on page 1, which is
a dangling node?

Exercises 27-30 concern the Markov chain model for scoring a
tennis match described in Section 10.1, Exercise 31. Suppose that
players A and B are playing a tennis match, that the probability
that player A wins any point is p = .6, and that the game is
currently at “deuce.”

27. How many more points will the tennis game be expected to
last?

28. Find the probability that player A wins the game.

29. Repeat Exercise 27 if the game is
a. currently at “advantage A.”

b. currently at “advantage B.”

30. Repeat Exercise 28 if the game is
a. currently at “advantage A.”

b. currently at “advantage B.”

Exercises 31-36 concern the two Markov chain models for scor-
ing volleyball games described in Section 10.1, Exercise 32.
Suppose that teams A and B are playing a 15-point volleyball
game which is tied 15-15 with team A serving. Suppose that the
probability p that team A wins any rally for which it serves is
p = .7, and the probability ¢ that team B wins any rally for which
it serves is ¢ = .6.

31. Suppose that rally point scoring is being used. How many
more rallies will the volleyball game be expected to last?

32. Suppose that rally point scoring is being used. Find the
probability that team A wins the game.

33. Suppose that side out scoring is being used. How many more

34.

35.

36.

37.

38.

39.

rallies will the volleyball game be expected to last?

Suppose that side out scoring is being used. Find the proba-
bility that team A wins the game.

Rally point scoring was introduced to make volleyball
matches take less time. Considering the results of Exercises
31 and 33, does using rally point scoring really lead to fewer
rallies being played?

Since p = .7 and ¢ = .6, it seems that team A is the dom-
inant team. Does it really matter which scoring system is
chosen? Should the manager of each team have a preference?

Consider a Markov chain on {1,2,3,4,5} with transition
matrix

1/4 12 1/3 0 1/4
34 12 0 1/3  1/4
P=]| 0 0 0 1/3 0
0 0 1/3 0 0

0 0 /3 1/3
Find lim P" by the following steps.
n—>0o0o

1/2

a. What are the recurrent and transient classes for this chain?
b. Find the limiting matrix for each recurrent class.

c. Determine the long-range probabilities for the Markov
chain starting from each transient state.

d. Use the results of parts (b) and (c) to find lim P”".
n—oo

e. Confirm your answer in part (d) by taking P to a high
power.

Consider a Markov chain on {1,2, 3, 4,5, 6} with transition
matrix

1/3 1/2 0 0o 1/2 0
2/3 120 0 0 0
p_| O 0 1/4 2/3 0 1)2
0 0  3/4 1/3 0 0
0 0 0 0 1/4 1/4
L0 0 0 0 1/4  1/4 ]

Find lim P" by the following steps.

n—o0
a. What are the recurrent and transient classes for this chain?

b. Find the limiting matrix for each recurrent class.

c. Find the absorption probabilities from each transient state
into each recurrent class.

d. Use the results of parts (b) and (c) to find lim P”".
n—>00

e. Confirm your answer in part (d) by taking P to a high
power.

. |1 S e |1 Sk
Show that if P = |:0 Q:|’ then Pk = [04‘?]’

where
Sk =S+S0+80%+...+S0!
=SU+0Q+0%+...+ 0.
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SOLUTIONS TO PRACTICE PROBLEMS

1. a. Since states 1 and 4 are absorbing states, reordering the states as {1, 4,2, 3}
produces the canonical form

14 2 3
1 0 1/2 0 1
P 0 1 0 1/3 | 4
0 0 1/6 1/21| 2
0O 0 1/3 1/6| 3
So
2 3 2 3

Q=|:1/6 1/2} 2 M=[30/19 18/19} 2
1/3 1/6] 3 1219 30/19 | 3

The expected number of steps needed when starting at state 2 before the chain is
absorbed is the sum of the entries in the column of M corresponding to state 2,
which is

30 12 42

CRETANNT

b. Using the canonical form of the transition matrix, we see that

2 3 2 3

12 0 |1 15/19  9/19 | 1
S = and A=SM =

0 1/3|4 419 10/19 | 4

The probability that the chain is absorbed at state 1 given that the Markov chain
starts at state 2 is the entry in 4 whose row corresponds to state 1 and whose
column corresponds to state 2; this entry is 15/19.

2. a. Reorder the states as {4,1,2,3} and make state 4 into an absorbing state to
produce the canonical form

4 1 2 3
1 0 0 1/3 | 4
P 0 2/3 1/2 0 1
0 1/3 1/6 1/2] 2
0 0 1/3 1/6| 3
So
1 2 3 1 2 3
2/3 1/2 0 I 1425 1125 6.75 | 1
o=1|1/3 1/6 1/2 |2 and M =| 7.50 750 450 ]| 2
0 1/3 1/6] 3 3.00 3.00 3.00 | 3

The expected number of steps required to reach state 4, starting at state 2, is the
sum of the entries in the column of M corresponding to state 2, which is

11.25 + 7.50 + 3.00 = 21.75
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b. Make states 1 and 4 into absorbing states and reorder the states as {1, 4,2, 3} to
produce the canonical form

1 4 2 3
1 0 1/2 0 |1
P KU T VER I
0 0 1/6 1/2|:
0 0 1/3 1/6]|:
So
2 3 2 3
0- [1/6 1/2} S [30/19 18/19] .
1/3 1/6] 3 12/19  30/19 | 3
2 3 2 3
[1/2 0} | [15/19 9/19} |
S = , and A=SM =
0 1/3] 4 4/19  10/19 | 4

Thus the probability that, starting at state 2, state 1 is reached before state 4 is the
entry in A whose row corresponds to state 1 and whose column corresponds to
state 2; this entry is 15/19.

10.6 MARKOV CHAINS AND BASEBALL STATISTICS

Markov chains are used to model a wide variety of systems. The examples and exercises
in this chapter have shown how Markov chains may be used to model various situations.
The final example to be explored is a model for how runners proceed around the bases
in baseball. This model leads to useful measures of expected run production both for a
team and for individual players.

Baseball Modeled by a Markov Chain

Many baseball fans carefully study the statistics of their favorite teams. The teams
themselves use baseball statistics for individual players to determine strategy during
games, and to make hiring decisions.* This section shows how a Markov chain is used to
predict the number of earned runs a team will score and to compare the offensive abilities
of different players. Some exercises suggest how to use Markov chains to investigate
matters of baseball strategy, such as deciding whether to attempt a sacrifice or a steal.

The Markov chain in this section provides a way to analyze how runs are scored
during one half-inning of a baseball game. The states of the chain are the various
configurations of runners on bases and the number of outs. See Table 1.

