1 BASIC SCHEMES IN DISCRETE
AND CONTINUOUS TIME

1.1 Formulation of the sequential control
problem with incomplete information

Study of various controlled dynamical processes by means of dynamic
optimization models is widespread in theoretical and applied science.
An important place amongst such models is occupied by stochastic
models in which the state of the system (object) at some moment
of time using a chosen control does not uniquely define the state of
system at the next moment. Rather, for this subsequent state it is
only possible to specify a probability distribution which depends both
on the previous state and chosen control or, more generally, on all the
previous history of the system.

The problem of determining model parameters which are known
only incompletely a priori plays a central réle in the formulation and
analysis of such dynamical models. This problem forms a part of the
more general problem of determining optimal controls for a system
with incomplete knowledge of model parameters.

The solution of the general problem is considerably complicated
by the fact that while the choice of a control at each moment must
be based on existing information about model parameters, the infor-
mation obtained about these parameters depends, generally speaking,
on the chosen control. Such problems are well known in the theory of
automatic control. Since control plays a double réle—on the one hand
it is necessary to identify the model parameters, while on the other
a definite aim must be accomplished (for example, the maximization
of a given functional)—they are sometimes called dual control prob-
lems. Terms such as sequential control with incomplete information
and adaptive control are also often used in the description of such
problems. The use of the last term is connected with the fact that in
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process control the controlled system is adapting to control objectives
which are only known with partial information a priori.

The areas of general control theory mentioned above are currently
enjoying intensive development. However, owing to the complexity of
the problems considered, at present there exist comparatively few suf-
ficiently complete results. Most results obtained so far relate to control
models in engineering. In this section, we present some economic pro-
cess and event models which lead to the formulation of problems of
sequential control with incomplete information.

With regard to control in economics, essentially the simplest area
of stochastic modelling whose development has reached the stage of
practical applications in planning and control concerns linear econo-
metric models. In this field it is assumed as a rule that the stochastic
character of models consists in the existence of random disturbances
added to some deterministic linear relationship between arguments.
Usually regression and correlation analyses are used as the mathemat-
ical tools.

However, these assumptions and methods are simply inapplicable
to the analysis of situations in which there are a few essentially dif-
ferent hypotheses (for example, various ezpert opinions) concerning
the random nature of parameters of the models. At first glance, a
possible way of investigating such a situation involves the use of clas-
sical methods of hypothesis testing to determine the “true” parameters
and the subsequent specification of optimal strategies for the identified
parameter values.

Two circumstances prevent this approach. First, sequential control
changes the characteristics of the observed random values; second,
as shown by the solution of some of the problems in the sequel, the
process of parameter identification and control based on the identified
parameter values cannot always be separated into two independent
stages without essential loss.

An adequate description of such situations, and methods for their
investigation, is developed in the general theory of statistical decisions
from a Bayesian viewpoint. According to this approach, some weights
(relative likelihoods) are attributed to the unknown a priori parameters
and the quality of the assessment (chosen decisions) is determined by
the ezpected (weighted) loss, implied by the statistics for values of
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the parameters corresponding to these a priori weights. Many studies
are devoted to a discussion of the Bayesian approach (see DeGroot
1970; Morris 1971) and, in spite of the fact that the universality of
its applicability is to some extent questionable, we will accept it as
the basis of the following presentation. Briefly, the necessity of its
application to the needs of economics is justified, in our opinion, by
the following considerations.

At the first stage in the development of mathematical economic
modelling, a possibility of constructing completely formalized models
was thought to exist. In recent times, however, it has become obvious
that many models must contain ezpert opinions amongst their ele-
ments. The problems of coordination of differing expert opinions, of
construction of a single estimate from these opinions and of methods
for its revision all arise in this context. We stress that by the term
“expert opinion” we do not necessarily mean an empirical estimate or
opinion of a given person. The term may refer, for example, to data
obtained through a certain model or method, and so on. One of the
possible ways to reconcile experts’ assessments for decision making—
or to correct a single estimate with updated information—is to ap-
ply the ideas and methods of sequential analysis and the planning of
experiments as part of the general theory of statistical decisions.

