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armed bandit problems with independent arms (devices) and full ob-
servation or information, various recent extensions in this framework
are discussed by Weiss (1984), Varaiya et al. (1985), Antharam et
al. (1986a,b), Katehakis & Veinott (1987), Glazebrook & Fay (1987,
1988) and Lai & Ying (1988). Further results, for example by Gittins,
Glazebrook and Whittle, can be found in Dempster et al. (1982), but
few works treat the case of independent arms with partial observation
(information), whose full information equivalent involving the a pos-
teriori distribution—of central interest in this book—has dependent
arms (see, however, Glazebrook 1985).

Several of the works cited above note that the multi-armed ban-
dit problem is a version of the single machine stochastic scheduling
problem in which arms are jobs and the resource to be allocated at
each moment of time is a unit of processing capacily of a machine
(e.g. a computer)—often with a discounted cost criterion. In this con-
text, successes correspond to job completions, sharable resources to
time-sharing, dynamic allocation index policies to stochastic versions
of Smith’s rule and Whittle’s “arm-acquiring bandits” to problems
with a job input process for the machine. Thus natural extensions of
multi-bandit problems are multi-processor stochastic scheduling prob-
lems in which jobs (possibly arriving in a generalized Poisson stream)
may be processed on any one of several identical or similar machines
(see Dempster et al. 1982). Following the original works of Sevcik
(1974) and Bruno (1976), more recent contributions on these prob-
lems with independent job processing times are given by Glazebrook
& Nash (1976), Weiss & Pinedo (1980), Weber (1982), Weber et al.
(1986), Rademacher (1986) and Kampke (1987). Dependent job pro-
cessing times are treated in Gittins & Glazebrook (1977), Mohring et
al. (1984a,b) and Mohring & Rademacher (1985, 1989).

Multi-processor stochastic scheduling problems are special cases of
a general class of controlled Markov processes termed piecewise de-
terministic processes (PDPs) whose trajectories are generated by or-
dinary dynamical systems punctuated by random jumps (see Davis
1984a, Dempster & Solel 1987). These processes model almost all
stochastic systems not involving diffusions (Vermes 1980, Davis 1984a).
They are related to several classes of similar processes (see e.g. Yushke-
vich 1987), but arose in the context of capacity expansion (Davis et

Translators' Preface xvii

al. 1987). Gittins’ concept of “superprocesses” (for a unit resource)
allows control actions which affect rewards and transition measures
and hence utilize more of the general features of PDPs. An extensive
optimal control theory for PDPs is now available in Vermes (1985),
Lenhardt & Liao (1985), Davis (1986), Soner (19864a,b), Costa & Davis
(1987, 1988), Gatarek (1988a,b), Dempster (1989) and Dempster &
Ye (1989a-d). Nevertheless, a number of interesting open problems
remain. One of these (¢f. Chapter 4 of this book) concerns the rela-
tion of the interjump to the local version of the Bellman(-Hamilton-
Jacobi) optimality equation for these processes. Another concerns the
exact relation between this equation and the maximum principle (cf.
Chapter 6).

Some general references on stochastic control, mainly with com-
plete information, are Kushner (1971), Bertsekas & Shreve (1978),
Whittle (1982, 1983), Ross (1983), Stengel (1983) and Bertsekas (1987).
Partial information is discussed in Davis (19845), Davis & Vinter
(1984) and Kumar & Varaiya (1986). Related concepts in the eco-
nomics of information are treated in Zellner (1980), Boyer & Kihlstrom
(1984) and Easley & Kiefer (1988). Klimov (1974, 1978), Stone (1975),
Heynman & Sobel (1982, 1983), Whittle (1986) and Kémpke (1987)
contain applications to computer science and operations research.
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INTRODUCTION

Decision making in many areas ol human activity possesses two im-
portant features: it occurs under conditions of incomplete knowledge
and is implemented in steps. These two features are connected with
each other. On the one hand, the continuous flow of events in time,
and the nonnegligible period required for effective decision making in
a complex environment, resign us as a rule to the fact that it is im-
possible to predict future events exactly. On the other hand, when
strong uncertainty exists with respect to future events, the tendency
to minimize possible losses resulting from wrong predictions necessi-
tates the division of the problem solution into only a few steps, the
introduction of preliminary tests and experiments, followed by initial
decisions, and so on.

