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{ej?,j = 1,...,k}, where €% is the k-dimensional vector with the i b
coordinate equal to 1 and the rest equal to 0, and finally 5% := §* U ¢,
where ef is the k-dimensional vector with all coordinates 0. Some-
times, if it is clear which dimension k we are discussing, we will write
€5, ] = U,l,...,k.

Let (2, 7) be a measurable space on which are given

(a) a random vector 8 = (6;,...,0y) with values in SV,
(b) a sequence of random vectors a := {a(n), n=12,...}, where
a(n) := (a'(n),...,a™(n)) takes values in 5™,

(c) a sequence of m-dimensional random vectors X := {X(n), n =
0,1,...}, where X(n) := (X'(n),...,X™(n)), X(0) := e, and
AX(n) :== X(n) — X(n — 1) takes values in §7; in this case if
a(n) := ej, then AX(n) equals either ey or e;.

These values are interpreted in the following way. The set
{w : 6; = 1} corresponds to the situation in which the i** hypothesis
holds. The coordinate of a(n) equal to 1 indicates the device number
observed at time n. The value of the process X at each moment either
remains as it was previously or one of its coordinates increases by 1,
so X7(n) corresponds to the number of jumps (successes) observed on
the j*" device up to time n inclusive.

Denote by h(n) = (a(1), AX(1),...,a(n),AX(n)) the history of
the observable components of the process up to time n, 1 < n < oo,
h(0) := X(0), and introduce for n > 0 the following s-algebras:

Fu 1= o{h(n)}, Fl = F.va{8},

B _ (2.1)
Far1 = FoVola(n +1)}, Fl,i= Fop Vof6).

Here, the o-algebra F, is interpreted as the class of events defined by
which devices were observed up to time n inclusive and which values
of the process X were observed on them. The definition of F? implies
that in addition to the information given by F, the “true” hypothesis
is known. F,y; and .7?,f+1 differ from F,, and F,? respectively by the
fact that it is also known which device is observed at time n + 1.

A decision as to what device to observe (which device to use) at
time n (such a decision may also be randomized) is taken on the basis
of which devices were observed up to time n — 1 inclusive and which
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results were obtained on them. In relation to these decisions, we will
term an action rule a sequence := {B(n), n =1,2,...}, where

B(n) = (B'(n),...,B"(n))

takes valuesin §™ and is F,_; measurable for each fixed n. Here 37(n)

defines the probability with which the j** device should be observed
1

at time n. . .

We suppose given a hypothesis matriz A = {N}, 0 < A} < 1,
i=1,...,N,j=1,...,m (the index i corresponds to the i*P row of
the matrix). Here the number )] defines the probability that under the
ith hypothesis a jump will be observed on the 7" device on condition
that exactly this device is used.

If the space (9, F) is sufficiently rich, then it may be assumed that
to each & = (£',...,&N) € SV (defining an a priori distribution on the
set of hypotheses) and to each action rule 3 corresponds a measure

Pf on F2 =y, Ffsuchthatfori=1,...,N,j=1,...,m;n 21,
the following hold:

Pi{o:i=1} = & (2.2)

P{di(n) =1|F]} = A'(n) (2.3)

PP{X3(n) — Xi(n — 1) = UFS} = (3 8:M)ai(n) . (2.4)

i=1

Actually, 2 can be taken, as indicated above, as the sample (path)
space of values of X,a,8. Since the g-algebra F,? for fixed n consists
of a finite number of events, the measure Pf for each fixed n is defined
on F? by (2.2)-(2.4) recursively and by Kolmogorov’s theorem can
therefore be uniquely extended to F2. |

The relation (2.4) means that if the j* device (¢/(n) := 1) is
observed at time n, then under the i*" hypothesis (6; := 1) the proba-
bility of realizing a 1 (a jump) equals A} and the jump can only occur
on the device which is observed.

1t will be explained in §2.4 why instead of the usual terminology the term “strat-
egy” is replaced by the term “action rule.”