The first state in the left column of Table 1 (“no bases occupied, 0 outs”) is the initial
state of the chain, when the baseball half-inning begins (that is, when one team becomes
the team “at bat”). The four states in the far right column describe the various ways the
half-inning can end (when the third out occurs and the teams trade places). Physically,
the half-inning is completed when the third out occurs. Mathematically, the Markov

4 The use of statistical analysis in baseball is called sabermetrics as a tribute to SABR, the Society for
American Baseball Research. An overview of sabermetrics can be found at
http://en.wikipedia.org/wiki/Sabermetrics.
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TABLE 1 The 28 States of a Baseball Markov Chain

Bases Occupied Outs State Left on Base Outs State
None 0 0:0 0 3 0:3
First 0 1:0 1 3 1:3
Second 0 2:0 2 3 2:3
Third 0 3:0 3 3 3:3
First and Second 0 12:0

First and Third 0 13:0

Second and Third 0 23:0

First, Second, and Third 0 123:0

None 1 0:1

First 1 1:1

Second 1 2:1

Third 1 3:1

First and Second 1 12:1

First and Third 1 13:1

Second and Third 1 23:1

First, Second, and Third 1 123:1

None 2 0:2

First 2 1:2

Second 2 2:2

Third 2 3:2

First and Second 2 12:2

First and Third 2 13:2

Second and Third 2 23:2

First, Second, and Third 2 123:2

chain continues in one of the four “final” states. (The model only applies to a game in
which each half-inning is completed.) So, each of these four states is an absorbing state
of the chain. The other 24 states are transient states, because whenever an out is made,
the states with fewer outs can never occur again.

The Markov chain moves from state to state because of the actions of the batters.
The transition probabilities of the chain are the probabilities of possible outcomes of a
batter’s action. For a Markov chain, the transition probabilities must remain the same
from batter to batter, so the model does not allow for variations among batters. This
assumption means that each batter for a team hits as an “average batter” for the team.’

The model also assumes that only the batter determines how the runners move
around the bases. This means that stolen bases, wild pitches, and passed balls are
not considered. Also, errors by the players in the field are not allowed, so the model
only calculates earned runs—runs that are scored without the benefit of fielding errors.
Finally, the model considers only seven possible outcomes at the plate: a single (arriving

3 This unrealistic assumption can be overcome by using a more complicated model which uses different
transition matrices for each batter. Nevertheless, the model presented here can lead to useful information
about the team. Later in the section, the model will be used to evaluate individual players.
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safely at first base and stopping there), a double (arriving safely at second base), a triple
(arriving safely at third base), a home run, a walk (advancing to first base without hitting
the ball), a hit batsman (a pitched ball hits the batter, and the batter advances to first
base), and an “out.” Thus, the model allows no double or triple plays, no sacrifices, and
no sacrifice flies. However, Markov chain models can be constructed that include some
of these excluded events.°

Constructing the Transition Matrix

The 28 x 28 transition matrix for the Markov chain has the canonical form
Iy S
P = 1

(6 2] M)
where 14 is the 4 x 4 identity matrix (because the only recurrent states are the four
absorbing states, one of which is entered when the third out occurs), S is a 4 x 24 matrix,
and Q is a 24 x 24 substochastic matrix. The columns of S and Q correspond to the
transient states, in the order shown in Table 1. The entries in S describe the transitions
from the 24 transient states (with 0, 1, or 2 outs) to the absorbing states (with 3 outs).
Note that the only way to enter an absorbing state is to come from a state with 2 outs.

Let po denote the probability that the batter makes an out. Then S may be written in
block form, with three 4 x 8 blocks, as

s=[0 0 x]
1:2 2:2 3:2 12:2 13:2 23:2 123:2

0:2
Po 0 0 0 0 0 0 0 0:3

0 po po prPo O 0 0 0 | 13
0 0 0 0 po Ppo Ppo 0 23
0 0 0 0 0 0 0 po | 33

2

The matrix X describes the transitions from the transient states with 2 outs to the
absorbing states with 3 outs. (For example, columns 2, 3, and 4 of X list the probabilities
that the batter makes the third out when one runner is on one of the three bases.) The
substochastic matrix Q has the following block form, with 8 x 8 blocks,

0 1 2

A 0 07 o
O=|B 4 0] €)
O B A 2

The labels on the rows and columns of Q represent the number of outs. The four zero
blocks in Q reflect the facts that the number of outs cannot go from 1 to 0, from 2 to 0
or 1, or from O directly to 2 in one step. The matrix A describes how the various base
configurations change when the number of outs does not change.

The entries in A and B depend on how the batter’s action at the plate affects any
runners that may already be on base. The Markov chain model presented here makes the
assumptions shown in Table 2. The exercises consider some alternative assumptions.

The entries in the 8 x 8 matrices A and B are constructed from the probabilities of
the six batting events in Table 2. Denote these probabilities by pw, pi, p2, p3, pa,and
Po, respectively. The notation po was introduced earlier during the construction of the
matrix S.

6 Other models use “play-by-play” data. The numbers of transitions between states are counted and scaled to
produce a transition matrix. For these models it does not matter how the runners advance, merely that they
do.
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TABLE 2 Assumptions about Advancing Runners

Batting Event Outcome

Walk or Hit Batsman The batter advances to first base. A runner on first base advances
to second base. A runner on second base advances to third base
only if first base was also occupied. A runner on third base scores
only if first base and second base were also occupied.

Single The batter advances to first base. A runner on first base advances to
second base. A runner on third base scores. A runner on second
base advances to third base half of the time and scores half of the
time.

Double The batter advances to second base. A runner on first base advances
to third base. A runner on second base scores. A runner on third
base scores.

Triple The batter advances to third base. A runner on first base scores. A
runner on second base scores. A runner on third base scores.

Home Run The batter scores. A runner on first base scores. A runner on second
base scores. A runner on third base scores.

Out No runners advance. The number of outs increases by one.

The 8 x 8 matrix B involves the change of state when the number of outs increases.
In this case, the configuration of runners on the bases does not change (see Table 2). So

szol

where I is the 8 x 8 identity matrix.”

Matrix A concerns the situations in which the batter does not make an out and
either succeeds in reaching one of the bases or hits a home run. The construction of A is
discussed in Example 1 below and in the exercises. The labels on the rows and columns
of A correspond to the states in Table 2. Here k is the fixed number of outs: either 0, 1,
or 2.

