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The number (which is finite or infinite) defining loss at time n is
put in correspondence with each trajectory h at time n > 1 for
each parameter value §. The functions (), n > 1 below are
defined with respect to it.

(6) ¢%(h) := g%, a cost function which defines the loss at time n, is
a measurable function of the pairs # € © and h € H, taking

values in (—o0, +00].

Similarly to the approach often taken in mathematical statistics,
it is assumed that the choice of control can be random.

The (statistician’s) strategy is a sequence of transition functions
7= {m1(-|R), n > 0}, where Tny1(-|R) is a transition function from
‘H,, into A,4; and it is assumed that for each fixed h € H,, the measure
Tns1(:|R) is concentrated on the set of actions admissible for h. The
set of all possible strategies is designated by II.

For any n > 1 and a fixed § € O, the strategy of nature p® and
the statistician’s strategy 7 define a measure on H,. If we designate
by Ef the expectation of this measure, then for any function g(h»),
h, € H,, bounded from below

Egq(hn) :=

[ o) [ mdasleo) [ pildileann).. (233)
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where h, := h,_1a,z, and 'ﬁ(h,._l) (correspondingly H(h,_1a,)) for
1 <r <n-—1isa section at the point he_y (h:= h._ia,) of the set
H, (H.).

By the Ionescu-Tulcea theorem (see Neveu 1969) a fixed f € O, a
strategy of nature p and a statistician’s strategy m, define by (2.33) a
measure PJ on the infinite product space Xp x Ay % ..., which, as is
easily seen, is concentrated on H, (see, for example, Neveu, op. cit.,
Theorem 3.4.1 with remarks on p. 158). Expectation with respect to
this measure is also denoted by Ej. The cost functions q® may also
be considered as measurable functions defined on H,. The cost of the
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strategy m for fixed @ at time v < oo is denoted by

v
wi () = > EXql, (2.34)
n=1

in cases where the corresponding expectations and sums are defined.

Since we want to consider the functional analogous to (2.34) in the
case where an initial distribution g € P(0) of the unknown parameter
f is given, and the functions g°(h) are measurable with respect to the
pair 8, h, it is convenient to consider the measures P; on the product
space @ x H,,. The measure pz and the strategy 7 define a measure PT
on @ xH,, in the following way. If we designate by E™ the expectatio?l
with repect to this measure, then for any bounded mueasura.ble f(6,h)

ELf(8,h) = [ (57 (0, h))p(do).

Then P may be considered as P] with the measure p concentrated
at the point §. Accordingly the cost of the strategy = up to time
v < co with initial distribution g € P(©) is denoted by

W) == Y B,
n=1

For the expressions on the right-hand side of (2.34) and (2.35) to
make sense for all § € @ and = € II, and also for the equality

wi(n) = [ wi(Ou(ds), v <o

to hold for all u € P(O), suitable assumptions on ¢’ are necessary. In
the sequel we assume that the following condition holds:

(2.35)

(2.36)

(A0) For each n the functions ¢?(h) are bounded from below.

The condition (A0) obviously guarantees the existence of W7 (u)
an(.i eq-ua.tlon (2.36) for v < co. If ¥ = o0, then for convergence of the
series in (2.35) and for the equality (2.36) to hold, which in this case
is defined as

lim wi(p) = / lim w](0)n(d6), (2.37)

@ vooo
additional requirements are needed.
. In §2.3 we will give a condition (A2) which will be sufficient for the
existence of w7 (p) and for (2.37) to hold.
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Remark 2.3 Since in the future we will be interested only in the func-
tional w7 (p), without loss of generality we may consider that for n > 1
the functions ¢?(h) depend not on h € H,, but only on h € H,. It
suffices in this case to replace ¢’ (h) by

ai(h) = [ di(he)pl(dalh), (2.38)

where the integral is taken over the section of the set H, at the point
h. The functional (2.35) does not change with the replacement of
g2 (h) by gl(R), which follows from (2.33). |

* * *

The aim of the statistician is optimization of w](x) in one sense or
another, but before discussion of the different criteria of optimization
and related questions, we will dwell briefly on some other formulations
of the general control scheme with incomplete information. Afterwards
we will show that the problem given in §2.1 may be presented in the
framework of the general scheme described in this section.

