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and g,(h) are lower semicontinuous with respect to the controls. How-
ever, in the case where z,, and a, take only a finite number of values,
everything is considerably simpler. We demonstrate this for the basic
scheme of §2.2 for the functional F,(¢) defined in (2.13).

Theorem 2.1 If f,(0,h(n)) from (2.13) are bounded from below, for
each fized n, then for any fized ¢ € SV and for 1 < v < oo there
exzists an optimal action rule B,. If, in addition, Condition (A2) holds,
then an optimal action rule ezists for v = oo, lim F,,(§) = Fo () and
a topology may be introduced on the space of action rules so that any
limit point of the sequence {B3,, v = 1,2,...} will be the optimal action
rule for the problem with v = oo.

Remark 2.7 The results of Theorem 2.1 are true for the function
WHB(¢). This follows immediately from Remark 2.6 regarding Con-
dition (A2). |

Proof. It follows from the above discussion that to prove Theorem
2.1 we must introduce an appropriate topology on the space of action
rules. We have already mentioned (see (2.43)) that each action rule
A may be considered as a sequence of vector-valued functions g =
{mpp1(a1zy ... apz,), n = 0,1,...} taking values in §™ where a; € gm
xTE € §6"_ The elements of this sequence for fixed n, i.e. all possible
functions my1(@121 ... an2,) taking values in §™ whose arguments are
from a finite set, obviously constitute a compact set with respect to
the topology of pointwise convergence.

On the set of action rules we define the topology to be Tychonov’s
topology for the product of spaces corresponding to the different n.
The set of action rules is compact in this topology by Tychonov’s
theorem.

We show now that for v < co the functional F#(£) is lower semicon-
tinuous with respect to the topology introduced. Indeed, Effn(f), h(n))
may be represented as the sum of a finite number of components corre-
sponding to the possible values of h(n). For each h(n) the probability
of the corresponding trajectory h := aj2,...a,2, under the it hy-
pothesis is represented as the product of a constant depending on h,
the product of corresponding numbers )\f and 1 — AJ and the product
of the corresponding coordinates of the vectors w (ayzy...a, 2, )

§2.3 Solution existence and value functions 65

for s = 1,...,n. Thus the probabilities of the different values of h(n)
are continuous with respect to the action rule 8. If all possible values
of f.(8,h(n)) are finite, then Effn(ﬂ,h(n)) is continuous with respect
to B, and if £,(6, h(n)) takes the value +oo, then lower semicontinuity
holds, as required. m

Finally, we prove an important property of the function F,(¢),
which we will need later.

Theorem 2.2

(a) If for v < oo there exists £° such that €2 > 0 for all { = 1,...,N
and F,(€°) < oo, then F,(¢) < oo for all £ € SV,

(b) For each fized v, 0 < v < oo, the function F.(€) is convez, lower

semiconlinuous, continuous on the interior of the simplex SV

and its restriction to the interior of any face of any dimension
s also continuous.

(c) If v < oo and f.(0,h(n)) is finite for n < v, then F,(§) is

continuous on the whole simplez SV.

Prolof. To prove this we need the following lemma, which holds for
arbitrary minimization problems of the type

N
inf 14
inf ;{,[ﬂ (2.56)
where A is some control set, I, i = 1,..., N, are some functionals
such that —co < I < +co0 and ¢ € SV, |

The value of the infimum in (2.56) is denoted by ().
The proof of the following lemma is essentially obvious and we omit

it.
Lemma 2.3

(a) me the existence of a control d such that I! < oo for all
t=1,2,...,N, it follows that ®(¢) < oo for all €.
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(b) ®(¢) is a convez lower semicontinuous function, continuous on
the interior of the simplez SY, and its restriction to the interior
of any face of any dimension is also continuous.

(c) If there exists ¢ > 0 such that I$<cforallde A,i=1,...,N,
then ®(¢) is continuous on SV. m

Notice now that according to (2.5) the functional FB(€) may be

represented as
N

FS(E) = Y. &F(e). (257)

From this and from the statement of Lemma 2.3 we derive the state-

ment of Theorem 2.2. [ |

The minimization problem of type (2.56) is naturally termed a
finite Bayesian problem. According to (2.57), the problems of §2.1 are
indeed related to this class.