0:k 1:k 2:k 3k 12:k 13:k 23k 123:k

pu pu pH  Pu pu pH  PH pu | ok

pw + D1 0 .5p1 D1 0 0 .5]71 0 1:k

P2 0 )22 7 0 0 p 0 2:k

A= p3 pP3 Py P3 pP3 Py P3 pP3 3k
0 pw+p1 pw O 5py D1 0 5py 12:k

0 0 Spr pw 0 0 .5p 0 13:k

0 P2 0 0 P2 0 P2 23tk
. 0 0 0 0 pw+.5p pw pw pw+.5p1| 123k

The analysis in Example 1 below requires two facts from probability theory. If an
event can occur in two mutually exclusive ways, with probabilities p; and p,, then the
probability of the event is p; + p,. The probability that two independent events both
occur is the product of the separate probabilities for each event.

7 A batter can make an out in three ways—by striking out, by hitting a fly ball that is caught, or by hitting a
ground ball that is thrown to first base before the batter arrives. When the second or third case occurs, a
runner on a base sometimes can advance one base, but may also make an out and be removed from the
bases. Table 2 excludes these possibilities.



58 CHAPTER 10 Finite-State Markov Chains

EXAMPLE 1

a. Justify the transition probabilities for the initial state “no bases occupied.”

b. Justify the transition probabilities for the initial state “second base occupied.”

SOLUTION

a. For the first column of A, the batter either advances to one of the bases or hits a
home run. So the probability that the bases remain unoccupied is py. The batter
advances to first base when the batter either walks (or is hit by a pitch) or hits a single.
Since the desired outcome can be reached in two different ways, the probability of
success is the sum of the two probabilities—namely, py + p;. The probabilities of
the batter advancing to second base or third base are, respectively, p, and p;. All
other outcomes are impossible, because there can be at most one runner on base after
one batter when the starting state has no runners on base.

b. This concerns the third column of A. The initial state is 2:k (a runner on second
base, k outs). For entry (1, 3) of A, the probability of a transition “to state 0:k” is
required. Suppose that only second base is occupied and the batter does not make
an out. Only a home run will empty the bases, so the (1, 3)-entry is pg.

Entry (2, 3): (“to state 1:k”) To leave a player only on first base, the batter must
get to first base and the player on second base must reach home plate successfully.®
From Table 2, the probability of reaching home plate successfully from second base
is .5. Now, assume that these two events are independent, because only the actions
of the batter (and Table 2) influence the outcome. In this case, the probability of both
events happening at the same time is the product of these two probabilities, so the
(2, 3)-entry is .5py.

Entry (3, 3): (“to state 2:k”) To leave a player only on second base, the batter
must reach second base (a “double”) and the runner on second base must score. The
second condition, however, is automatically satisfied because of the assumption in
Table 2. So the probability of success in this case is p,. This is the (3, 3)-entry.

Entry (4, 3): (“to state 3:k”") By an argument similar to that for the (3, 3)-entry,
the (4, 3)-entry is pj.

Entry (5,3): (“to state 12:k”) To leave players on first base and second base,
the batter must get to first base and the player on second base must remain there.
However, from Table 2, if the batter hits a single, the runner on second base will at
least get to third base. So, the only way for the desired outcome to occur is for the
batter to get a walk or be hit by a pitch. The (5, 3)-entry is thus py .

Entry (6, 3): (“to state 13:k) This concerns the batter getting to first base and
the runner on second base advancing to third base. This can happen only if the batter
hits a single, with probability p;, and the runner on second base stops at third base,
which happens with probability .5 (by Table 2). Since both events are required, the
(6, 3)-entry is the product .5p;.

Entry (7, 3): (“to state 23:k”) To leave players on second base and third base,
the batter must hit a double and the runner on second base must advance only to third
base. Table 2 rules this out— when the batter hits a double, the runner on second base
scores. Thus the (7, 3)-entry is zero.

Entry (8, 3): The starting state has just one runner on base. The next state cannot
have three runners on base, so the (8, 3)-entry is zero. |

8 The only other way to make the player on second base “disappear” would be for the player to be tagged
“out,” but the model does not permit outs for runners on the bases.
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EXAMPLE 2 Batting statistics are often displayed as in Table 3. Use the data in
Table 3 to obtain the transition probabilities for the 2002 Atlanta Braves.

TABLE 3 Atlanta Braves Batting Statistics—2002 Season
Walks Hit Batsman Singles Doubles Triples Home Runs Outs
558 54 959 280 25 164 4067

SOLUTION The sum of the entries in Table 3 is 6107. This is the total number of times
that Atlanta Braves players came to bat during the 2002 baseball season. From the first
two columns, there are 612 walks or hit batsmen. So, py = 612/6107 = .1002. Of the
6107 times a player came to bat, a player hit a single 959 times, so p; = 959/6107 =
.1570. Similar calculations provide p, = .0458, p; = .0041, py = .0269, and pp =
.660. These values are placed in the matrices shown above to produce the transition
matrix for the Markov chain. [ |

Applying the Model

Now that the data for the stochastic matrix is available, Theorems 6 and 7 from Section
10.5 can provide information about how many earned runs to expect from the Atlanta
Braves during a typical game. The goal is to calculate how many earned runs the Braves
will score on average in each half-inning. First, observe that since three batters must
make an out to finish one half-inning, the number of runs scored in that half-inning is
given by

[# of runs] = [# of batters] — [# of runners left on base] — 3 4)

If R is the number of runs scored in the half-inning, B is the number of batters, and L
is the number of runners left on base, Equation (4) becomes

R=B-L-3 (5)

The quantity of interest is £[R], the expected number of earned runs scored. Properties
of expected value indicate that

E[R] = E[B] — E[L] -3 (6)

Each batter moves the Markov chain ahead one step. So, the expected number of batters
in a half-inning E[B] is the expected number of steps to absorption (at the third out)
when the chain begins at the initial state “O bases occupied, 0 outs.” This initial state
corresponds to the fifth column of the transition matrix

I S
r=[s ¢

In baseball terms, Theorem 6 shows that

The expected number of players that bat in one half-inning is the sum of the entries
in column 1 of the fundamental matrix M = (I — Q)™

Thus E[B] may be computed. The other quantity needed in Equation (6) above is
E[L], the expected number of runners left on base in a typical half-inning. This is given
by the following sum:

E[L]=0-P(L=0)+1-P(L=1)+2-P(L=2+3-P(L=3) ()
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Theorem 7 can provide this information because the recurrent classes for the chain are
just the four absorbing states (at the end of the half-inning). The probabilities needed
in Equation (7) are the probabilities of absorption into the four final states of the half-
inning given that the initial state of the system is “0 bases occupied, 0 outs.” So the
desired probabilities are in column 1 of the matrix SM, where M is the fundamental
matrix of the chain and S = [ 0] 0O X ] as in Equation (2). The probabilities can
be used to calculate E[L] using Equation (7), and thus to find E[R].