These two features are connected with the dualistic character of
decision making: control at each step must use the information ob-
tained during the evolution of the process to date, and the nature of
this information may depend essentially on the type of control applied.

Attempts at abstraction of such situations in order to find the
correspondingly “optimal” behaviour rules has led to the creation of
various different mathematical models of sequential control with in-
complete information. Initially, the main source of these models lay
in practical problems of optimal control arising in engineering. How-
ever, in recent decades such models have appeared in medicine and
biology, and have also become an important part of economic and
management research. With regard to managerial economics in re-
cent times, this phenomenon is due to the widespread application of
goal-oriented, formalized planning techniques, incorporating scientific
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and technological progress in planning and control and the resulting
increasing sophistication.

The mathematical models and methods of sequential control with
incomplete information are part of the general theory of optimal con-
trol. The cornerstones of the deterministic part of this theory for dy-
namical processes are the general concepts of dynamic programming
and the Pontryagin mazimum principle (see Bellman 1960; Pontryagin
et al. 1961; Boltyanski 1969).

In developing the stochastic part of this theory, a seminal role be-
longs to the work of Wald (1967) and other statistical authors in devel-
oping sequential analysis, which emphasizes consideration of the future
evolution of a sequence of statistical tests in order to create a general
theory of statistical decisions. The various extensions of this theory
and related ideas under such titles as stochastic dyneamic programming
and controlled stochastic (random) processes are represented in the
works of Howard (1960), Blackwell (1965), Strauch (1969), Dynkin &
Yushkevitch (1976), Raiffa & Schlaifer (1960), Gikhman & Skorohod
(1977) and others. Relatively recently, mathematical theories related
to the same class of problems were developed, such as the control
of diffusion processes (see Krylov 1977), the theory of optimal stop-
ping for Markov chains, statistical inference for random processes (see
Shiryaev 1976; Lipster & Shiryaev 1974) and the stochastic mazimum
principle (Arkin & Evstigneev 1979). A vast literature devoted to
the applied aspects of sequential control with incomplete information
exists; we mention only Krasovski (1968), Yudin (1974), Kurzanski
(1977), Chernousko & Kolmanovski (1978).

Adaptive control theory, which concerns the problem of finding the
control which is in some sense optimal for a whole class of controlled
objects, is considered in Sragovich (1981). Stochastic analogues of
the classical models of economic dynamics are studied in Arkin &
Evstigneev (1979).

A general outline of the construction of a multistage controlled
process may be presented in the following way. The state of the system
(object) is described by a point in some state space. At each successive
moment of time, a controlling action (control) belonging to some set of
admissible controls must be chosen. Depending on the chosen control
and the current state—more generally, depending on all past controls
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and states—the system moves to a new state. If this dependency is
deterministic, we have a controlled deterministic process. If, on the
other hand, the chosen control and the history of the system to date
define only a probability distribution for the new state, we deal with
a controlled stochastic process. If, further, only partial information is
available about the transition law (to the new state) or about the state
of the system itself, then the problem is one of control with incomplete
information. This case, indeed, is the one of interest to us in this book.

In statistical decision theory, two main approaches can be differ-
entiated: the minimaz approach, in which the quality of a strategy
is measured in terms of the worst possible value(s) of the unknown
parameter with respect to a utility function, and the Bayesian ap-
proach, in which some a priori distribution is prescribed for the un-
known parameter and the value of a utility function weighted with
respect to this distribution is maximized (or minimized).

In this book, attention is mainly given to the relatively narrow class
of optimal control problems with incomplete information in which:
firstly, it is supposed that at each successive moment of time deci-
sions are chosen from a finite number of controlling actions (controls)
a',...,a™ or their miztures; secondly, the result of the choice of a con-
trol a7 is the observation of a random real number (in many cases, a
Bernoulli number, i.e. having two values 0 or 1, representing respec-
tively failure or success) whose distribution depends exclusively on
the chosen control; and thirdly, we have a finite number of hypotheses
Hy,..., Hy regarding (parameters of) the distribution function of the
observations over which there exists a known a priori distribution
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We consider also the case of continuous time, under the require-
ments that a finite number of controls are available and a finite number
of hypotheses are considered: only the times of successful realizations
are observed, and the choice of a control (or mixture of controls) de-
fines the intensity of realizations of subsequent successes.