Note that in §7.3 we will prove Lemma 7.2, which gives sufficient
conditions for the continuous differentiability of the function ®(¢).

2.4 Optimality equation and optimal strategies

In the previous section we mentioned an approach allowing us, under
some conditions, to establish the existence of an optimal strategy and
the convergence of the optimal value function for a finite time horizon
v to the optimal value at » = co. However, no mention was made
of how to find the optimal strategy and what properties it possesses.
To answer this question we need a more detailed study of the prob-
lem, which usually involves the second approach based on the Bellman
equation characterization of optimality, without the explicit introduc-
tion of a topology on the strategy space mentioned at the end of §2.2.

The Bellman equation is appropriate to the case in which the prob-
lem is not dependent on the parameter #. In the second part of §2.1 it
was shown that in its Bayesian formulation the basic scheme may be
converted to a control problem with complete observations, i.e. where
§ is absent, but to the process states the corresponding a posteriori
probabilities of the hypotheses are added.
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In the general case, with all considered spaces assumed to be Borel
spaces, it is also possible in the Bayesian formulation to convert the
problem to a control problem with complete observations with 8 ab-
sent and a new state space at time n in the form X, xP(0) for n>1.
If the admissible controls do not depend on the prehistory, the strat-
egy of nature at time n depends only on the control chosen at this
moment and the cost function depends only on the last state and con-
trol, then, as in the basic scheme, P(©) may be taken simply as the
state space. The proof of these facts is accomplished similarly to that
for the basic scheme, but is technically more complex and we will not
present it. We only mention here that the basis of this equivalence lies
in the following fact. For a fixed strategy 7 the measure on @ x H,
which is constructed from the measures p(d#), p%(-) and the transition
probabilities pf(lf:,) and m,(-|h), s = 1,...,n, may be represented as
a product (unconditional) measure on ‘H, and a transition probability
in(:|h) from H,, into @. This transition probability is called the a
posteriori probability of the parameter # at time n.

Admissible states of the control problem with complete information
are obtained from admissible states of the initial problem by means
of the Bayesian updating formula for the a posteriori probabilities.
Thus, in §2.1 it was shown for the basic scheme that if at time n the
a posteriori probability equals £ and at time n + 1 the control e’ is
applied, then admissible states of the process (AX(n + 1),£&(n)) will
be (e;-“,Fljf) and (ef?,I'®¢). In this case, as has already been stated,
if the cost function depends only on the last state and control, then it
suffices to consider only the process &(n).

Upon transforming the Bayesian problem to the control problem
with complete information, the new state space X, coincides with Xj,
and all other X, for n > 1 have the form X, x P(©). It is convenient
for symmetry to consider the more general problem where X, also has
the form Xy x P(0), i.e. to consider all possible initial distributions
. In such a problem the condition of measurability with respect to
€ P(©) must be added to the definition of strategy.

Using the example of the basic scheme we will consider in detail
how the definition of strategy changes upon transforming from a con-
trol problem with incomplete information to a control problem with
complete information. For reasons of simplicity we will assume that
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f,. depends only on @, AX(n) and a(n) and that the matrix A has
no column in which all elements coincide. In this case, as follows from
§2.1, the corresponding control problem with complete data can be
represented by using the terminology in §2.2 as follows.

The state of the system at time n corresponds to the a posterior:
probabilities of hypotheses at that moment, so all spaces X,(n > 0)
coincide with the (N — 1)-dimensional simplex S¥. As before, con-
trol consists in the choice of device which is observed, therefore all
Apny1(n > 0) coincide with S§™. The sets H,, H, and the transition
probabilities are defined for n > 1 as follows. At each moment of time,
all controls are admissible and, if at time n the control e is chosen
, i.e. the j'* device is observed, and at time (n — 1) the state was §
(¢ € §™), then at time n the admissible states will be I'"'#¢ and I'*¢
and the probability of being in T''7 equals p?(¢) and the probability of
being in state I'¢ equals 1 — p?(¢) (see formulae (2.16),(2.17),(2.29)).
The cost functions g, are defined according to (2.23), and the g, corre-
sponding to losses are of the form ¢(n — 1)(A — A)a*(n), i.e. observing
the j*h device at time n the loss equals

N

qj(ff) = Z‘Ei()‘i = )\f) (2-58)

i=1

Since a distribution on a finite number of points e (j = 1,...,m)
is given by a vector from S™, then in this case a strategy is defined
as a sequence of functions 7 := {m,;;(h), n = 0,1,2,...}, where
the measurable function m,,,(h) defining a probability distribution
on A, := 8™ takes values in S™ and is given for h € H,. Since
for fixed & € Hp := SV there exist only a finite number of histories
h € H,, the requirement of measurability of the function m,(h)
amounts simply to measurability with respect to &.