EXAMPLE 3 When the Atlanta Braves data from Example 2 is used to construct
the transition matrix (not shown here), it turns out that the sum of the first column of the
fundamental matrix M is 4.5048, and the first column of the matrix SM is

.3520
.3309
2365
.0805

Compute the number of earned runs the Braves can expect to score per inning based on
their performance in 2002. How many earned runs does the model predict for the entire
season, if the Braves play 1443% innings, as they did in 2002?

SOLUTION The first column of SM shows that, for example, the probability that the
Braves left no runners on base is .3520. The expected number of runners left on base is

E[L] = 0(.3520) + 1(.3309) + 2(.2365) + 3(.0805) = 1.0454

The expected number of batters is E[B] = 4.5048, the sum of the first column of M.
From Equation (6), the expected number of earned runs E[R] is

E[R] = E[B] — E[L] — 3 = 4.5048 — 1.0454 — 3 = .4594

The Markov chain model predicts that the Braves should average .4594 earned run per
inning. In 1443% innings, the total number of earned runs expected is

4594 x 1443.67 = 663.22

The actual number of earned runs for the Braves in 2002 was 636, so the model’s error
is 27.22 runs, or about 4.3%. |

Mathematical models are used by some major league teams to compare the of-
fensive profiles of single players. To analyze a player using the Markov chain model,
use the player’s batting statistics instead of a team’s statistics. Compute the expected
number of earned runs that a team of such players would score in an inning. This number
is generally multiplied by 9 to yield what has been termed an “offensive earned run
average.”

EXAMPLE 4 Table 4 shows the career batting statistics for Jose Oquendo, who
played for the New York Mets and St. Louis Cardinals in the 1980’s and 1990’s.
Compute his offensive earned run average.

TABLE 4 Jose Oquendo Batting Statistics
Walks Hit Batsman Singles Doubles Triples Home Runs Outs
448 5 679 104 24 14 2381
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SOLUTION Construct the transition matrix from this data as described in Example 2,
and then compute M and SM. The sum of the first column of M is 4.6052, so a team
entirely composed of Jose Oquendos would come to bat an average of 4.6052 times per
inning. That is, E[B] = 4.6052. The first column of SM is

2844
3161
2725
1270

so the expected number of runners left on base is
E[L] = 0(.2844) + 1(.3161) + 2(.2725) + 3(.1270) = 1.2421
From Equation (6), the expected number of earned runs is
E[R] = E[B] — E[L] —3 =4.6052 —1.2421 —3 = .3631

The offensive earned run average for Jose Oquendo is .3631 x 9 = 3.2679. This
compares with an offensive earned run average of about 10 for teams composed of the
greatest hitters in baseball history. See the Exercises. [ |

PRACTICE PROBLEMS

1. Let A be the matrix just before Example 1. Explain why entry (3, 6) is zero.

2. Explain why entry (6, 3) of 4 is .5p;.

10.6 EXERCISES

In Exercises 1-6, justify the transition probabilities for the given
initial states. See Example 1.

1.

AL S

First base occupied

Third base occupied

First and second bases occupied

First and third bases occupied

Second and third bases occupied

First, second, and third bases occupied

Major League batting statistics for the 2006 season are shown
in Table 5. Compute the transition probabilities for this data
as was done in Example 2, and find the matrix A for this data.

Find the complete transition matrix for the model using the
Major League data in Table 5.

9.

10.

It can be shown that the sum of the first column of M for the
2006 Major League data is 4.53933, and that the first column
of SM for the 2006 Major League data is

.34973
33414
.23820
.07793

Find the expected number of earned runs per inning in a
Major League game in 2006.

The number of innings batted in the Major Leagues in the
2006 season was 43,257, and the number of earned runs
scored was 21,722. What is the total number of earned runs
scored for the season predicted by the model, and how does
it compare with the actual number of earned runs scored?

TABLE 5 Major League Batting Statistics—2006 Season

Walks Hit Batsman Singles Doubles

Triples Home Runs Outs

15,847 1817 29,600 9135

952 5386 122,268
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TABLE 6 Batting Statistics for Leading Batters

Name Walks Hit Batsman Singles Doubles Triples Home Runs Outs
Barry Bonds 2558 106 1495 601 77 762 6912
Babe Ruth 2062 43 1517 506 136 714 5526
Ted Williams 2021 39 1537 525 71 521 5052

11. Batting statistics for three of the greatest batters in Major
League history are shown in Table 6. Compute the transition
probabilities for this data for each player.

12. The sums of the first columns of M for the player data in
Table 6 and the first columns of SM for the player data in
Table 6 given in Table 7. Find and compare the offensive
earned run averages of these players. Which batter does the
model say was the best of these three?

TABLE 7 Model Information for Batting
Statistics

Sum of First First Column
Columns of M of SM

281776 ]
292658
258525
167041 |

Barry Bonds 5.43012

268150 ]
295908
268120
167822 |

Babe Ruth 5.70250

233655 ]
276714
290207
199425 |

Ted Williams 5.79929

13. Consider the second columns of the matrices M and SM,

which correspond to the “Runner on first, none out” state.

a. What information does the sum of the second column of
M give?

b. What value can you calculate using the second column of
SM?

c. What would the calculation of expected runs scored using
the data from the second columns mean?

Exercises 14—18 show how the model for run production in the
text can be used to determine baseball strategy. Suppose that you
are managing a baseball team and have access to the matrices M
and SM for your team.

14.

15.

16.

17.

18.

The sum of the column of M corresponding to the “Runner
on first, none out” state is 4.53933, and the column of SM
corresponding to the “Runner on first, none out” state is

.06107
.35881
41638
.16374

Your team now has a runner on first and no outs. How many
earned runs do you expect your team to score this inning?

The sum of the column of M corresponding to the “Runner
on second, none out” state is 4.53933, and the column of SM
corresponding to the “Runner on second, none out” state is

.06107
47084
.34791
12018

How many earned runs do you expect your team to score if
there is a runner on second and no outs?

The sum of the column of M corresponding to the “Bases
empty, one out” state is 3.02622, and the column of SM
corresponding to the “Bases empty, one out” state is

48513
31279
.16060
.04148

How many earned runs do you expect your team to score if
the bases are empty and there is one out?

Suppose that a runner for your team is on first base with no
outs. You have to decide whether to tell the baserunner to
attempt to steal second base. If the steal is successful, there
will be a runner on second base and no outs. If the runner is
caught stealing, the bases will be empty and there will be one
out. Suppose further that the baserunner has a probability of
p = .8 of stealing successfully. Does attempting a steal in
this circumstance increase or decrease the number of earned
runs your team will score this innning?

In the previous exercise, let p be the probability that the
baserunner steals second base successfully. For which values
of p would you as manager call for an attempted steal?