The description given above is conducted in terms of (sample) path
space, i.e. in terms of trajectories and distributions on the space of
trajectories. However, similarly to other problems in probability, the
presentation may be given alternatively in terms of a basic space (£, F)
on which random values are given. The space © x Hy may be taken as
such a space 2 where the coordinate measurable functions {random
variables) @ and z,, @n41, n = 0,1,... are given. The elements of

the sets H,, (Hn41) define the o-algebras F,, (Fn41). In other words,
these o-algebras are defined by the variables @, for 0 < s < n and
a, for 1 < s <n (1l <s<n+1). The o-algebra F is defined as
F i=F2 = Fl, Va(l); where Fo 1=\ Fu _

The strategy of nature p® := {p’(-|k), n = 0,1,...} with h and 6
replaced by the corresponding random variables defines for each value
# an initial distribution on Xy and a sequence of transition probabili-
ties from }'",fﬂ into X, ,; considered as measurable random measures.
Similarly, the statistician’s strategy m := {m,41(:|h), n = 0,1,...}
defines a sequence of F,,-measurable random measures on A, ;. The
strategy of nature and the statistician’s strategy define for each value
# a measure on Fo, and if in addition a measure p € P(O) is given,
a probability measure on F may be defined.
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Of course, 2 need not necessarily coincide with path space, in
which case it must be considered as an abstract measure space which
must be sufficiently “rich” and on which are given the correspond-
ing random variables taking values in ©, X,,, A,,,, n = 0,1,2,...,
and satisfying the appropriate constraints H,, and H,;,. In this case
strategies of nature and the statistician’s strategies are defined sim-
ply as sequences of random measures, measurable with respect to the
corresponding o-algebras.

At the first look, such an approach to the definition of strategies
seems wider; however, this is not so by the theorem according to which
a random function f, measurable with respect to the o-algebra gen-
erated by a random variable g, may be represented as a measurable
function with respect to g.

So, in discrete time, the approach in which strategies are functions
of points in a path (sample) space of observations and controls, and
the approach in which observations, controls and strategies are random
variables given on some abstract space {1, are equivalent. In contin-
uous time it is convenient to conduct the presentation exclusively on
the basis of the second approach. For this reason, for comparison of
the two cases, we have presented the basic discrete time scheme with
the same abstract approach.

We show now how the basic scheme of §2.1 is formulated in the
form of a general control problem with incomplete information. As
the states of system at time n it is sufficient to take values of the
increments of the process X at time n and to consider that X, := {el'}
and all X}, for n > 1 coincide with §(’,", all A, for n > 1 coincide with
8™, © coincides with S¥ for n > 1, @, may take (m + 1) possible
values corresponding to a jump at time n on one of the m devices
or to the absence of a jump, a,, may take m possible values pointing
to the index of the device which is observed at time n, and 6 may
take N values defining the index of the hypothesis about the device
parameters,

Further, H, is a set of infinite sequences in which the first element
is ef', even coordinates contain elements from §™ and if the 2s'h
coordinate, s > 1 contains the element €7, i.c. at time s the j*" device
is used, then the (2s+1)* coordinate contains either 7 (success) or e
(failure). The measurable space H,, (Hny1) is a set of finite sequences




54 Discrete Time Problems

of length 2n + 1 (2n + 2) possessing the properties mentioned in the

definition of He. "
If 0:=eY, hi=2z¢a1...Bnlny1 € Hppy and apy, := ej', then

Pi+1(e?|ﬁ) — )‘fa Pi4-1(831|h) =1- A (2.39)
In order to maximize the cumulative number of successes up to

time v, it is necessary to take

if h=uapa,...a4nT,, n=>1, (2.40)

gh(h) := iwi

i=1

in the sum with respect to n in (2.34).
In light of Remark 2.3 and (2.39), (2.40) may be replaced by the
function