I
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Remark 2.1 Relation (2.4) is equivalent to the fact that the coordi-
nates of the process

X(n) —0A i diag a(s)

s=1
are f,fH martingales. According to (b) and (c) above,
a’(n)a*(n) = 0,
[Xi(n) — Xi(n - 1D))[X*(n) = X¥n-1)) =0

if 7 # k, which means that these martingales are orthogonal. In the
study of related problems in continuous time the analogue of this fact
plays an important réle. |

When the action rule 3 is used, the measures PF L2 PP | corre-
sponding to £ :=e;, 1 =1,..., N, ])1&_‘,' a special role. The measure
P? is concentrated on the set {6; = 1} and corresponds to the mea-

sure Pf under the *" hypothesis. From (2.2)-(2.4) it follows that the
representation

Pf = i &P! (2.5)

holds for the measure P'g Further, for gwen £ and 3 the corresponding
expectations will be denoted by F and E and, in places where it is
clear which £ and § are being dlscussed we will simply write E.

Let AX%(n):= Xi(n) — Xi(n —1) for i > 1 and let

VA(¢) = Ef f: Xi(v) = Ef i VZ AX(n)

n=1 j=1

denote the expectation of the resulting number of successes for v steps
upon applying the action rule 8 with a priori distribution £. Then,
according to (2.3) and (2.4), taking account of the fact that X (0) := 0,
we have that

m

VA(E) = F"ZZ& N Ml

n=11:=1 7=1

= ZV: Ef fAa*(n) = i: Ef OAB*(n). (2.6)

n=1 n=1
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We are interested in the problem of finding the action rule 8 which
maximizes the resulting ezpected number of successes for v steps. Ac-
cordingly, let the value function be defined by

V(€)== sup V2(¢).
B
Denote by A the matrix in which all m elements of the i'" row, i =
1,...,V, coincide with
A= max A (2.7)
7=1,...m

If we knew before the observations which hypothesis held
(i.e. if the action rule would be understood to be not F,_;- but
F.?  -measurable), then the expectation of the mazimum pos.sable num-
ber of successes for v steps would obviously coincide with v N, &,
The latter value, using (2.2) and the equality 37, a’(n) := 1, may

be rewritten in the form

ZZﬁZ)\(L n)

n=1 i=1

- Z ¢ha*(n) = Z Ef 0Aa*(n) .

n=1
Therefore the functional
Wh(¢) := VZE Ai — VE(&) = D" BO(A — A)a*(n) (2.8)
n=1

is naturally termed the loss for the time interval of length v using the
action rule 8 with a priori distribution £ and the problem of mini-
mization of WP(¢) may be solved instead of the equivalent problem of
mazimization of the functional VP(¢). Correspondingly,

W, (€) = inf WE(¢) (2.9)
is called the loss function for time v. Designating 1W2(e;) = H"(‘(f)v,
relation (2.8), using (2.5), may be rewritten in the form
N v N p
Wh(¢) = Z; & X_:, EP(Xi = M)d? (n) = Z; EW o (2.10)
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Remark 2.2 We term an action rule the sequence 3 := {#(n)} given
above for all n = 1,2,... . Naturally, for studying loss up to time
v, an action rule is understood as a sequence of random vectors B(n)
given for n < v and considered to be measurable with respect to
F2. Further, considering the loss up to time v we will not specially
distinguish whether or not A(n) is defined only for n < v or for all
natural n. |

Note that the right-hand side of formula (2.8), by nonnegativity of
the expression under the expectation operation, also makes sense for
v = 00, and the value

oo

WE(€) ==Y Ef 6(A - A)a*(n)

n=1

(@it}

corresponds to the loss over an infinite time interval, and is either
finite or equals +o0o. By analogy with (2.9) we define

Weo(£) = inf WE (¢). (2:12)
From (2.8) and (2.9) it follows that 11,(¢) is monotonically increasing
with respect to v and W, (§) < W (&).

The question of coincidence of W (€) := lim,_ W,(£) with the
value W (&) and, in the case of finite W (¢), the question of exis-
tence and properties of the action rule realizing the infimum in (2.12)
are of interest. The answers to these questions will be given in the
following sections. The remainder of this section is devoted to another
representation of our problem which is equivalent to the one given
above.