It is intuitively clear that situations with the following three pre-
dominant characteristics: sequential decision making (choice of con-
trols), a stochastic character to the evolution of the system and incom-
plete information about parameters (and system states), are so varied
and extensive that a general formulation concerning them would be
extremely cumbersome and impracticable—if not impossible.

A narrower type of economic decision problem—which may be de-
scribed by simpler mathematical models and precisely analysed—can
be treated if, in addition, the following conditions apply.

First, we assume that the decision at each moment consists of
a choice of one of the controls a',...,a™, or in the choice of an
m-dimensional vector a with nonnegative coordinates alial, o,
Y7, @ = 1 which prescribe the mized (i.e. randomized) use of controls
&t vy a™ with corresponding weights o',... o™, In other words, the
decision concerns the distribution of a single resource at each moment
in time between m possible uses. In cach practical situation it is neces-
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sary to define precisely how one should understand the use of a control
with a weight different from 0 or 1.

Secondly, as a result of the choice of the control @’ a random vari-
able with distribution function given by F¥(z) is observed whose values
do not depend on the values of the random observations at past steps.
Such a Markov property (independence of the future from the past for
a fixed present) is, of course, an additional constraint. However, it is
well known that models with a finite dependence on the past can be
considered to fall under the situation discussed above, although the
appropriate embedding leads to a considerable increase in the dimen-
sion of the problem.

Finally, the third condition concerns a finite number of hypotheses
H,,...,Hy with regard to the distribution functions of the random
varlable observed upon the choice of one of the controls , R
Under the hypothesis H; the random variable observed with ch01ce a’
has a distribution function F/, where the Wi d= Jgsnndle
j =1,...,m, are supposed known.

Now we turn to economic applications and describe informally
three examples of simplified mathematical economic models which
have the above-mentioned properties.

The first example is related to the choice of selling policy for some
good. Such a selling policy is defined by the choice at every moment of
time of some condition of sale depending on the past history of sales.
If we speak about the sale of a specific good, then the conditions of
sale may be a fixed price, or a fixed production volume for the market,
or a combination of a price and packaging of a fixed type, and so on.
Suppose that m different possible conditions of sale exist and we have
N experts. The i*" expert declares what, in his opinion, will be the
distribution function F? of sales in a fixed accounting period under
condition of sale j, 7 =1,...,m, i.e. Fij(m) gives the probability that
the sales volume does not exceed = under the ;' condition of sale.

The possible combinations of conditions of sale and ezpert opin-
ions define an m x N hypothesis matriz {F"} whose elements are
probability distribution functions. At time 0, an a prior: weighting
£1,..., & of the ezperts is given by considerations outside the model.
A sales strategy is naturally defined by the rule which for each time ¢,
t = 1,...,T, specifies the condition of sale on the time interval
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[t,t+ 1) on the basis of the a priori experts’ weighting, the hypothesis
matrix and the actual sales and chosen controls at all previous time pe-
riods. It is assumed that the sales in each such interval [¢,£+1) do not
depend on the corresponding sales in previous intervals, but depend
only on the control chosen (it is justified if the good is not storable,
e.g. goods or services). The aim of the firm is the maximization of
profit on sales over some time interval.

From general theory it follows that to make a decision at each pe-
riod it is not necessary to remember all previous statistics. At each
period it is sufficient to update the a posteriori experts weighting in
terms of sales in the previous interval and then to make a decision
based on these updated values. We emphasize that the experts’ opin-
ions (the rows in the hypothesis matrix) remain fized. The results of
observation will eventually show the most correct expert and the de-
cision maker will then tend to follow his advice. Models of this type
were initially studied by Rothschild (1974); see also §7.5. Models in
which the hypothesis matrix depends upon the observation process
may also be formulated in the present structure, but in this case the
search for optimal strategies becomes considerably more complicated.

Next we will describe a second economic situation whose mathe-
matical formulation leads to the same structure. This model is pre-
sented in detail in Sonin (1976).

