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The system jumps are defined as follows. We are given nonnegative
functions pi(z), j = 1,...,m, and m transformations of the state
space of the system IV : IRY — IRV, j = 1,...,m. The probability
density of a jump of the 7™ type on a small time interval [t,t + dt)
equals of(t)p’(2(1)).

A strategy is defined as a sequence of controls
al(‘s!t!w)!QQ(sltlywlytvw)! e larl+l(sitn:mrntn—lymn—l}' L ,t,ﬂ}'),

where t,, is the time of the n'® jump and z,, is a state of the system
immediately after the n'" jump.
It is required to choose a strategy 8 to maximize (minimize) the

expected value of an additive functional on a fixed time interval, viz.

oo
sup Ef Z g(xn,tn). (1.27)
A n=1

Besides the basic scheme problems, examples of this type of prob-
lem are given by some models of scientific technical progress considered
in Arkin et al. (1976). The simplest of these has the following formu-
lation. Assume that the state of the economy is described by a two
dimensional vector (z(¢),y()), where the first coordinate describes the
output of the (industrial) production sector and the second that of the
science sector. At each moment of continuous time, the resources z(t)
produced by the production sector are divided between the two sectors.
Let a(t) be the fraction of production directed to industry, 0 < a < 1.
The science sector develops production methods which define the pro-
ductivity of the industrial sector, and the discovery of new methods
is stochastic with the distribution of discovery epochs depending on
the amount of resources invested in science. In the model, productivity
is reflected by the coefficient k appearing in the differential equation
describing the motion of the industrial sector, £(t) = ka(t)z(t), which
is changed by a jump at a random time 7, and the local probability
of a jump in an interval [¢,¢ + dt) equals y(¢)dt. So the system (1.26)
for this model has the form (z =: 2y, y =: 23, a =1 a', 1 — a =: a?),

£ =kot, @g=I[|l-a]s,

with m = 1 and the function p'(2,y) := y. A difference from the
general case arises from the fact that instead of changes in the state
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of the system by jumps, changes in the form of (1.26) describing the
system evolution occur. However, it is not difficult to construct a
model permitting jumps of both types.

In Arkin et al. (1976) the optimal synthesis is given for the problem
of minimizing the expected time to achieve a fixed level of production,
assuming that only one jump is possible.

Returning to the consideration of the general case, as with the
problems of the basic scheme, the problems considered may be divided
into problems with a finite and an infinite number of jumps. In both
cases, it may in principle be assumed that it is suflicient to consider
the problem with one jump. In the first case, after a jump we have
the known function g(s,z), the profit function; in the second case, we
may take as the profit function a function which coincides with the
value function (plus the known function). The following two questions
are of interest:

1. What conditions on the functions g(s,z), p’(2) and the trans-
formation IV are required to ensure a smooth value function?

2. In the problem with an infinite number of jumps, a synthesis
satisfying the Pontryagin maximum principle may be constructed
under the assumption that the value function F'(s,2) is smooth.
If the synthesis obtained is regular (see Boltyanski 1969), then
is the function F(s,z) actually smooth and is this synthesis
optimal?

1.11 Results obtained

One of the main questions considered in this book concerns the
behaviour of the value function V,({) for an arbitrary hypothesis
matrix {X/} on a large time interval, where V,(£) := sup, V7(¢), and
V7 (€) is the expected number of jumps in the interval to time v using
strategy 7 in the basic scheme.

The first result in this direction was obtained in the previously
quoted work by Feldman (1962). In particular, it was shown there
that in the symmetric case with m = N = 2 (see the end of §1.2) the
function W,(£) := vA?* — V,(£) has a finite limit as ¥ — oco. For an

arbitrary hypothesis matrix the value function V,(€) is bounded above
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by the value v 3N, &), where \; := maxicjcm )\f The expression
v N &) has a clear interpretation. It represents the maximum value
of profit that can be obtained by the statistician if when he chooses
a strategy he knows which of the hypotheses H; have been realized.
(Formally, the inequality V,(£) < v Y%, &X; is easy to obtain, for
example, from the convexity of the value function V,(¢).) Therefore,
it is natural to call the difference v I, &:X:i—V,(€) the loss associated
with strategy w. (For an optimal strategy this quantity is also often
termed the ezpected value of perfect information (E'VPI).) Denote it by
W7(£), in both the discrete and continuous time cases. The value of
loss for a strategy which minimizes the loss or, equivalently, maximizes
the function V(£), will be called the loss function W, (€).

Thus we have in the symmetric 2 x 2 case that lim,_., W,(§) :=
W(é) < co. Moreover, W () coincides with the loss function on the
infinite time interval and it may be shown that this agreement holds
for an arbitrary m x N hypothesis matrix.