Before we move on to this representation, we point out that in
spite of the fact that in the sequel we will be mainly interested in the
number of successes or the equivalent loss (i.e. the functionals V/(¢)
and WA(&) for v < co0), many of the general results given in the sequel
hold for arbitrary additive functionals which, for v < oo, have the form

v

FE(&) =" Ef fu(9,h(n))

n

(2.13)

—

(assuming that the corresponding expectations and sums are defined).
From (2.8), the function W is obtained if in (2.13) we take f, :=
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§(A — A)a*(n). As before, let 8(A — A)a*(n). As before, let
FE) = inf FAE),  F(6) = Jim Fue)
for v < oo, assuming that the latter limit exists. As for the function

W, questions arise of the coincidence of Fo(§) and F({) and of the
existence of optimal action rules.

(2.14)

* * *

We now introduce the a posteriori probabilities of the hypotheses
that will play a significant réle in the investigation of the problems
considered. In particular, it will be shown that we may transform the
initial problem to a different representation in which the parameter ¢
is absent and the a posteriori probabilities are included in the state
space of the system.

Let ¢ be some fixed value of the a priori probabilities of hypotheses.
Forn =0,1,..., let

€°(n) == E{(0]F,).
This relation may be rewritten in coordinate form as

£f(n) := BX(B|F,) = PP{6: =17}, i=1,...,N.

Since the c-algebra F, is generated by a finite number of mutually
exclusive events, then for the corresponding events the conditional
probabilities in (2.15) may be understood as ordinary conditional
probabilities with respect to these events.

It will be shown that the sequence £°(n) may be chosen indepen-
dently of 3.

Let

(2.15)

N
Pi(&) =3 M& (2.16)

and define the operators I''/, I'%| j = 1,...,m, acting on SN by the
following formulae:

. Mg/ () if pi(¢) £0,
(I’lzg)i { ; : _
& [ pi(¢)=0 oo
oo | (L= ME/(-p) i PI(E) £ 1,
(I'™¢); = {& o e 1
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which are operators defining the change in @ posteriori probabilities

after applying action ¢’ and (subsequently) observing the event of a

success (1) or a failure (0).
We may now introduce the stochastic process

m

§)=¢, &) = Y dmAXI(m)Em 1)

i=1

+ (1 - AXIR)I%¢(n - 1)). (2.18)
Lemma 2.1 For all # and n > 0 the equalities

fﬂ(n) =¢(n) = Ef(9|ﬁn+1) (Pgﬁ a.s.)

hold (where a.s. denotes almost surely, i.e. with probability 1).

Proof. The equalltv 5‘6(%) = f (Pﬂ a.s.) follows from (2.2). Sup-
pose that £%(s) = £(s) ( for all s,0<s<n-—1. As previously
stated, for ﬁxed n the o- algebra Fa is generated by a finite number
of mutually exclusive events on which £°(s) and £(s) take constant
values. Therefore, without loss of generality it may be assumed that
the equality &°(s) = &(s) holds for 0 < s <n —1 for any w. We show
that this equality also holds for s = n.

It is suflicient to check that if B is one of the mutually exclusive
events generating F,, then PB( = 1|B) = &(n)I{B}. Here I{B}
denotes the indicator function of th( set B, i.e. [{B}{w) =1o0r0
according as w € B or not. Since F,, = F,,_; V o{a(n),AX(n)}, then
there exists a j, 1 < 7 < m, such that B may be represented either as

B =B n{d(n) =1} N {AX(n) = 0}

or as : _ . (2.19)
B=B N{d(n) =1}n{AX*(n) =1},

where B' is one of mutually exclusive events generating F,_,. Con-
sider first the case where the representations (2.19) and PB{B} >0
hold, in which case it follows from (2.19) that PEB{B } > 0.