So, we have completely described the control problem with com-
plete information as stated in §2.2 to which the basic scheme has been
converted. However, it is more convenient to consider the more general
problem in which the spaces of states and controls, transition functions
and penalty functions are the same as before, but the constraints on
admissible states are absent, i.e. H,, coincides with the product of the
appropriate spaces. In this case a strategy is defined as a sequence of
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functions

i), n= 0,1}, (2.59)

= {"Tn-l-l(gﬂ:alaéla v

where 7, is a function taking values in S™ and is measurable with
respect to £o,&,...,§,. In the problem with constraints on the set of
admissible states the strategies are obtained by the projections of the
functions m,4; on the sets H,, n = 1,2,....

It is easy to see that for a fixed a priori distribution & the strat-
egy (2.59) defines some action rule for the initial problem. Indeed,
according to (2.18) the value of the process ¢(n) may be represented
as a function of & and of a(1), AX(1),...,a(n), AX(n). Putting the
corresponding functions into (2.59), we obtain an action rule which
depends in a measurable way on ¢, and the corresponding value func-
tions will coincide.

On the other hand, as was mentioned regarding (2.43), a fixed
action rule may be considered as a sequence of functions

B = {m1(a(1),AX(1),...,a(n),AX(n)), n =0, Lo} oo (2:60)

But AX(r) may, according to (2.18), be represented as a function
of {(r —1),a(r),£&(r). Putting the corresponding functions into (2.60),
we obtain functions m,,; defined only on H,. Consider a strategy =
of type (2.59) which on H,, coincides with the obtained functions and
outside H,, is defined arbitrarily. Because the set H,, is measurable,
such a strategy always exists. In the following sense the obtained
strategy does not depend on £,.

If h(E) = (£0)(0), a(1), E®)(1),. .. ya(n), €F(n)), k =1,2, are two
histories from H,, with different ¢, but corresponding to the same set
(a(1),AX(1),...,a(n), AX(n)), i.e. such that for any s (1 < s < n)
from ¢(1)(s) = g5 — 1) it follows that ¢@)(s) = gl — 1),
then w(h(V)) = w(A().

* * *

The Bellman optimality equation connects the optimal value func-
tions for problems started at different times. Tt has the most simple
form in the Markov case, which we now formulate.

A special case of the model is called a Markov control problem with
partial observations when the following conditions hold:

St

ll
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(1) Transition probabilities defining the strategy of nature depend
only on the last state and control, i.e.

p:+1('|$0‘7’l e Bplng ) 1= IJf1+](']wr|(I’11+l)'

(2) The sections of the set 'ﬁ,]H for points h € H, depend only on
z,, and the sections of H, for points h € H, depend only on
2,1 and a,.

(3) Cost functions depend only on the last control and the previous

state, i.e.

8 p el
qn(ﬁ‘luﬂlﬂfi T ATy ) i qn(a'ﬂ——la‘u)'

Condition 2 means that for each point the set of admissible controls
does not depend on the path by which we come to this point, the set
of admissible states depends only on the last control and the previous
state. In Condition 3 it might be assumed that ¢, also depends on
2, but this is not necessary by Remark 2.3. Obviously, Conditions 1
and 2 are satisfied for the basic scheme, and Condition 3 is satisfied
for the maximization of the number of successes and the minimization
of loss problems.

Formally, the Markov control problem is a special case of the gen-
eral problem of sequential control. However, it is known that the gen-
eral case may be written as a Markov problem. It suffices to take the
‘H,, as the new state spaces and the ’F{'Ml as the new control spaces.
But it is not always convenient to convert to a Markov problem, be-
cause this may lead to an unreasonable expansion of state and control
spaces.

Essentially, upon the transformation of the Bayesian Markov con-
trol problem with incomplete observation to a control problem wit.h
complete observation, we again have a Markov problem. For the basic
scheme this follows directly from the form of the transition probability
and cost functions.