¢ (h) = Moo g:=el, a,:=€l (2.41)

To minimize loss up to time v, ¥ < oo, we must put

if :=e, a,:=e}, (2.42)

g (h) = (A — X))
where A; 1= maxj<j<m A
Any statistician’s strategy m may be considered as a sequence of
vector-valued functions m,;1(@1Z; .. .anz,) defined on ‘H, and taking
values in S™. Replacing z, and a, in the function m,, by the values
of process AX(s,w) and a(s,w) from §2.1, 1 < s < n, we obtain an
action rule in the sense of §2.1, and vice versa. Since for each n the
o-algebra F,, generated by the values of AX(s,w), a(s,w), 1 <s <n,
is finitely generated, then it is obvious that any action rule [ can be
represented in the form of sequences of vector-valued functions

B(n+1) := i (a(l,w), AX(1,w),...,a(n,w), AX(n,w)),
n>0, (243)

defining a strategy of the statistician.

The measure defined by the action rule # on FZ, defines a measure
on O x He, which may be seen to coincide with the measure arising
from the strategy 7 obtained by formula (2.43). Corresponding values
of the criterion functionals will also coincide.
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Remark 2.4  Statistical decision theory is a special case of the general
scheme formulated above (see, for example, Wald 1967). Indeed, it
suffices to consider the control spaces A, as divided into two parts.
One part corresponds to the decision to stop the observations, and its
elements define a final decision, while the second part corresponds to
the decision to continue the observation, and its elements define the
number and character of the following observations up to the time
of taking the next decision. It is assumed here that all X, for n > 1
contain some absorbing state &. Then for h 1= zga, ...z, 0,2, where
a, is the final decision, a,, # @, where a is the unique control in state @,
the function ¢f(h) defines the cost connected with taking the decision
to stop the observations. For h := wa,...Zaz, the function ¢2(h) is
assumed to be equal to 0, and for h := 29a,...2, ,a,z,, where a, is
a decision to continue, the function ¢f(h) defines the cost to continue
further observation. o

* * *

Now we consider the optimality criterion. Let T’ be a subspace of
the strategy space II, and A be a subspace of P(©). The strategy
7 € T is called A-optimal with respect to T’ on the interval [0,v),
v < oo, written ¥ € I'}(A), if

sup wff*(,u,) = inf supw](p) . (2.44)
peA el peA

The corresponding optimal value of the functional in (2.44) we
denote by w,(A,I'), and if I' := TI we write simply w,(A). Further,
in discussing optimality criteria we consider that v is fized (finite or
infinite) and sometimes we will omit the index v in the notation wX(p),
w] and [J(A).

If A consists of single measure ¢ € P(0), then we speak of the
Bayestan formulation, and p is called the a priori distribution. In this
case 7% € II*(p) if, and only if,

w”*(p,) = inrf] w”(p). (2.45)

Such a strategy «* is called Bayesian with respect to the a priori
distribution p, and the optimal value of the functional is denoted by
w(ye), or simply w, if it is obvious about which y we speak.
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Further, if A coincides with P(©), then x* € II*(P(@)) if, and

only if, w is a minimaz strategy, 1.e.

*
s = inf sup w”(#). (2.46)
sup w" () = inf sup w( )
Here we have used the equality
sup w™(0) = sup wy, (2.47)

fc® pEP(O)

which holds for all = € II.
If, for some pg, 0 < po < 1, and some po € P(©), we let A :=

ider the opti-
{it: = popro + (1 — po)v, v € P(O)}, then we may consider
mality criterion of Hodges and Lehman (see Raiffa & Schlaifer 1961),
for which

sup w™ (1) = pow™ (o) + (1 — po) sup w™(6).
HeEA feco

Finally, if © is represented as the sum of mutually exclusive sets
© = U; ©; and the set A is defined as A := {p € P(09), ,u(@l-‘) = pl}
for some p; > 0 such that 3°p; = 1, then we obtain Menges optimality
criterion (see Raiffa & Schlaifer, op. cit.):

sup w™(p) = > _ pi sup w'().
ped i 9€0;
When studying the different optimality criteria the following ques-

tions are usually interesting:

1. What are the conditions for the ezistence of the minimax and

Bayesian strategy?
2. When does the value function for a finite time horizon converge
to the value function for ¥ = oo and what is the behaviour of

the finite optimal strategy in the limit?
3. If optimal strategies exist, how do we find them and what prop-
erties do they have?
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With the exception of §7.4, where the minimax formulation is con-
sidered, we will study problems in the Bayesian formulation in this
book. In this formulation two basic approaches exist to answer the
above questions.