In the remainder of the proof we will omit the indices £ and 3 of
the measure Pf and the argument n for the values a’(n) and X7(n).
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By Bayes’ theorem we have from (2.15) that

& (n)I{B}

Il

P{6; = 1|B}I{B)
P{6; = 1}P{B6; =1}

= S op(e, - NP{BG =1} P (220

From (2.19) and the elementary properties of conditional probabilities
it follows that

P{Bl6: = 1}

= P{B'16,=1}P{a’=1|B, 8, = 1} P{AX?=1|a’ = 1, B, 6, = 1}.
(2.21)

By (2.3), I{B'}P{a’ = 1|B',8, = 1} = Bi(n)I{B'}, and by (2:21)
and the fact that P{B} > 0, it follows that (n) > 0 on B'. Fur-
ther, from (2.4) we have that P{AX7 = 1[¢ =1, B', 6 = 1} = K
Putting these values in (2.21) and then the result in (2. 20) taking into
account that

P{B'|6, = 1} P{6, —1}I{B'}
= P{8.=1|B'}- P{B'}I{B'}
= ¢f(n—1)- P{B'}I{B'}
= &(n—1)- P{B}I{B'},

and cancelling #7(n)P{B'} in the numerator and denominator, we
have that

EmI{B} = &(n — DX - HBHEZA&nml) (2.22)

Thus on the set B, in accordance with (2.18), é(n)I{B}
I{B}I'¢(n — 1), ice. E¥(n)I{B} = é(n)I{B}. The case in which in
(2.19) AX7 = 0 is considered similarly, and if the set B is such that
Pf{B} =0, then £%(n) may be defined arbitrarily on this set and, in
particular, using the right-hand side of formula (2.18). Therefore, the
first equality of Lemma 2.1 is proven.

To prove the second equality of Lemma 2.1, it is sufficient to show
that if B is one of the mutually exclusive events generating JF,, and
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P{BNn{a’(n+1) =1}} > 0, then P{#; = 1|BN{a(n +1) = 1}} =
P{#; = 1|B}. This is true because using (2.3)

P{d’(n +1) = 1|B}I(B)
= P{d'(n+1) = 1|B,8; = 1}I(B) = Bi(n + )I(B). ®

Let us show now that the expression for the functional (2.13)
may be transformed so that it does not depend on #. In fact, since
6;, @', AX’(n) have only values 0 or 1 then the function f,(8, h(n)) :=
fn(0,h(n —1),a(n), AX(n)) may be represented as a function of w as

fa(8,-,a(n), AX(n))
Z: 0 Z o (n)[fad (VAXI (n) + f2()(1 = AXi(n))],

where fm() = falel, v, e el), fi 0’ e (el yaef,eq'). Converting
to conditional expectation with respect to F?, and takmg account of
(2.4) leaves

E(f,(8, h(n)| E?)
0. ai(m){fH (h(n -

1 i=1

DX + fol (R(n = 1))(1 = X)),

[V]z

i

Converting this expression to conditional expectation with respect to
Fn, and by the second equality of Lemma 2.1 for n — 1, and defining

(s alm)
=3 &S AL+

i=1 i=1

E]

= M), (2.23)
we have that

15
Z ¢ fa(8,h(n))

Z f gn(&(n — 1), h(n — 1),a(n)). (2.24)
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Here gy, := &(A — A)a* corresponds to the loss, so that

WA(e) = 3. E{ &(n—1)(A — A)a"(n). (2.25)
n=1

Expression (2.24) for the functional FB(¢) allows us to obtain an-
other representation of the initial problem in which the process £(n)
is present and the random value § is absent.

Notice first of all that since the right-hand side of formula (2.3) is
F.._1-measurable by the definition of an action rule, then from (2.3) it
follows that

PP {di(n) = 1|Fuc1} = Bi(n). (2.26)

Further, taking conditional expectation with respect to Fn in (2.4),
and using the results of Lemma 2.1 and expression (2.16), we obtain

PH{AX(n) = 11F,} = o' (n)p! (6(n — 1), (2.27)

Relations (2.26) and (2.27), together with formula (2.18) defining
¢(n), give a complete restriction of the measure Pf on Flitol Fo.
According to (2.24), to compute the functional (2.13) it is sufficient to
know only this restriction.