Suppose that the realization of some scientific or technological pro-
gramme is possible through several different development methods (for
example, several research projects or institutions) which may be oper-
ated in parallel, and that the total programme may be divided into a
specified number of stages. The completion time of each stage, for ex-
ample by the :*h
distribution depends, on the one hand, on some internal characteristic
of the i*" method and, on the other, on the amount of resources in-
volved and their distribution over time. It is naturally assumed that a
priori only partial information about the various development method
parameters is known and that this information is obtained gradually
and in relation to the intensity of their implementation, i.e. with the
amount of resources applied to each development method. Using the
Bayesian approach, we assume that there exist N hypotheses (experts’
opinions) regarding the characteristics of the development methods

method, is considered to be a random variable, whose
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and a priori probabilities (weights) of these hypotheses. At each
period a single divisible resource is distributed between the develop-
ment methods. It is required to find the allocation of the resource over
a fixed number of periods which maximizes one of the following func-
tionals: (a) the probability of completion of a given number of stages,
or (b) the average number of stages completed.

The model just described allows a wider interpretation if “develop-
ment methods” are understood in a broader sense as a complex mul-
tistage programme. The mathematical structure described above may
serve as the simplest model of changing priorities and redistribution
of resources in a multistage programme.

The last model of the type under consideration is formulated in
terms of a classical search problem. We have m cells, and there are
one (or more) objects known to be in them. Usually, the a prior:
probabilities of the object being in each cell are considered to be given,
together with the probability of discovering the object by a search
process (only one cell can be searched in each period). Suppose that
the a priori information has a more complicated character, precisely
that we have N hypotheses and the i*" hypothesis states that the
probability of discovery of the object in the 7*® cell in a single search
equals AJ. (The classical problem is obtained if M = gfy Al =0 for
i # 7.) It is required to maximize the probability of discovering the
object within a fixed time. We will not elaborate the interpretations of
such problems, but mention here only that such search problems model
some problems of technical diagnostics, industrial maintenance, and
so on (see, for example, Rastrigin 1968; Stone 1975).

Some other examples of situations whose modelling leads to the
same mathematical structure are considered in the studies mentioned

in Chapter 7 (see §§7.5 and 7.6).

1.2 Basic schemes in discrete time

The mathematical model can be described as follows. We suppose
given a matriz of probability distribution functions {F7} with rows
i = 1,...,N and columns j = 1,...,m, a control set A1 e g 8
and a set of hypotheses {Hy,...,Hy}. The distribution function F
corresponds to the control a’ and to the hypothesis H;. At each
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time n = 1,...,v, the decision maker (statistician) chooses either
one of the controls a!,...,a™ or a probability distribution over the
control set according to which a realization of the control occurs. If the
hypothesis H; is true and the control o’ is realized, a random variable
X (n) is observed with distribution F? which is independent of previous
observations and controls. In choosing a control, the statistician knows
the vector of a priori probabilities ¢ in (VN — 1)-dimensional simplex
SN = {¢& = (&,...,¢én) 1 & > 0,i=1,...,N, yN & =1}, the
matrix of distribution functions {F/} (the hypothesis matriz) and the
values of previous controls and observations a(1), X(1),...,a(n — 1),
X(n —1).

A function defined for all n = 1,2,...,v on the system history up
to the present time n, i.e. on the vectors h(n — 1) = (a(1), X(1),...,
a(n — 1), X(n — 1)), with values in the set of probability distribu-
tions over the control set a',...,a™, or equivalently in the (m—1)-
dimensional simplex S™, is called a (randomized) action rule. If each
distribution is concentrated on a single control, i.e. on a vertex of the
simplex S™, then the action rule is termed nonrendomized. For future
reference, the set of vertices of the simplex S™ will be denoted by S™.

Sometimes it will be useful to employ the following informal
interpretation and related terminology for simplicity. We will say that
we have m devices generating random values. A choice of control a’
corresponds to the use of device j and, under the i*" hypothesis, to the
observation of random values with distribution F/ on the 7" device.