In the remainder of this section we consider a Markov control prob-
lem with complete observation.

In the study of Markov problems, an important role is played by
randomized Markov strategies, i.e. strategies of the form

Wﬂ*}l('jmﬂa’l H '(ann) = "Tn—l»l('l:l"n)s %= 01 la' LR
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It may be shown that for any strategy = in the Markov problem a
Markov strategy 7 such that w™ < w™ can be found, but we will not
discuss this result further.

A basic approach to investigation of any dynamical optimization
problem is the (Bellman) optimality principle, the heuristic formula-
tion of which is as follows: an optimal strategy possesses the property
that if by applying it we arrive at some intermediate time at a point
x, then it remains optimal for the problem over the remaining interval
of time for which the point @ serves as the initial point.

A rigorous formulation of this principle requires the definition of
the optimization problem at a fixed intermediate point. This may be
done by two methods.

The first consists in considering the minimization with respect to
all possible strategies of the functional

Y. E"(g(zrra,)|e, =x) = 7 (), 0<s<v< oo (2.61)

r=s+1

Since @7 (z) is uniquely defined for each m only up to a set of P™
measure 0 in {2, then in the case of general state and control spaces the
questions arise of how to define ®7 (z) independently of the strategy
used in the interval [0,s) and how to define inf, ®7 (z) so that it is
measurable. These questions do not arise in the case in which the
initial distribution concentrates on a countable number of points and,
for each point z € X,, s = 0,1,..., the union of the sets of admissible
states in X,;; with respect to all admissible controls is countable. If
the last of these conditions holds, then we will say that we have a
case of discrete transitions, but the space itsell need not necessarily
be discrete. The basic scheme considered in terms of a posteriori
probabilities falls exactly in this case.

We will use here another method of settling the optimality ques-
tion; that based on the fact that in a Markov problem after each
transition we arrive in the situation of a new Markov problem. This
method is connected with the introduction of remaining Markov mod-
els, i.e. problems where the initial state space is not Xy but some X,
for s > 1, and further evolution may be described similarly to that of
the initial problem.




72 Discrete Time Problems

In the intermediate Markov problem at time s, admissible controls
and states, and also transition and loss functions, are defined only
for those points in X, to which an admissible trajectory leads. It 1is,
however, convenient for consideration of arbitrary models that these
sets and functions are defined for all & € X,. Therefore, to study
the Markov problem we introduce the following changes in the general
scheme. B

We will consider that for all s = 0,1,... measurable sets F,;; and
F,,, are given such that ﬁ’_ﬂ_l C X, x A1, the projection of F,H on
X, coincides with &,, F,41 C fT',H % X,y1 and the projection of F,y,
on X, x A, coincides with F,H. The set F,;, defines the admissible
controls and states for points from A,. Now h := zoa;,...,8s41Ts41 €
H,41 if, and only if, for all ¢ < s, zia; 121 € Fipn and the measures
pitr1(-|ziaiy1) and the functions g; are defined on F.;1. Further, we will
assume that the distribution po(da) in the Markov problem (2.31) is
not fixed, and consider the set of problems for all possible distributions
po(dz) which are concentrated on a single point, termed the initial
(state) point.

We call such an object a Markov model and designate it by Zy or
simply Z. Designate by Z, (s > 1), and call the st remaining model,
the Markov model given by the corresponding set (2.31), where n runs
through the values s, s + 1,.... In such a model the strategies are
defined on histories of the type z,a,412,1... . The set of strategies
for the s*" remaining model will be designated by II,.

As before, the strategy = € II, and the initial point 2 € X, define
a measure P on the corresponding H. Expectation with respect to
this measure is denoted by ET. Previously the subscript on the ex-
pectation symbol corresponded to the a priori parameter distribution,
but with the transition to the problem with complete information the
a priori distribution of parameters corresponds to the initial point,
and therefore the notation introduced here agrees with the notation of
§2.2. The value of strategy m € 1, on the time interval [s,v), v < oo,
for the initial point = € X, is given by

wy, (=) == z Bl nogti)is

r=s+1

and the (optimal) value function, i.e. inf, wj (), is denoted by i, (2)-

8§2.4 Optimality equation T3

In this section we will assume that for any strategy 7 and any
5 / W o H
2 € Xy 8 =0,10: 04