The first approach, useful in answering questions 1 and 2, is the
following. A topology is introduced on the strategy space II in such
a way that II becomes compact in this topology and w™(y) is a lower
semicontinuous function with respect to m for each fixed ;. We discuss
this approach in §2.3.

The second approach is applicable only in the Bayesian formula-
tion and may be used to answer questions 1-3. It is connected to
the derivation of the Bellman equation for the optimal value of the
criterion functional, the value function, and is presented in §2.4.

As usual, the discussion of both approaches begins with the general
case, and then the corresponding proofs for the basic scheme of §2.1
are given. Note that questions 1-3 for the case of the basic scheme
coincide with the questions formulated in §2.1 about existence and
properties of optimal action rules and about the coincidence of F,,(¢)

and F(£).

2.3 Existence of an optimal action rule, coincidence of
Foo(€) and F(€) and convexity of F,(£)

First we give simple (previously known) examples showing that, gen-
erally speaking, optimal strategies may not exist, and finite horizon
optimal values do not necessarily converge to infinite horizon optimal
values.

In these examples, © consists of one point, all X,, A1, n > 0,
coincide with some X and A, the strategy of nature depends only
on the last control and is deterministic, and the initial distribution
concentrates on one point 2°, so that po(ze = 2°) = 1. Cost at time
n depends only on the control at time n, so that g,(k) := g(a,), and
optimality is interpreted as minimization of the functional w™, v < co.

In the directed graph (transition digraph) of Figure 4 the nodes
correspond to states, the directed arcs to controls, and the numbers
on the arcs show the value of the function g for the corresponding
controls.
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Figure 4
The transition digraph corresponding to Example 2.1

Example 2.1 (See Figure 4.) The space X consists of the points
2%z, ...,2", ... . The system may be transferred in one step from
the initial state z° to any state x*, i > 1. The cost for the transfer
to state i is 1/i, the states x', 1 > 1, are absorbing and the cost to

remain in each is 0.

In this example, in which the initial distribution is concentrated
on the point °, w, = we = 0 holds. Indeed, if strategy prescribes
a transfer to «* at the first step, then further movement is determined
and for any v > 1, w" = w® = 1/k holds, which means inf, w] =
inf, w? = 0. However, for any v < oo an optimal strategy does not
exist since this infimum cannot be attained. This is connected with

the fact that control space is not compact in some sense. |

It is easy to give examples in which, by the same reasoning, the
equality wo, = lim, o w, does not hold, in spite of the fact that

optimal strategies exist.

Figure 5
The transition digraph corresponding to Example 2.2
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Example 2.2 (See Figure 5.) The space X consists of the points z°,z?,

The system may be transferred in one step from the initial state
z° to any state o', i > 1, and the cost for this transfer equals 0. A
deterministic transition occurs from state z*, ¢ > 2, to state '~ !, with
cost equal to 0 for © > 3 and to +1 for i = 2. The state z' is absorbing
with cost 0.

In this example, the strategy prescribing a transfer from the initial
point z° to 2! with ¢ > v + 1 at the first step is obviously optimal for
the problem with horizon v, so that w, = 0. At the same time, for
any strategy m, w], = ws = 1 holds, so that convergence of w, to
Wy 18 Not possible. |

Although with natural assumptions on the model, compactness
of the control space guarantees the existence of an optimal strategy,
this is not sufficient for convergence of w, to wy,, as is shown by the
following example.