Under hypothesis H; the fixed action rule # generates the prob-
ability distribution designated by Piﬁ on the space of controls and
observations. For a given { the distribution Pf = S & PP cor-
responds to the action rule f. The corresponding expectations are
designated by E? and Ef

Besides the vector € and the hypothesis matrix {Ff} the crite-
rion function f,(7,h(n)), interpreted as the profit (cost) at time n if
hypothesis H; is true and h(n) is the history of the system up to time
n, is considered to be known. For fixed ¢ the purpose of control is to
choose the action rule 8 which maximizes (minimizes) the expected
value of the resulting profit (cost) for v steps,

sgp Ef Z fn(Z, h(n)),
n=1
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where v < co is often termed the horizon of the problem.

A corresponding optimal expected value of total profit (cost) in
a maximization (minimization) problem is called the value function
F,(¢) and the action rule at which the extremum is reached, if it
exists, is called the optimal rule for the point €.

Further, as a rule we consider the case when the distribution func-
tions F/ are Bernoulli, i.e. are of random variables with values success
and failure (1 or 0). In this case it suffices to replace the matrix {F7}
of functions by the matrix A = {A!} of numbers, where A} is the prob-
ability of success under the i'" hypothesis using the j** control. We
term this model the basic (discrete time) scheme. The value function
corresponding to maximizing the number of successes in v steps for
the a priori distribution £ is designated by V, {£}.

We conclude this section by formulating one of the simplest special
cases of the basic scheme, the two-armed bandit problem mentioned in
the introduction, which will be used to illustrate many facts presented
in this chapter. Only two controls and two hypotheses exist. The
matrix is symmetric with regard to both diagonals, i.e. A\l = A2 = A,
A2 =21 =A% 0 < A' < A? < 1. It is required to maximize the number
of appearances of 1 in a sequence of v trials, so that the profit function

(G, X(n)):=1if X(n) =1and :=0if X(n)=0,n <.

1.3 Relation of the basic scheme to the general theory
of sequential control with incomplete information

The basic scheme described in §1.2 relates to the general theory of
control with incomplete information (see Shiryaev 1967; Dynkin &
Yushkevich 1976; Schdl 1979). For the case of Markov stationary
processes in discrete time, the Bayesian approach to the formulation
of the problem has the following form.

At each moment of (discrete) time the state of the system is de-
scribed by pairs (y,z); the second element = corresponds to the ob-
served component of the system, and the first element y to the unob-
served. Suppose given a family of transition probabilities p*(y',z'|y, )
defining the probability distribution of the position of the system at
the next moment and depending on the previous state (y,z) and
a control @ chosen from some set of admissible controls. At each
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moment the choice of control is made on the basis of knowledge of
the a priori distribution of the state of unobserved components, on
the observed states and on the previously used controls. The purpose
of control (in the additive case) consists in a choice of strategy which
gives a minimum (maximum) in expectation of the resulting criterion

WATOROR

In the case of the basic scheme of §1.2, the réle of the unobserved
component is played by the index i of the hypotheses i = 1,..., N,
and that of the observed component by the values of random variables
X(n). So, we have a specific case of control with incomplete informa-
tion in which the state of the unobserved component does not change
with time. This variant of the general structure of control with incom-
plete information is presented in §2.2. Further, in problems with this
structure the distribution p(:|-) does not depend on the previous state
but, by virtue of the independence of ohservations for a fixed control,
only on the control.

The results of general control theory with incomplete information
(the Markov additive case) are thus applicable to the basic scheme.

The most important consequence of this observation is that this
control problem with incomplete information is equivalent to the
familiar problem of control of a Markov chain, i.e. to a stochastic
control problem with complete information. (The latter formulation
may be derived from that described above with incomplete informa-
tion if it is supposed that the unobserved component is absent.) The
pairs (a posteriori distribution of the unobserved component, observed
component) serve as the states of an equivalent Markov chain. The
a posteriori distribution is calculated from all the previous history of
the system. In our case when, as mentioned above, the transition
probabilities and cost functions do not depend on the previous state
of the observed component, the states of the equivalent Markov chain
are simply the a posteriori probabilities of the hypotheses. In other
words, the a posteriori hypothesis probabilities together with the last
previous control are Markov sufficient statistics.
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1.4 Evolution of a posteriori probabilities
in discrete time

Let £(n) be an N-dimensional vector of a posteriori probabilities at
time n. Using the Bayesian formula it is easy to show how to compute
E(n + 1) if €(n) := €, a(n) := &’ and X(n + 1) is observed. We give

these formulae for the basic scheme, viz.