It turns out that all hypothesis matrices {)\f} may be divided into
two classes. For all matrices in the first class

lim W, (&) = W(£) < oo, (1.28)

v— 00

while for those in the second class
lim W,(¢) = 0. (1.29)

The precise difference between these two classes will be explained in
83.1. Here it suffices to mention that the first matrix class contains
all matrices which have no coinciding elements in their columns (in
particular the symmetric 2 x 2 case, considered by Feldman (1962)).
The only 2x2 matrices in the second class are matrices of type A} := a,
A=A :=b, M =c,0<a<b<c<1. Thisis the case of the
one-armed bandit considered by Bellman (1956). Therefore, matrices
of the first class will be called F-matrices, and those of the second
class B-matrices.

The theorems establishing (1.28) and (1.29) for discrete time are
proved in §§3.2 and 3.3. In §3.4 the optimal strategies for a 2 x 2
matrix are described, and at the end of the third chapter the scheme
with resource sharing mentioned above is analysed.
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In §§5.2 and 5.3 the optimal synthesis for an arbitrary 2 x 2 hy-
pothesis matrix in continuous time is derived for the problem of loss
minimization on finite and infinite time intervals. Let A, 1 = 1,2,
7 = 1,2 be the coefficients of an arbitrary 2 x 2 matrix and define

Fi=XM-M gi=AM-A, c=g-e=6§-8.

Without loss of generality (see §5.2), all matrices can be divided

into the following five classes:

0) e1-e2>0

A) e < 0y 550, §«b% £0
B) €, <0, €,>0, 81 <8 =0
C) e, <0, €3>0, 0<8® <6
D) e, <0, €50, 0< 6 =4,

For an infinite time interval the optimal synthesis is described by
Theorem 5.2. It is more convenient to present this result in the vari-
ables 1 := 7j(€) := In(c€/(1 —€)) where € := €, ¢ := —e1 /e, (cf. (1.2)).
It is proven that, with the exception of the trivial Case O, when the
losses are equal to 0, and in Case B, when the losses are infinite, the
half plane {(t,7) : ¢ > 0} is divided in two parts by the straight line
n = 0. The optimal control depends only on the values of process
n(t) := 7(€(¢)) and is given by the following synthesis: for n < 0, the
control a =1 is optimal and for > 0, the control a = 0 is optimal.

The optimal trajectories of process n(t) = 7(é(¢)) in the inter-
vals between jumps behave in the following way. In Cases C and D,
the motion in the (,7) plane is given by the differential equation
7 = —[8'a + §*(1 — a)], which with a := 0 or a := 1 defines an an-
gled straight line trajectory pointed towards the line = 0, followed by
motion along this line (see Figure 1). The line n = 0 is a particular so-
lution for the differential equation above, and from a neighbourhood of
this curve (for an appropriate control value) the system always comes
to it and subsequently moves along it. Such a special curve is called
a turnpike. The turnpike has a special significance in the Pontryagin
theory of optimal control (see Chapter 6).
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In Case A, if 5(t) < 0 motion occurs along an angled straight line
towards the line » = 0 with control & = 1. When the line 5 = 0
is reached the control is switched to @ = 0 and further movement is
along another straight line in the half plane > 0 moving away from
line n = 0. However, all jumps are in a downward direction.

In all cases the deterministic movement described is interrupted by
jumps of value 4! := In(A]/A}) with control a := 1 and 4% := In(A2/A2)
with control a := 0 (see (1.13)). The jump direction is always opposite
to the direction of motion along the straight lines. The intensity of
jumps equals pl(g(q(t)l) with control & = 1 and pz(g(n(t))) with
control a = 0, where £(7) := €"/(c + €") is the inverse function to
7(€). On the turnpike the jump saltus may be equal to either y! or
v* (see Figure 1).
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Figure 1

Optimal synthesis and optimal trajectories of the process 5(t) for the
problem of loss minimization in continuous time over an infinite
horizon with m = N = 2, Cases C and D.

Dotted arrows denote trajectories of the a posteriori probability of
the first hypothesis on the time intervals between the jumps, and solid
arrows denote the transformation of the a posterior: probability at
jump moments corresponding to the optimal synthesis.
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As well as describing the optimal synthesis, Theorem 5.2 also gives
the values of the loss function W (¢) for all classes of hypothesis matrix.

In §5.3 the analogous problem for the case of a finite time interval
is considered and a qualitative description of the optimal synthesis is
given whose character stays the same as in the infinite horizon case.

According to Theorem 5.3, in Cases A-D for a finite horizn?n the
halfplane (¢,7), where ¢ is the time remaining, is again divided in two
parts, not by a straight line n = 0, but rather by a curve :'l(t)
with a kink at ¢ = ¢, and the description of the behaviour of optimal

trajectories remains the same (see Figure 2).

Figure 2
Optimal synthesis for the problem of loss minimization in
continuous time with m = N = 2 (in coordinates (7,t),
where ¢ is time remaining), Case C.