10.6 Markov Chains and Baseball Statistics 63

SOLUTIONS TO PRACTICE PROBLEMS

1. For entry (3, 6) of A, the probability of a transition from state 13:k to state 2:k is
required. Suppose that first and third bases are occupied and that the batter does not
make an out. To leave a player on second base, the batter must hit a double and the
players on first and third base must both reach home plate successfully. This cannot
happen according to the model, so the (3, 6)-entry is 0.

2. For entry (6,3) of A, the probability of a transition from state 2:k to state 13:k is
required. Suppose that only second base is occupied and that the batter does not
make an out. To leave players on first base and on third base, the batter must get to
first base, and the player on second base must advance to third. The desired outcome
occurs when the batter hits a single, but the runner from second base will then stop
at third base with probability .5. The (6, 3)-entry is thus .5p;.
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Suppose that P is an m x m stochastic matrix all of whose entries are greater than or equal to p. The proof proceeds by induction.

m

Notice that the statement to be proven is thus true for n = 1. Assume the statement is true for n, and let B = P". Then, since

m m

P"t! = BP, the (i, j)-entry in P"*!is Z bix pr;. Since b, > p by the induction hypothesis, Z bipry = p Z Drj- But
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Z prj = 1since P is a stochastic matrix, so all of the entries in P+ are greater than or equal to p.
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P is regular since all entries in P? are positive.

a. The transition matrix is

0 1/4 0 0 0
1 0 1/2 0 0
P=|0 3/4 0 3/4 0
0 0 1/2 0 1
0 0 0 1/4 0

The (0, 0)-entry in P* will be zero if k is odd while the

(0, I)-entry in P* will be zero if k is even. Thus P is
not regular.

b.

11. a.

13. q =

Compute that
1/16
1/4
3/8
1/4
1/16

so the chain will spend the most steps in state 2, which
corresponds to both urns containing 2 molecules.

q:

The transition matrix is
0o 1/2 0 0

10 12 0
P=10 12 0o 1
0 0 1/2 0

The (1, 1)-entry in P* will be zero if k is odd while the
(1,2)-entry in P¥ will be zero if k is even. Thus P is
not regular.

Compute that
1/6
| 1/3
1= 113
1/6
so the chain will spend the most steps in states 2 and 3.
1/4 3/13
1/4 3/13
1/6 15. q =
1/6 3/13
4/13

1/6
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1875
1875
17. Since q = .25 |, the probability is .25.
1875
1875
19. Since
0 1/3 0 0 0 0 0 0
1/2 0 /2 0 1/3 0 0 0
Pq = 0 1/3 0 0 0 0 0 _ 0
1/2 0 0 o 1/3 0 0 0|’
0 1/3 0 1 0 0 0 0
0 0 /2 0 1/3 1 1 1

21.

23.
25.

27.

29.

q is a steady-state vector for the Markov chain. Room 6 is an absorbing state for the chain—once the mouse moves into room 6 it
will stay there forever.

a.
C.

True. b. True.
False. See Examples 4 and 5.

To the nearest day, 152 are sunny, 52 are cloudy, and 161 are rainy.

The Google matrix and its steady-state vector are

.03 .03 .88 .03 2 231535

313333 .03 03 455 2 208517

G = | .313333 .03 .03 455 2|, q=| .208517
313333 455 .03 .03 2 208517

.03 455 .03 .03 2 142915

and the PageRanks are 1; 2, 3, and 4 (tied); 5.

a.

If a dominant (AA) individual is mated with a hybrid (Aa), then the dominant individual will always contribute an A. One half
of the time the hybrid will also contribute an A, leading to a dominant offspring. The other half of the time, the hybrid will
contribute an a, yielding a hybrid offspring.

If a recessive (aa) individual is mated with a hybrid (Aa), then the recessive individual will always contribute an a. One half

of the time the hybrid will also contribute an a, leading to a recessive offspring. The other half of the time, the hybrid will

contribute an A, yielding a hybrid offspring.

If a hybrid (Aa) is mated with another hybrid (Aa), then a dominant offspring will result when both hybrids contribute an A,

which happens (1/2)(1/2) = 1/4 of the time. Likewise a recessive offspring will result when both hybrids contribute an a,

which also happens (1/2)(1/2) = 1/4 of the time. Finally, in all other cases, a hybrid offspring will be produced, which

happens 1 — 1/4 — 1/4 = 1/2 of the time.

Confirm that all entries in P are strictly positive.

[ 1/64 7]
3/32
15/64

Compute that q = | 5/16 | so the chain spends the most steps in state 3, which corresponds to both urns containing 3

15/64

3/32

L 1/64 ]

molecules. The fraction of steps the chain spends there is 5/16.

Compute that

[1—p  p/6 0 0 0 0 0 Tr1/647 [ 1/647
p 1-p  p/3 0 0 0 0 3/32 3/32
0 sp/6  1—p  pJ2 0 0 0 15/64 15/64
Pq=| © 0 2p/3 1—p 2p/3 0 0 5/16 | =| 5/16 | =q
0 0 0 p/l2  1—p 5p/6 0 15/64 15/64
0 0 0 0 p/3 1-p p 3/32 3/32
Lo 0 0 0 0 p/6  1—p || 1/64 | | 1/64

so the result of part (b) does not depend on the value of p.
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31.

33.

35.

37.

Compute that

1 1/2 0 0 0 q q
o o0 1/2 0 O 0 0
0 1/2 0 1/2 0 0 = 0
o o0 1/2 0 0 0 0

L0 0 0 1/2 1 1—¢q 1—¢q

Compute that

f1/4 1/3 1/2 0 0 [4/117 [4/117]
1/4 1/3 1/4 0 0 3/11 3/11
/2 1/3 1/4 0 0 4/11 | = | 4/11
0 0 0 1/3 3/4 0 0

L 0 0 0 2/3 1/4|[ 0 | L 0 |

and

F1/4 1/3 1/2 0 07 0 7 0 7
1/4 1/3 1/4 0 0 0 0
/2 1/3 1/4 0 0 0 = 0
0 0 0 1/3 3/41||9/17 9/17
0 0 0 2/3 1/4 || 8/17 ] | 8/17 |

If the chain is equally likely to begin in each of the states,
then it begins in state 1, 2, or 3 with probability 3/5, and in
state 4 or 5 with probability 2/5. Since

4/11 0 12/55
3| L] o 9/55
2lam [+2] o | =]12/55
1o 9/17 18/85
0 8/17 16/85

the probability of the chain being in state 1 after many steps
is 12/55.