Therefore, we obtain the following representation of the initial
problem. Suppose given X and a on (£, F) satisfying Conditions
(b) and (c), and the o-algebras F, and Fny n < 0o, defined as in
(2.1). The process £(n) is defined for fixed £ € SV by formula (2.18).
The vector ¢ and the action rule 8 may be used to construct a measure
on Fo (not on F2, as before) which is uniquely defined by relations
(2.26) and (2.27) (th1s measure may be considered to be the restriction
to Fo of the original measure P‘B) It is required to choose an action
rule to minimize the function (2. 24).

In such a representation the problem formulated is represented as
a problem of control of the process ({(n), X(n)), and from (2.18) and
(2.26) and (2.27) it follows that

PE(n) = TY¢(n —1),AX7(n) = 1|5, af(n) = 1}
= p(&(n — 1))d’ (n),

%¢(n - 1), AXY(n) = 0|F,,a'(n) = 1}

[1 - p/(&(n — 1))]a(n).

(2.28)

Il

P2{é(n)
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These relations are interpreted in the following manner. If at
time (n — 1) the a posteriori probabilities of hypotheses are equal to
é(n—1) and at time n the j'* device is observed, then with probability
p(é(n — 1)) a jump will be realized in the j*" coordinate and the a
posteriori probabilities will become I''/¢(n—1). With the complemen-
tary probability a jump will nof occur and the a posteriori probabilities
will become T'%¢(n — 1).

This conversion of the problem reflects the fact mentioned in §2.2
that for general problems of sequential control with incomplete in-
formation in Bayes’ formulation the a posteriori probabilities of the
values of unknown parameters together with the values of the origi-
nal processes are sufficient statistics for the investigation of additive
functionals (see §2.4).

In many cases it is possible to further reduce the problem to control
of the process £(n), without explicit knowledge of the process X (n). To
effect this we will assume that on (€2, F) we are given only a sequence
a:= {a(n),n = 1,2,...}, where a(n) takes values in S§™, and a process
¢(n) such that £(0) = ¢ and for a/(n) = 1 the process é(n) may take
either the value TV¢(n—1) or ['%¢(n—1). We introduce the o-algebras

F¥ = ofé(8);a(s); 1 <8 <n},
For 1= Fi Volaln+1)}, n > 0.

n

An action rule 3* is now defined as a sequence {8*(n),n=1,2,...},
where 3*(n) takes values in ™ and is F,_,-measurable for each n > 1.
As before, each action rule 8* for a given value £(0) := £ corresponds
to a measure Pf on FJ satisfying the conditions

P {d¥(n) = 1|FL,} = B%(n)
PE{E(n) = TY¢(n—1)|F,y, ¥ (n) = 1} = p(&(n—1))a’(n) (2.29)

Pf™{£(n) = I%¢(n—1)| 7,1, dd(n) = 1} = (1-p/(E(n—1)))a’ (n).

If the matrix A is such that it has no colun_m with_ all elements
coinciding, then from (2.17) it follows that T''V # T for all j =
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1,...,m. In this case, from (2.18) and the inclusion {a’(s)=1}D
{AX!(s)=0, 1 # j} it follows that F,* = F, and F* = F,. Therefore
h(n—1) is expressed in terms of a(1),...,a(n—1) and £(0),...,&(n-1).
From (2.24) it then follows that the minimization problem with respect
to all possible action rules of the functional

PP () = Z B2 qu(€(n — 1),h(n — 1),a(n))  (2.30)

is equivalent to the initial problem.

If the matrix A has at least one column with coinciding elements,
then for the corresponding column T'¢ = ¢ = TI'%¢, and therefore
Fr C Fn and .7?“* C .7-‘;,,, and the inclusion is strong. In this case the
set of action rules in the new formulation will be smaller than in the
previous formulation of the problem. Nevertheless, if f,.(6,h(n)) in
(2.13) depends only on the control and the increment of the process
at the previous moment of time, i.e. has the form f,(8,a(n), AX(n))
(so that g, in (2.30) depends only on &(n — 1) and a(n)), then for
each old action rule # = {#(n), n = 1,2,... } a new action rule
B* = {f*(n), n = 1,2,...} may be found such that F?"(¢) = Ff({)*
It is sufficient to use 8*(n) := Ef{ﬁ(nﬂf:,]}. Here the measure P;
is a restriction to F of the measure Py given on Fo. From this it
follows that in this case it is sufficient to restrict oneself to action rules
in their new interpretation for the solution of the original minimization
problem and both problems are again equivalent (the general version
of this statement is discussed in §2.2).