The content of the book is thus somewhat narrower than its title.
In this regard, however, the following points should be noted. Firstly,
the problems treated here present all the principal difliculties appear-
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ing in more general problems of stochastic control with incomplete
information. Moreover, these difficulties are virtually impossible to
overcome in general if one is not to be excessively restricted to ap-
proximate and heuristic methods. Secondly, in spite of the fact that
formally the problems treated here belong to the theory of dynamic
programming and of the control of Markov chains, finding optimal
strategies already presents great difficulties of a fundamental character
in simple examples. These difficulties can easily be seen in the follow-
ing simplest model of the type treated in this book. Let the number
of controls and hypotheses both equal two and suppose that Bernoulli
random variables are observed. According to the first hypothesis, Hy,
a success is observed with probability A' if the first control is used
and probability A? (A' < A?) if the second control is used (a failure
is observed with the complementary probabilities). Under the second
hypothesis, H,, the probability A' corresponds to use of the second
control and A? to use of the first. Further, a number & (0 < £ < 1) is
given which represents the a priori probability of H;, so that that of
H, is equal to 1 — £&. The aim of the decision maker (or statistician)
is to maximize the expected number of successes over a fixed number
of observations.

This problem is presented in many books (see for example De
Groot 1970; Yakowitz 1969; Dynkin & Yushkevitch 1976; Prohorov &
Rozanov 1973) and in the literature it is called the two-armed bandit
problem, by analogy with playing an automat (slot machine) with two
arms. The first problems of this type were considered in Thompson
(1933), Robbins (1952), Brandt et al. (1956), Bellman (1956). The
case of an arbitrary (finite) number of controls is called the multi-
armed bandit problem.

As in more general situations, it can be shown for the two-armed
bandit problem that in order to make an optimal decision at each
moment of time it suffices to know only the number of observations
remaining and the a posteriori probability of the first alternative hy-
pothesis H; calculated in terms of the realizations of previous obser-
vations. The optimal strategy for this problem is as follows. If the a
posteriori probability of this first hypothesis (according to which the
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second control is more profitable) is more than 3, then, independent of

the number of observations remaining, it is optimal to use the second
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control. If this probability is less than %, then it is optimal to use the
first control.

In spite of the seeming obviousness of this fact, its rigorous proof
was obtained only in the early 1960s by the American mathematician

" Feldman (1962). In fact by using different controls at a given time one

not only obtains different benefits, but also causes the transition to dif-
ferent information states at the next moment. Therefore, it is possible
that control values giving less than the greatest benefit at the current
time might nevertheless be useful because they provide good discrim-
ination between hypotheses and this permits more effective control
in the future. This is the situation in the case—unlike the one just
described—when the matrix of success probabilities is nonsymmetric.

In spite of our perception that such a survey is necessary, we have
not attempted the task of giving a complete review of the literature
relating to the stochastic control problem with incomplete information
as described above. The authors’ main results—both published and
previously unpublished—are included in this book. Special attention
has been given to the continuous time case, since it allows a consider-
able advance in the solution of some problems and exhibits interesting
effects which are absent in the discrete time case, such as, for example,
the appearance of a turnpike.

Our main aims in the present book are, on the one hand, to give
the solutions of some problems with the general structure described
above and to present methods specially developed for them, and, on
the other, to demonstrate the application of the general methods of
stochastic control theory with incomplete information using this rela-
tively narrow class of problems as an example.

It seems to us that the new approaches and methods used in this
book may find application to more general problems than those con-
sidered here—particularly to problems of the control of pure jump
stochastic processes (see the details in Chapters 1 and 6).

Readers with minimal mathematical background who want to gain
a general idea of the nature of this extensive topic can restrict them-
selves to reading the first chapter, where the main results and methods
are presented at the heuristic level, but in some detail; they are rigor-
ously established and applied in the following chapters.