Y Elq (z, ,a.) < oo, (2.62)

r=s+1

where ¢~ := max(—q,0). This implies that

4] o0
Wo(2) = ) Elq=E] > ¢ > —oo.

r=s+1 r=s+1

. The optimality equation connects the values w,_1,(z) and w,,(y).
First, we write the equation which, for a fixed strategy = € II,_,,
Toi= {magr(:|R), » = 0,1,...}, connects the values w)_, (z) and
wh,(y), where 7' := w!_ is the strategy in the model Z, whlich is the
continuation of the strategy m, so that «’ (-|h') := w(-|zah’), where
h' = z,a,412,41 ... is a history in the model Z,. This relation (the
fundamental equation) for s < v is given by

wla(2) = [ m(dale)la(ea) + [ wIi(up(dylaa)).  (263)

'I:his formula follows directly from (2.33) and may be written more
concisely as follows. If a is an admissible control for the point z € X, _,
and the function f(ay) is defined on the product A, x X,, then let

(M:f)(@) = M7 f(2) = [ f(ay)p.(dylea)

(2.64)
(T;f)(=) := T2 f(=) = q.(za) + M2f(z), s=1,2,...,

It is obvious that A7 and T have the following properties:
(1) M3(f +9)(e) = M f(=) + Meg(s), (2.65)
(2) TI(f +9)(2) = Tif(z) + Mig(z).

If 1t is a distribution on A,, then we define

T¢f(e) = [ n(da)I2 f() . (2.66)



74 Discrete Time Problems
In this notation the fundamental equation may be written as
wly,(x) = Trwl,(e). (2.67)

If v < oo, then (2.63) holds true also for s = v if by definition we

let

W= 0, (2.68)
We note, also, that if the transition function m,(-|z) is fixed, then
Tr+(1?) is an operator transforming functions given on the admissible
subset of the product space A, > X into functions given on A,_1. If for
each = € X, , the set of admissible controls coincides with A, then
for the sake of simplicity we will assume further that 77 and M? for
fixed @ may be considered as operators transforming functions given
on &, into functions given on &, ;.

We now define the operator T, by the formula

T flz) 1= iélj T°f(z), 35=1,2,.... (2.69)

If the transition function v(:|z) from &, ; into A, satisfies the

relation
T f(2) = inf T7 f(z), (2.70)
acA,
i e. for each z the measure v(-|z) is concentrated on the control a
which achieves the infimum in (2.69), then we say that v(:|z) realizes
the operator T' for a function f.

To derive the optimality equation from (2.67) the following opera-
tions, which require some justification, are needed. We must take the
infimum with respect to @ € I, on both sides of equation (2.67).
In the right-hand side the infimum is divided into an outside infimum
with respect to the transition function 7(:|2) from X,_; into A, and
an inside infimum with respect to «,, € II,. We must show that we
may interchange the latter with the operator T and replace it with
infimum with respect to = € IlI,. As will be seen below, to justify
this operation we need, for example, the measurability of the function
w,,(z) and the existence of uniformly e-optimal strategies, which are

defined in the following way.
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. By the deﬁf]itiOIl of w,,(2), for any ¢ > 0 and any = € X, there
exists an e-optimal strategy, i.e. w(x) € II, such that

wi(z) < w,(z) +e.

If 11}: this inequality 7 € TI, may be chosen independently of z, then
such a strategy is called uniforml ] i ( ;
. A ly e-optimal and, if ¢ =
gt y1f € = 0, uniformly
-Nowl we will give Theorem 2.3 which states that w,,(z) satisfies the
optimality equation. This theorem holds under general assumptions
for :E:xam].)le, for Borel spaces of states and controls. However, to avoid,
a discussion of measurability, we prove it here only for the cases of
interest to us, when at least one of the two following assumptions

hold:

(1) Z, is a model with discrete transitions (defined above).

(2) In the model Z, there exists a uniformly e-optimal strategy for
any € > 0 and it is known that the function w,,(z) is measurable

Theorem 2.3 Let at least .
Then: east one of the two assumptions (1) and (2) hold.