In some works the problems given above are immediately formu-
lated in terms of control of a posteriori probabilities according to the
formulae (2.24) and (2.29). This approach is often sufficient to obtain
an answer. However, the important representation (2.5) is lost with
this approach, and also the corresponding representation of the func-
tional (see, for example, (2.10)). Such a representation for F? will be
used below (see (2.57)) in the proof of Theorem 2.2.

We now show the connection of the problem formulated in this
section with the general problem of sequential control with incomplete
information.
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2.2 General problems of sequential control
with incomplete information

To begin we make a few comments with respect to notation. Capital
script letters are used for spaces (possibly with indices), and elements
are denoted by the corresponding lower-case letters (with the same
indices). If Y is a measurable space then P(Y) is the set of all prob-
ability measures on Y. The measurable structure on J is given by
the minimal o-algebra with respect to which all integrals of bounded

=117, V», so that

functions are measurable. Further, V,, :=

Yan ::(ys;--'ayn)a Y € Vr, T= 8y,

The general sequential control problem with incomplete information
in the discrete time case is given by the object

(Xn;An+1;Hnsﬁn+11®>{pf11Qf1+1s6 = ®}7 = 0:1:' ’ ) (231)

Its components are the following:-

(1) X, is the state space of the system at time n.
(2) A,y is the control space at time n.
The spaces X, and A,;, are assumed to be measurable spaces.

For the controlled system the choice of control at time n may
not be possible in the full space Ay, but only in its subset
generated by the history up to time n, i.e. by the trajectory
Ty @1, @1, 2, Ty - -« y A, Tn, Which we shall often simply express
in the form zga,2,a3Ts . ..a,%, for convenience. Similarly, the
set of admissible states at time n+ 1 depends on zea; ... Tranta.
To take into account such restrictions for n > 0 we introduce
the sets H, and ﬁn“

(3) H, is a measurable subset of the product space
Xo x Ay x -0 x Ay Hn+1 is a measurable subset of the space
Hp X Anyq defining the set of admissible histories.

Suppose that Ho 1= Xo, Hn (jffn % X,, and assume that for each

h, € H, the section of the set H,;, at the point h, is not empty.
The elements of such a section are called admissible controls for

h,. It is similarly assumed that for each h, € H,, the section
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at the point h, of H,,, is nonempty, i.e. the set of admissible
transitions for h, is nonempty.

Sometimes in the infinite product X x A; x Ay % ... it is conve-
nient to consider the set of all admissible infinite histories which

is defined as

o0

Hoo = ﬂ(Hn X An-l-l X Xn.},l X ...).

n=1

(2.32)

Then it is sometimes also convenient to consider functions given
on H,,Hnt1 as functions given on H,, and depending only on
the appropriate coordinates.

Further, we will sometimes omit the time index n for h,, an,
Qyyy By,

It is assumed that each admissible trajectory - 'ﬁnH at time
n, i.e. each admissible history h € H,, together with a control
a € A, ;1 defines a probability distribution on the set of admis-
sible states of the process (i.e. on the corresponding section of
the set ‘H,,, at the point A at time n + 1).

O is the parameter set.

pl(-) := p¥ is a probability measure on M, depending on 8 and
defining the initial state of the system; pf,,(|h) := Pl is a
probability measure on X1, defining a probability distribution
at time n 4+ 1 which depends on the history h € HnH and the
value of the parameter 6.

We assume that © is a measurable space, that pﬁH( |k) is con-
centrated on the admissible set of states, and that pn, n>0is
a transition function from H, % O into X,, where Hy x ©Q := 0.
(By a transition function from ) into X we mean a function
which depends on y and on the measurable subsets B of the
space X such that for each fixed y in Y it defines a probability
measure on & and for each fixed measurable B in A it depend‘s
measurably on y.

For fixed # the sequence p? := {pf,n = 0,1,...} is called a
strategy of nature.