In Chapter 1, a description is also presented of some economic
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situations falling into the scheme of sequential stochastic control with
incomplete information.

Chapters 2 and 3 are devoted to the discrete time case. Precise
definitions of problems and details of their general solutions are given.
The presentation here has a technical character, and it is assumed
that the reader is familiar with the main concepts of probability and
decision theory—specifically with the Bayesian approach. The reader
familiar with the contents of De Groot’s (1970) book Optimal Statis-
tical Decisions is completely prepared for reading these chapters.

Problems in continuous time are considered in Chapters 4 and 5.
The rigorous formulation of such problems requires rather advanced
techniques of modern stochastic process theory (martingales, point
processes, etc.). To facilitate reading these chapters, we provide an
Appendix in which the necessary facts and results are precisely stated
without proof. Where proofs are not given herein, references are given
to statements and proofs in other books.

The approach connected with the application of the Pontryagin
mazimum principle is considered in Chapter 6, where it is assumed
that the reader is familiar with its general formulation. The content of
this chapter consists partly in the formulation of some open problems.

In Chapter 7, such questions as discrimination amongst hypothe-
ses and non-Bayesian formulations of problems are considered, results
of other authors are presented, and some unsolved problems are dis-
cussed.

E. L. Presman wrote §§3.5, 4.3-4.5, 5.2, 5.3, 7.2 and 7.4. 1. M.
Sonin wrote §§3.1-3.3, 5.1, 6.4-6.6 and 7.3. The rest of the book was
written together. :

In conclusion, the authors would like to express their gratitude to
V. I. Arkin, who brought to their attention a large number of ques-
tions and formulated the two-armed bandit problem in continuous
time, to Yu. M. Kabanov, for numerous useful comments, and to all
our colleagues in the Laboratory for Stochastic Problems in the Con-
trol of Economic Processes, Central Economic Mathematical Institute,
Academy of Sciences of the U.S.5.R., for helpful discussions.

SOME NOTATION

All vectors are considered to be row vectors of the form z = (2y,...,z,).

Scalars, vectors and random variables and vectors are not distin-
guished notationally.

% .
denotes matrix (vector) transpose.

diag z denotes the diagonal matrix formed by placing the elements of
the vector = on the diagonal of a square matrix of zeroes of the
same dimension.

S™ denotes the (n—1)-dimensional simplex
S = {:n tz = (2y,...,2,), z; >0, Zm‘- = 1}
i=1

el :=(0,...,1,...,0) 2y i (Oyoes 50)

2

Sti=Jelhis = 1,00 nh

A= {)\‘,’} denotes the matrix of success probabilities under hypothe-
ses 1 = 1,..., N for control actions j =1,...,m.

¢ = (&,...,€n) denotes the vector of a posteriori probabilities of
hypotheses (relative likelihoods).

71(¢) denotes the change of variables for the a posteriori probabili-
ties which represent the transformation to logarithmic relative

likelihoods #; := In(&;/én), i = 1,...,N — 1, gy := 0.
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E(n) denotes the transformation inverse to 7j(¢), éi:=exp i/ TN | exp 1.

IV := TV (I'%) denotes the transformation of the a posteriori (loga-

rithmic) probabilities upon the observation of a success (failure)

on the 7" device.

Ty =g+ 44 [y i=n + 4%
Y= (W) 717 = In(Al/AR)
9 f= (%0 700 2 1= In[(1 = A))/(1 - M)

{A} denotes a random event and P{A} denotes the probability of
this event.

E(-) denotes mathematical expectation.

I(D)(z) or simply I(D) denotes the indicator function of the set D,
i.e. the function which is 1 for 2 € D and is 0 outside D.

VB(&), Wh(€) Fr(€) denote the value functions corresponding to the
time interval [0,1) using action rule § (strategy ) and starting
point £.

For the 2 x 2 square matrix {/\f}

8 =X -\ g 1= A} — A2
Ei1=€; —€y = ' — 62

Y= In(Ad/M) Y= Inl(1 - M)/(1- M) j=1,2
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