(a) The .functions. wy(z), 0 < s < v < oo salisfy the following
relations (optimality equation):

we1(2) = Twa (o). (2.71)

(b) If w = (ma(]2), mosr (|Xass18541), - - .) 18 @ uniformly optimal strat-
egy in the model Z,_y, then the distribution m,(-|z) realizes the
operator T, for function w,,(z).

Proof. Fix some z € X F .
FETL, that ,-1. From (2.67) it follows for any strategy

Wl ()

s—1,0

I

»[LGA. Wﬂ(da‘la:)j‘:wau(w)

= T“‘('lm)ww{:;;) > Tow,, (). (2.72)
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If Assumption 1 holds, then the operator T may be applied to the
function w,,(z), since for all possible controls transitions from the
point z to at most a countable number of admissible points y € &, is
made. If it is known that w,,(z) is measurable, then the question of
the applicability of T¢ does not arise.

We choose an arbitrary € > 0 and, in the case of discrete transi-
tions, for each point y of the countable set in X, mentioned above we
take a strategy m(y) € TI, such that w¥(y) < w,,(y) + €. Then we
will take as m, € I, the strategy which, for each y from the count-
able set mentioned above, coincides with m(y) for all histories k in the
model Z,. For the case when it is known that in the model Z, an
e-uniformly optimal strategy exists, then this strategy is taken as m,.

Consider now the strategy 7= € II,_; such that for z = z,_; all
transition functions Trf_'lf_r(-|a:,_1a,...a:H,_]) for r > 1 coincide with
the corresponding functions defining the strategy .. The distribution
of m,(:|z) is concentrated on some control @ for which T%w,(2) <
Tyw,(z) + ¢ and for the remaining = the strategy may be chosen
arbitrarily. Then by (2.66) and by the choice of @ and ,

w™ (2) = TPw™(z) < T (w..(z) +€) < Towa(z) + 2.

s—1,v 4

Since ¢ is arbitrary, from this and (2.72) we obtain that (2.71) holds.

If 7 is a uniformly optimal strategy in the model Z, , then for
this model the first and the last terms in (2.72) coincide with w,_1.(z)
and this equality, by definition, means that m,(-|z) realizes equation
(2:71) |

Remark 2.8 The statement of Theorem 2.3 holds for models in which
w,,(z) can be represented as the solution of a finite Bayesian problem
with X, := SV and II, := A. Assumption 2 holds for such models.
Indeed, measurability of w,,(z) follows from the convexity proved in
Lemma 2.3. Existence of a uniformly e-optimal strategy follows from
the results of Lemma 2.3 and from the fact that for any fixed 7 which

is not dependent on z the function w], () is linear with respect to .
' u

‘ §2.4 Optimality equation T7

It is useful to have a condition under which the solutions of the

equations f,_; = T,f, coincide with the value functions w,_; ,(z) and

randomized Markov strategies composed from the distributions real-
izing the corresponding operators are optimal.

We now formulate the appropriate theorems separately for the

cases of finite and infinite horizon, since only the latter case is non-
trivial.

Theorem 2.4 Let the sequence of functions f,(z), 0 < s
and the randomized Markov strategy =° := {m ,(-|2,), r
be such that:

1A

(1) the functions f,(z) satisfy the equations

faar(z) = T, fy(2), (2.73)

(2) the distributions n,(-|z,_,) realize the operators T, for the func-
tions f,(z),

(3) f.(z)=0.

Then f,(z) = w,,(z) and the Markov strategy n* = {mry1(zs),
r=s,s+1,...} is uniformly optimal for the model Z,.

Proof. We give the proof by induction, beginning from the time at
the horizon v. By definition w,,(z) = f.(z) (see (2.68) and Condition
3 of the theorem). Let the statement of the theorem be proved for
all s = n,...,v, so that the operator T, is applicable to w,,. For
any strategy 7, using the fundamental equation (2.63), the induction
assumption and equation (2.73) we obtain

wi_ (@) = Tiwie(z) > Tawise (2) > Thwm(z)
= Tofu(®) = faur(2). (2.74)

' Consider now the strategy #"~! in model Z,_,. Applying sequen-
tl.al.ly the fundamental equation (2.63), the induction assumption, Con-
dition 2 of the theorem and the equalities (2.73), we obtain

an—l n
(@) = [ m(dale) 3wl (2)

n

= LH ’n'n(dfllzlt) Tafn)= Tnfn(lb‘) = fa_i(x).

w