In Cases A and B we have t, = co and the curve n = [(t) is a
switching-line, in Case D we have ¢, = 0 and the curve 7 = [(t) is
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a turnpike (i.e. a particular solution of the dynamics), while in Case
C we have 0 < t, < co and the part of the curve n = I(t) for ¢ > ¢,
- is the turnpike and the part for 0 < ¢ < t, is a switching-line. The
curve 7 = [(¢) for time remaining { = 0 ends at the point = 0
corresponding to the point ¢, , which is the root of the equation

P'(&) =p*(€), ie. €M+ (1— €N =€+ (1 €)A%

In Case C, whether the turnpike can be continued from ¢ at ¢, to
infinity is an open question.

For the symmetric case, as well as the problem of maximization
of the number of successes, the problems By in which it is necessary
to maximize the probability of at least k jumps occurring by time v
starting from the point ¢ at initial time ¢ are also considered.

Denote by a*(t,7) the following synthesis

0 ifn>0
a*(t,n):=a*(n):=4 1/2 ify=0
1 ifp<0,

and let ni(t) := 8%t + (k — 1)y*, where 4! := In(A!/)?), and
Gre:={(t,n) : £ > 0,[n] < m()},
Gy = {(t57?) 11> 0,(tm) ¢ ak)}

(Note that for this case §% > 0, y! < 0.)

In §6.5 it is proved that: (a) the synthesis a*(7) defines the optimal
control for the problem By, (uniquely in the region (v—¢,7) € Gy); (b)
for (v—t,n) € Gy any control up to the time of exit from this region is
optimal. The continuous differentiability of the value function is also
proved and a simple recurrence formula is given for the value function
in the area Gj.

Figure 3 depicts (dotted lines) trajectories of the process n(s) cor-
responding to the optimal control in the problem Bj. The small arrows
represent trajectories of the a posteriori probabilities in the time in-
tervals between jumps and the straight lines represent the boundaries
of the areas G;, 1 = 1,...,k. The indifference area G is shaded.
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Figure 3
Optimal synthesis for the problem By in continuous time
the symmetric case with m = N = 2 (in coordinates (7, 1),
where ¢ is time remaining).

Since it is immediate that the synthesis a*(n) determines the unique
optimal control for all problems By, then from the equality
E( = ¥, P{n < v}, where ( is the number of jumps up to time v
and 7 is the time of the k*" jump, we easily obtain that the strategy
consisting of the control a*(n) is the unique optimal strategy in the
problem of maximizing the expected jump number (minimization of
loss) in the symmetric case. This statement is analogous to the state-
ment in the discrete time case and coincides with the corresponding
results in §5.3. (The existence of an indifference area in the discrete
time case was previously unmentioned.)

In Chapter 6 the approach of applying the Pontryagin maximum
principle described above is studied. The results of this chapter mainly
have the character of formulations and do not pretend to be complete.

In the final, seventh, chapter some special problems related to the
basic scheme are considered. For a symmetric 2 x 2 hypothesis matrix
and the case of discrete time, the problem of best discrimination of
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hypotheses is considered. The optimal strategy for this problem will
not be the same for all symmetric matrices, but will depend on their
entries.

In §7.3 the problem of maximizing the probability of the first jump
in a fixed continuous time interval is considered for a hypothesis matrix
of size m x N. In §7.4 the problem of maximizing the number of
successes is considered for a symmetric 2 x 2 matrix in a minimaz
formulation rather than a Bayesian one. In §7.5 the interesting study
of price control (Rothschild 1974) discussed in §1.1 is given. Finally,
in §7.6 several studies by other authors are presented briefly and some
unsolved problems are given.

2 PROBLEM FORMULATION AND
SOLUTION METHODS
IN DISCRETE TIME

The precise formulation of the basic scheme as a problem of control
of a stochastic process in discrete time is given in §2.1. In §2.2 the
general problem of sequential control with incomplete information—of
which the basic scheme can be considered a particular case—is given.
In presenting this section we follow mainly the fundamental work of
Schil (1979) and the book of Dynkin & Yushkevitch (1976). In the
following two sections some known general statements about the exis-
tence of optimal strategies, the relationship between the value function
and the solution of the Bellman optimality equation and some other
matters are presented. Related theorems in different forms are pub-
lished in many articles and books and therefore as a rule we give these
theorems in a form convenient for our presentation without precise
reference. In §2.5 the equations governing the evolution of the a pos-
teriori probabilities of hypotheses are given. We also introduce here
the process 7(n) corresponding to the logarithmic likelihood function
for these a posteriori probabilities and consider its separation into
three processes possessing relatively simple properties. These basic
results will be used in Chapter 3. The main contents of this section
were originally presented in Presman & Sonin (1979).

2.1 Formulation of the basic scheme as a control problem

We introduce the following notation. We will always consider any vec-
tor as a row-vector. If ¥ is a vector, then y+ denotes the corresponding
column-vector and diag y denotes the diagonal matrix with the ele-
ments of the vector y on the diagonal. Let S* := {y = (y1,...,yk) :
Yy =1,4 >0,i=1,...,k} be a (k— 1)-dimensional simplex;
then &§* denotes the set of its eaztreme points, ie. S*:=
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