N
Ei(n +1) = &N/ Y G if X(n+1) =1,
k=1

N
En+1) = &1 - M)/ 61— A) if X(n+1)=0. (1.1)
k=1

The denominator of the first fraction is equal to the probability of a
realization of a 1 upon applying the control o/ with current value &
of the vector of hypothesis probabilities. We will designate this prob-
ability as p?(¢). According to the discussion in §1.3, the fundamental
problem is equivalent to the control of a Markov chain whose states
are the vectors ¢ belonging to the (N -—1)-dimensional simplex SV,
with transition probabilities p®(¢ |¢) such that with a := a’ the sys-
tem makes a transition to the state T'j¢ defined by the first formula of
(1.1) with probability p?(£) and to the state I'3¢ defined by the second
formula of (1.1) with complementary probability 1 — P (€).

The evolution of a posteriori probabilities in this system may be
described by a random process whose state £(n+1) at time (n+1) is
determined by &(n), the control realized at time n and the value of the
observation at time n + 1. It is well known from control theory with
incomplete information (and it is also easy to check directly) that for
any action rule the process &(n) is a martingale (with respect to the
measure Pf), i.e. the conditional mean of the increment of the process
equals 0. Another important fact—also well known in mathematical
statistics—is that under a fixed hypothesis H;, i = 1,..., N (or, equiv-
alently, for the measure P,—ﬂ) the process &(n) will “usually” exhibit
consistency as n — o0, as a result of which &(n) — 1 and &(n) — 0,
? # 1. The expression “usually” relates to the fact that if, for example,
an action rule is used which at each step chooses the control a’ and
M = M # M for v # i,s, then for the true hypothesis H; (or measure
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PP, &(n) — 0 for # # 1,5 and (&(n)/&,(n)) = const holds. If all
elements of the matrix {A]} are different, then for any ¢ with respect
to the measure P’ the vector £(n) always converges to the vector el,
where eV is the N-dimensional vector (0,0,...,1,0,...,0), with a 1
in the i*" position. Such a situation is naturally called discrimination
of hypotheses. As mentioned above, this phenomenon will not occur
for all matrices (these questions will be discussed in §2.5).

Further, in many cases we will make a transformation of the co-

ordinates of £ to the coordinates n := (71,...,1n) related to £ by one

of the N one-to-one relations (i.e. for some s =1,...,N)
N
= ln(él’/ﬁa)s E:’ = eXpTh/ZeXpT]k, =g o N (12)
k=1

The vector 5 represents the logarithmic mazimum likelihood func-
tion often used in mathematical statistics. In our case the transfor-
mation to the coordinates 5 is convenient since the increment of the
process 1(n) depends only on the value of the observation X(n) and
does not depend on the value n(n — 1), unlike the increments of £(n)
which do have such a dependence.

A notion of strategy is useful when the transition is made from
the basic scheme in original form to the controlled Markov chain. A
strategy is a function of previous controls and previous states of the
vector £(n) (but it is not a function of previous observations). Each
strategy corresponds to a whole set of action rules (¢ defined for all
possible values of the initial point £.

An important role among strategies is played by the Markov strate-
gies or, in terminology of optimal control, strategies given in feedback
form, i.e. by a function defined on pairs (£,n) and taking values in
S§™. In this case, the control equals a(é(n),n) at time n. The im-
portant role of Markov strategies in the theory of controlled Markov
chains derives from the fact that for a wide set of assumptions, one of
which surely holds in our case, it is sufficient to search for the optimal
strategy in this class.

In some studies devoted to the problems deriving from the basic
scheme, a formulation is immediately given in terms of the control
problem of a Markov chain whose states are a posteriori probabilities
and only Markov strategies are considered as admissible. However,