0 0

() 2 1 ()

20 2l 22
Figure 6

The transition digraph corresponding to Example 2.3

Example 2.3 (See Figure 6.) The space X consists of three points z°,
z!, @, It is possible to stay at 2° (in this case the cost equals 0) or to
transfer to o' (when the cost equals —1). A deterministic transition
occurs from x' to @ with cost +1 and z? is an absorbing state with

cost 0.

In this example, the strategy from initial point 2° which prescribes
staying v — 1 times at 2° and then transferring to @' is optimal in the
problem with v steps and w, = —1. At the same time, for any strategy
m, wl = 0 holds, so that w, /> w,,. B}
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Convergence of w, to we does not hold here because of two effects.
First, for the optimal strategy for v < oo the distant moment of
time make a substantial negative contribution to the value function.
Second, any eztension of the optimal strategy for finite horizon v also
makes a substantial positive contribution which does not tend to 0 as
v — 00. Thus sufficient conditions for the equality woo = lim, o0 wy
to hold in the general case are connected with the elimination of these
effects.

Now we return to the general case and assume that w7, (6) exists
for each 7 and @, that for each =

w™(8) — w7 () for v — co uniformly with respect to 8, (2.48)

and that [w™ (8)u(d8) exists for any p € A.
Note that from (2.48) we may in particular derive that (2.36) holds

for v = oo.
We prove now that under assumption (2.48) the inequality

limsupw, (A, ') < weo(A,T) (2.49)

v—00

always holds.
For reasons of simplicity we give the proof for the case in which

© consists of one point, I' := II, and we, < co. For arbitrary € > 0,
we choose 7' so that w™ < we, + €. By assumption w™ — w? for
v — oo, which means that

limsupw, = limsupinfw] < lim SUpw” < Weo + £,
™

vV— o0 v— 00 v—0o0

which it was required to prove.
Next we give a condition (A1) which eliminates the second effect

present in Example 2.3 and guarantees under assumption (2.48) the
convergence of w,(A,T') to we(A,T).
For0 €O, rclland 0 <s < v < oolet

v

RL(0):= 3 Ejau(h), (2.50)

n=s+1

so that R (8) = w(0). Expectations in (2.50) are defined for func-
tions ¢’ (h) bounded from below and taking values in (—oco0, +oc]. Con-

sider:
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(A1) limsup sup R, (6) <0.

4100 el de@,v>s

Remark 2.5 Condition (A1) obviously holds in cases where the cost is

nonpositive, and also in cases where there exist constants c,,

n = 0,1,2,..., such that } ¢, < co and Ejq¢} < ¢, for any 7 and

@ (which corresponds to a model bounded from below in the terminol-

ogy of Dynkin & Yushkevitch 1976). [ |
Denote by z, := SUPreM,8c0,0>s R7,(8). Then, obviously

R3(0) = wi(8) < w™(8) +7, if s <wv.

From this and from (A1) it is easy to see that lim,_., w7(0) exists and
it may be equal to —co.
We show that from (A1) and (2.48) it follows that

lim w,(A,T) = weo(A,T). (2.51)

The proof is again given for the case in which © consists of a single
point, I' := Il and ws < oo. Then, for each 1 < v < oo,

Wige = ir#f(wf,' +R;.) < irﬂ1fw:,r +sup R, = w, +supR]_ .

From this

Weo < liminfw, + limsupsup R]__ .

From (A1) we obtain we, < liminf,_ . w,, which together with (2.49)
gives (2.51).

However, in many cases (2.51) holds when Condition (A1) does
not. This is the case for the loss minimization problem in §2.1. At
the end of this section it will be proved that (2.51) holds for this
problem. We show now that for this problem Condition (A1) does not
hold, with the exception of one trivial case where all elements of the
rows of the matrix corresponding to hypotheses with positive a priori
probability are the same. Indeed, consider the action rule 8 which
consists of using the j'" device at each step, where j is a column of
the hypothesis matrix not all of whose elements are maximal. For this
action rule, by formula (2.10),

" N
R3(&) = (v—s) ZE{(/\i - ), (2752)
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and, if & > 0 for 7+ = 1,..., N, then the sum on the right-hand side
of (2.52) is positive, which means that w? (¢) = oo, i.e. (Al) does not
hold.