a. The matrix P will be a stochastic matrix if p +¢ < 1.
It will be a regular stochastic matrix if in addition p # 1

and g # 1.
b. A steady-state vector for P is
1/3
1/3
1/3
a. Let v be an eigenvector of P associated with A = 1. Let
Pv =y. Then, by Exercise 36,
il 4o+ [yml = vl + o+ v
But Pv =v,s0y = vand
il 4 [yml = o] + .+ o]
Since equality holds, each nonzero entry in v must have
the same sign by Exercise 36.

b. By part (a), each nonzero entry in v must have the same
sign. Since v is an eigenvector, v # 0 and so must have
at least one nonzero entry. Thus the sum of the entries
in v will not be zero, so one may define

1
——V
U|+...+Um

This vector will also be an eigenvector of P associated
with A = 1, each entry in this vector will be

39.

non-negative, and the sum of the entries in this vector
will be 1. It is thus a steady-state vector for P.

a. Sincexg =ciq+cvo+...+c¢,vyand Ay =1,
Equation (2) indicates that

x; = P¥xy = c1q + cz)tlgvz + ...+ c,l)tﬁvn
b. By part (a),
X —C1q = czk’z‘vz +...+ c,,)t’;v,,
and x; — c¢;qsince |A;| < 1. Since |A,] is the largest
magnitude eigenvalue remaining, the c,A5v, will be the

largest of the error terms and will thus govern how
quickly {x;} converges to ¢;q.

Section 10.3, page 31

° X nw

13.

15.

17.
19.
21.

23.
25.

27.
29.

{1, 3}, {2}; reducible

{1}, {2}, {3}; reducible
{1,3,5}, {2, 4, 6}; reducible
{1,2,3,4,5}, {6}; reducible
{1,2,3,4}, {5}

{1, 2,3, 4}, irreducible

Every state is reachable from every other state in two steps
or fewer, so the Markov chain is irreducible. The return
times are

State 1: 4

State 2: 4

State 3: 6

State 4: 6

State 5: 6

Every state is reachable from every other state in three steps
or fewer, so the Markov chain is irreducible. The return
times are

State 1: 13/3

State 2: 13/3

State 3: 13/3

State 4: 13/4

4 steps.
15/2 steps.

a. False. It must also be possible to go from state j to state
i in a finite number of steps for states i and j to
communicate with each other.

b. True.

c. False. The reciprocals of the entries in the steady-state
vector are the return times for each state.

2.27368 days.

a. Since each entry in G is positive, the Markov chain is
irreducible.

b. 4.31901 mouse clicks.
8/3 steps.
16/5 = 3.2 draws.



31.

33.

35.

{deuce, advantage A, advantage B}, {A wins the game}, {B
wins the game}

Every state is reachable from every other state in three steps

or fewer, so the Markov chain is irreducible.

Each dangling node forms a separate communication class
for the Markov chain.

Section 10.4, page 40

1.

The communication classes are {1, 3} and {2}. Class {1, 3}
is transient while class {2} is recurrent. All classes have
period 1.

The communication classes are {1}, {2}, and {3}. Class {1}
is recurrent while classes {2} and {3} are transient. All
classes have period 1.

The communication classes are {1, 3, 5} and {2, 4, 6}. Both
classes are recurrent and have period 2.

The communication class is {1, 2, 3, 4}, which must be
recurrent. The class has period 4.

The communication classes are {1, 2, 3, 4}, which is
transient, and {5}, which is recurrent. Both classes have
period 1.

11. Ordering the states 2, 1, 3 gives the matrix
1 /2 1/3
0o 1/4 1/3
0o 1/4 1/3
13. The matrix is already in canonical form.
15. Ordering the states 1,3, 5,2, 4, 6 gives the matrix
o 4 8 0 0 0
3 0 2 0 0 0
g 6 0 0 0 0
0 0 0 0 7 5
0 0 0 1 0 5
L 0 0 0 9 3 0
17. The original transition matrix is
1/3 0 1 0 0]
1/3 0 0o 1/2 0
1/3 0 0o 1/2 0
0 1/2 0 0 0
L O /2 0 0 1]
Ordering the states 5, 1,2, 3, 4 gives the matrix
M1 0 /2 0 0
0 1/3 0 1 0
0 1/3 0 0 172
0 1/3 0 0 1/2
L0 0 /2 0 0 |
19. a. The communication classes are {1,2, 3, 4,5} and {6}.

Class {1,2,3,4,5} is transient while class {6} is
recurrent.

b. Both classes have period 1.

21.

23.

Section 10.4 A5

c. The original transition matrix is

o0 13 0 0 0
/2 0 1/2 0 1/3
0 1/3 0 0 0
12 0 0 o0 1/3
o 1/3 0 1 0
L0 0 12 0 1/3

—_ 0 O O OO

Ordering the states 6, 1,2, 3,4, 5 gives the matrix

10 0 1/2 0 1/3]
0O 0 13 0 0 0
0 12 0 1/2 0
0o 0 1/3 0 0 0
0 1/2 0 0 0
o o0 13 0 1

a. False. A Markov chain can have more than one
recurrent class.

b. True.
c. False. Every Markov chain must have a recurrent class.
1/4
. 1/4 .
It is easy to compute that q = 1/4 for the matrix P.
1/4
We further find that
o o0 1 O 0o 1 0 O
o 0 0 1 0o o0 1 0
2 3
P= 1 0 0 oY P= o o0 o0 1/
o 1 0 0 1 0 0 O
1 0 0 O
o 1 0 O
4 —
and P* = 0 0 1 o= 1
0 0 0 1

by direct computation. Thus P> = P, P = P%, P = P3,
P® = P* = I, and so on. So no matter the value of 1, one
of the four matrices P"+!, pnt2 pn+3 and P"+* will be
P, one will be P2, one will be P3, and one will be P* = 1.
Therefore

lim l(Pn-l—l T P!1+2 + Pn+3 + Pn+4)
4

n—0o0

=%( + P>+ P+ P*)

~
SO = O
o= O O
-0 O O
[ R R
o= O O
-_0 O O
[l e
S O = O

—_o O O
(=R R
SO = O
(= =)
[ R e R
(= el =
(= ==
-0 O O
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/4 1/4 1/4 1/4
/4 1/4 1/4 1/4
/4 1/4 1/4 1/4
1/4  1/4 1/4 1/4

as promised in Theorem 5.

25. a. Itis possible to go from any state to any other state in any even number of steps, so the Markov chain is irreducible with

period 2.
1/4
b. q=| 1/2
1/4
¢. One choice is
1 0 0 1 1 -1
D=0 -1 0], A=1|2 -2 0
0 0 0 1 1 1

d. Compute that
1 I -1 1 0 0 1/4 1/4 1/4
P"=AD"A"'=|2 -2 0 o " o /4 —1/4 1/4
1 I 1 0 0 0 -1/2 0 1/2

L+ (=" 1—(=D)"  1+4(=1)"
=—|2-2(=1) 242(=1)y" 2-2(=1)
1+(=D" 1—(=D)"  1+(=1)"
1/4  1/4 1/4 1/4 —1/4 1/4
=|1/2 12 172 |+ "] —1/2 12 -1/2
/4 1/4 1/4 1/4 —1/4 1/4

e. The second terms in the expressions for P” and P+ will cancel each other when added, so

1/4  1/4  1/4
/2P +pPthy=\|1/2 1/2 1/2
1/4  1/4  1/4

as promised in Theorem 5.

1/3
27. Ttis easy to compute that ¢ = | 1/3 | for the matrix P. We further find that
1/3
o 1 0 I 0 O
PP=10 0 1|andP’=|0 1 0]|=1
I 0 0 0o 0 1

by direct computation. Thus P* = P, P> = P2, P = P3 = I, and so on. So no matter the value of 7, one of the three matrices
P71 P2 and P"13 will be P, one will be P2, and one will be P? = I. Therefore

1 1
H +1 +2 +3 —_ 3
nl_l)“;og(Pn +Pn _|_Pn ) _g(P+P2+P?)
1 0 1 0 1 0 1 0
=§ 1 +({0 O 11+1]0 1 0
1 0 1 0o 0 0 1

/3 1/3 1/3
=13 1/3 173
13 1/3 13

as promised in Theorem 5.



29. a. Since any permutation of rows may be written as a

sequence of row swaps, the permutation of rows may be
performed by multiplying A on the left by a sequence of
elementary matrices £y, ..., E;. By the comment on
page 106, E = Ej --- E;, and E A will be the matrix A
with its rows permuted in exactly the same order in
which the rows of /,, were permuted to form E.

By part (a), EAT will be the matrix AT with its rows
permuted in exactly the same order in which the rows of
I, were permuted to form E. Thus (EAT)T will be the
matrix A with its columns permuted in exactly the same
order in which the rows of /, were permuted to form E,
and since (EAT)T = (AT)TET = AET, the result
follows.

The matrix EAET is (EA)ET. By part (a), EA is the
matrix A with its rows permuted in exactly the same
order in which the rows of 7, were permuted to form E.
Applying part (b) to EA, (EA)ET is the matrix EA
with its columns permuted in exactly the same order in
which the rows of 7, were permuted to form E. Thus
EAET is the matrix 4 with its rows and columns
permuted in exactly the same order in which the rows of
I, were permuted to form E.

Since matrix multiplication is associative,

(EA)ET = E(AET) and it does not matter whether the
rows of matrix A or the columns of matrix A are
permuted first.

Section 10.5, page 50

11.
13.
15.
17.
21.

23.
29.

(3 2
13/2 2
Using reordering 2, 4, 1, 3, 5:
[1075/736  125/368  185/368
25/46 35/23 15/23
| 105/184 55/92 155/92
[ 10/21 3/7
5/21 3/14
L 2/7 5/14
3/2 9. 1895/736
At state 1: 10/21; at state 2: 5/21; at state 3: 2/7
a. 9/11 b. 29/11 c. 3/7
a. 1 b. 10/3
5/7 19. 38/5
a. False. The (i, j)-element in the fundamental matrix M
is the expected number of visits to the transient state i
prior to absorption, starting at the transient state j .
b. False. See Theorem 6.
c. True.
2/7 25. 19/2 27. 3.84615
Advantage A: 2.53846

Advantage B: 3.30769

31.
35.

37.

39.

Section 10.6 A7

3.01105 33. 3.92932

From the results of Exercises 31 and 33, using rally point
scoring led to 3.92932 — 3.01105 = .91827 fewer rallies
being played.

a. {l,2}is arecurrent class; {3, 4, 5} is a transient class.
b. The limiting matrix for {1, 2} is

35 ¥

c. Since there is only one recurrent class, the probability
that the chain is absorbed into {1, 2} is 1. Thus if the
chain is started in any transient state, the probability of
being at state 1 after many time steps is 2/5, the
probability of being at state 2 after many time steps is
3/5, and the probability of being at state 3, 4, or 5 after
many time steps is 0.

d. Since the i column of lim P" gives the long-range

n—0oo

probabilities for the chain started at state i,

2/5 2/5 2/5 2/5 2/5
3/5 3/5 3/5 3/5 3/5
lim P"=| O 0 0 0 0
e 0 0 0 0 0
0 0 0 0 0
4 4 4 4 4
6 6 6 .6 6
e. P~ |0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
The result is trivially true if n = 1. Assume that the result is
. 1 S
— I k — k
true for n = k; that is, P* = [ 0 oF ], where
Sk =S(I+0+ Q*+...+ QF"). Then
Pkl =pk.p
(s [1|S]
Lo | of 01 0]

_[1 S+Sin|
=loT o

But

S+SH0=8S+SU+0+0*+...+0¥hHQ
=S+S(O+0%°+...+0H
=SU+Q0+0%+...4+05
= Si+1

and the result is proven by induction.

Section 10.6, page 61

1.

This concerns the second column of A. The initial state is
1:k (a runner on first base, k outs). For entry (1, 2) of A4, the
probability of a transition “to state 0:k” is required.
Suppose that only first base is occupied and the batter does
not make an out. Only a home run will empty the bases, so
the (1,2)-entry is py.
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Entry (2,2): (“to state 1:k) To leave a player on first
base, the batter must get to first base and the player on first
base must reach home plate successfully. This cannot
happen according to the model, so the (2, 2)-entry is 0.

Entry (3,2): (“to state 2:k”) To leave a player on
second base, the batter must get to second base and the
player on first base must reach home plate successfully.
This cannot happen according to the model, so the
(3,2)-entry is 0.

Entry (4,2): (“to state 3:k”) To leave a player on third
base, the batter must get to third base and the player on first
base must reach home plate successfully. This can happen
only if the batter hits a triple, so the (4, 2)-entry is p;.

Entry (5,2): (“to state 12:k”) To leave players on first
base and second base, the batter must get to first base and
the player on first base must advance to second. The desired
outcome occurs when the batter either hits a single, gets a
walk, or is hit by a pitch. The (5, 2)-entry is thus py + p;.

Entry (6,2): (“to state 13:k”) This concerns the batter
getting to first base and the runner on first base advancing to
third base. This cannot happen according to the model, so
the (6, 2)-entry is 0.

Entry (7,2): (“to state 23:k”) To leave players on
second base and third base, the batter must hit a double and
the runner on first base must advance only to third base.
Thus the (7, 2)-entry is p,.

Entry (8,2): (“to state 123:k”) The starting state has
just one runner on base. The next state cannot have three
runners on base, so the (8, 2)-entry is 0.