Now, take an arbitrary model where (2.51) holds and we <g<l;
add to each state the new control a* by which a deterministic tran-
sition into the new absorbing state z* is performed. Let the cost for
control a* equal +1, and the cost in state z* equal 0. Then it is
obvious that optimal strategies for v < oo do not change and (2.51)
holds. At the same time Condition (A1) does not hold.

We now formulate Condition (A2) which eliminates the first effect
present in Example 2.3 and, together with compactness of the strategy
space, gives existence and convergence of optimal strategies and (2.51):

(A2) lim inf inf R (8) > 0.

800 n€ll,cQv>s

Remark 2.6. Notice that Condition (A2) clearly holds when the costs
are nonnegative, and also in cases where there exist constants c,,
n=0,1,..., such that } ¢, < oo, and E;’qi > —c, for any 7 and 4
(which corresponds to the model bounded from above in the terminol-
ogy of Dynkin & Yushkevitch 1976). |

Condition (A2) obviously does not imply Condition (A1) (and con-
versely) and, similarly to (A1), is not necessary for the convergence of

(2.51).
Set
T = ‘;rEnllﬂ‘Elg,l’Zl R'w(g), (2.53)
then

Ry (8) = wl(8) = w;(0) + 2, s < 1. (2.54)

Now, let the model be such that we may introduce a topology on
Il possessing the following properties. In this topology II is compact
and for each 1 € A C P(©) and for each finite v the function w;(p)
is lower semicontinuous? with respect to the argument m. Since the
operation of taking the supremum preserves lower semicontinuity and

2A function f(z) is called lower semicontinuous if all sets {z : f(z) < c} are
closed. A function is lower semicontinous if and only if it is the (pointwise) limit of
a non-decreasing sequence of continuous functions.
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any lower semicontinuous function attains its minimum on a compact
set, it follows from our assumptions that for any closed set T' ¢ II and
for any v < oo there exists a A-optimal strategy with respect to I'.
Now if, in addition, Condition (A2) holds, then there exists also a A-
optimal strategy with respect to I for v = co and lim,_,., w, (A, T) =
Weo(A,T'). Here, if 7* is the limit point of a sequence {m.}, where
m € I'J(A), then 7* € I',(A) (see the notation following Remark
2.4). These statements follow easily from (2.54) and the following
simple lemma taking IT := X and © := ).

Lemma 2.2 Let a sequence of functions {f,(x,y),n = 0,1,..., fo:=0}
be given on the product of some set X and a measurable space Y,
taking values in (—o0,400] and satisfying for all v > s the inequalities
fo(z,y) > fi(z,y) + €,, where liminfe, > 0 as s — co. Then:

(a) there exists a limit function fo(z,y) =lim, .o f.(z,7)
(b) for any measure p € P(Y)

Jirg/fu(may)ﬂ(dy) - ffM(ﬂ:ay)#(dy)'

If, in addition, X is a compact topological space and the integral
J fulz,y)p(dy) is lower semicontinuous with respect to © for each v,
0 <v < oo, and each p € A C P(Y), then for any closed set ' C X

ieup Fol=, y)p(dy) — inf sup fool(z,y)p(dy) (2.55)
as v — oo and for each v there exists a z, achieving the infimum in
the leﬂ-hqnd side of (2.55). Moreover, any limit point of the sequence
{z.} achieves the infimum in the right-hand side of (2.55). [

We omit the proof of the lemma, which is accomplished using stan-
dard methods of mathematical analysis.

Usually to guarantee the existence of the required topology on II
it is necessary to require some conditions on the model. So, i JE )
(1979) it is assumed that the X, are Borel spaces, that the set of ad-
missible controls for a given history is compact and that there exist
measures p,(-|h) such that for each 6, the measures pi(-lfz) are abso-
lutely continuous with respect to these measures, and p,(-|h), P2 (-1h)