. This concerns the fifth column of A. The initial state is 12:k

(runners on first base and second base, k outs). For entry
(1,5) of A, the probability of a transition “to state 0:k” is
required. Suppose that first and second bases are occupied
and the batter does not make an out. Only a home run will
empty the bases, so the (1, 5)-entry is py.

Entry (2,5): (“to state 1:k”) To leave a player on first
base, the batter must get to first base and both players on
base must reach home plate successfully. This cannot
happen according to the model, so the (2, 5)-entry is 0.

Entry (3, 5): (“to state 2:k”) To leave a player on
second base, the batter must get to second base and both
players on base must reach home plate successfully. This
cannot happen according to the model, so the (3, 5)-entry is
0.

Entry (4, 5): (“to state 3:k”) To leave a player on third
base, the batter must get to third base and the players on
base must reach home plate successfully. This can happen
only if the batter hits a triple, so the (4, 5)-entry is p;.

Entry (5,5): (“to state 12:k”) To leave players on first
base and second base, the batter must get to first base, the
player on first base must advance to second base, and the
player on second base must reach home plate successfully.
The desired outcome occurs when the batter hits a single,
but the runner from second will then reach home with
probability .5. The (5, 5)-entry is thus .5p;.

Entry (6,5): (“to state 13:k”) This concerns the batter

getting to first base and the runner on first base advancing to
third base. This cannot happen according to the model, so
the (6, 5)-entry is 0.

Entry (7,5): (“to state 23:k”) To leave players on
second base and third base, the batter must hit a double, in
which case the runner on first base must advance to third
base and the runner on second base must reach home. Thus
the (7, 5)-entry is p;.

Entry (8,5): (“to state 123:k”) To leave runners on
first, second, and third bases, the batter must reach first and
the two runners must each advance one base. This happens
when the batter is walked, is hit by a pitch, or hits a single
but the runner on second base does not reach home. Thus
the (8, 5)-entry is py + .5p;.

. This concerns the seventh column of A. The initial state is

23:k (runners on second and third bases, k outs). For entry
(1,7) of A, the probability of a transition “to state 0:k” is
required. Suppose that second and third bases are occupied
and the batter does not make an out. Only a home run will
empty the bases, so the (1, 7)-entry is py.

Entry (2,7): (“to state 1:k”) To leave a player on first
base, the batter must get to first base and the players on
second base and third base must reach home plate
successfully. The desired outcome occurs when the batter
hits a single, but the runner from second will then reach
home with probability .5. Thus the (2, 7)-entry is .5p;.

Entry (3,7): (“to state 2:k) To leave a player on
second base, the batter must reach second base (a “double”)
and the runners on second and third bases must score. The
second condition, however, is automatically satisfied
because of the assumption in Table 2. So the probability of
success in this case is p,. This is the (3, 7)-entry.

Entry (4,7): (“to state 3:k”) By an argument similar to
that for the (3, 6)-entry, the (4, 7)-entry is ps.

Entry (5,7): (“to state 12:k”) To leave players on first
base and second base, the batter must get to first base and
the player on second base must remain there while the
runner on third base reaches home. This is impossible, so
the (5, 7)-entry is 0.

Entry (6,7): (“to state 13:k”) This concerns the batter
getting to first base and the runner on second base
advancing to third base while the runner on third base
reaches home. This can happen only if the batter hits a
single, with probability p,, and the runner on second base
stops at third base, which happens with probability .5 (by
Table 2). Since both events are required, the (6, 7)-entry is
the product .5p;.

Entry (7,7): (“to state 23:k”) To leave players on
second base and third base, the batter must hit a double and
the runner on second base must advance only to third base.
This cannot happen, so the (7, 7)-entry is 0.

Entry (8,7): (“to state 123:k”) To leave runners on
first, second, and third bases, the batter must reach first base
and the two runners must each fail to advance one base.
This happens when the batter is walked or is hit by a pitch.
Thus the (8, 7)-entry is py.



7.

11.

13.
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pw = .0954785, p; = .159996, p, = .049377, p; = .00514581, py = .0291127, pp = .66089. Thus

0:k 1:k 2:k 3:k
[.0291127  .0291127  .0291127  .0291127
255474 0 .0799978 .159996
.049377 0 .049377 .049377
4= .00514581 .00514581 .00514581 .00514581

0 255474 .0954785 0
0 0 .0799978  .0954785

0 .049377 0 0

0 0 0 0

The sum of the first column of M shows that

E[B] = 4.53933. The first column of SM allows E[L] to

be computed:

E[L] = 0(.34973) + 1(.33414) + 2(.23820) + 3(.07793)
= 1.04433

Thus

E[R]|=E[B]|—E[L]-3
= 4.53933 — 1.04433 — 3 = .495

Bonds: py = .212933, p; = .119495, p, = .0480377,
p3 = .00615458, py = .0609064, po = .552474.

Ruth: py = .2004, p; = .144421, p, = .0481721,
p3 = .0129474, py = 0679741, po = .526085.

Williams: py = .210936, p; = .157383, p, = .0537579,
p3 = .00727012, py = .0533484, po = .517305.

a. The sum of the second column of M will tell the
expected number of batters that will come to the plate
starting with a runner on first and none out.

b. The second column of SM will give the probabilities of
leaving 0, 1, 2, or 3 runners on base starting with a
runner on first and none out. Thus the expected number

0291127

.00514581
.0799978

13:k 23:k 123:k
0291127  .0291127  .0291127 7] ok
0 .0799978 0 1:k
0 .049377 0 2:k
.00514581 .00514581 .00514581 | 3:k
.159996 0 .0799978 | 12k
0 .0799978 0 13:k
.049377 0 .049377 23:k
.0954785  .0954785 175476 | 123k

of runners left on base starting with a runner on first and
none out could be calculated.

c. The expected number of runs scored using the second
column data will give the expected number of runs
scored starting with a runner on first and none out.

. The sum of the column of M is 4.53933. One batter has

already reached base, so E[B] = 1 4 4.53933 = 5.53933.
The column of SM allows E[L] to be computed:

E[L] = 0(.06107) 4 1(.47084) + 2(.34791) + 3(.12108)
= 1.52990

Thus

E[R] = E[B]—E[L]-3
= 5.53933 — 1.52990 — 3 = 1.00943

. If the baserunner does not attempt a steal, you expect to

score .85654 runs by Exercise 14. If the runner attempts a
steal and succeeds, you expect to score 1.00943 runs by
Exercise 15. If the runner attempts a steal and does not
succeed, you expect to score .26779 runs by Exercise 16.
Thus the expected number of runs scored if a steal is
attempted is 1.00943(.8) + .26779(.2) = .861102.
Attempting a steal thus increases the expected number of
runs scored.





