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From this and from (2.74) the induction step is completed and the

statement of the theorem follows. B

For v = oo, when Condition 3 of Theorem 2.4 makes no sense,
the situation is more complex. We give an example showing that
Conditions 1 and 2 are not sufficient for the statement of the theorem
to hold. In this example, as before, all spaces AXp, Any1, 7 =0, 1yemes
coincide with some X and A, the strategy of nature depends only
on the previous control and is deterministic and the cost function ¢
depends only on the previous control. In Figure 7 the nodes correspond
to the states, the directed ares to controls and numbers on the arcs
show the value of the function g for these controls.

Figure 7
The transition digraph corresponding to Example 2.4

Example 2.4 (See Figure 7.) The space X consists of two points z'
and ©2. From the state x' it is possible to go to z? at cost —1 and
stay in ©* at cost 0 or otherwise to stay in x! at cost 0.

It is obvious that w,e(z') = —1, W,eo(z?) = 0 for all s. The
strategy which prescribes at each step staying at the previous point
realizes the operator T, for the function W, for any s, but it is not
optimal. The functions f,(z') = 0, f,(z*) = 0 (for all s) satisfy
equation (2.73), but they do not coincide with w,e,. 8]

For v = 0o, two types of conditions may be formulated which are
analogous to Conditions 1-3 of Theorem 2.4. In the first case, it is
assumed that the value functions w..(z) are known and conditions
which allow the optimality of some strategies to be checked are given.
An example of a theorem with conditions of this first type is given
below in Theorem 2.5. In the second case, some functions f,(z) sat-
isfying (2.73) are known, but the equalities fi(z) = wseo(z) are not
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known e prieri, and the corresponding theorems state simultaneously
these equalities and the optimality of certain strategies. Theorem 2.6
serves as an example.

Before giving statements of these theorems, we first formulate one
more condition analogous to Condition (A2) from §2.3:

(A3) lim inf  inf 211 Elq(z,1a,) >0

forall z € &,, s > 0,

From Condition (A3) it follows that for all z € X,, s > 0,

lim inf inf Elw,e(z,) > 0. (2.75)

n—oo  well,

We give the proof of this fact only for the case of discrete transitions.
As before, the proof also holds under the assumption of the existence
of a uniformly e-optimal strategy for any ¢ > 0 in each model Z,,
s =1,2,.... From (2.34) we obtain that for any strategy =  II,

B 2IQr(Ir—la'r) = ngi;c(:cn), (2'76)
where 7' is a strategy in model Z,, n > s which is an extension
of the strategy m and is defined with respect to m similarly to the
definition of 7, in (2.63). By the assumption of discrete transitions,
2, takes not more than a countable number of values and therefore:
as shown in the proof of Theorem 2.3, a w, € II, exists such that’
wht (#n) < Wneo(zn) + € holds for all possible values z,. From this

inf BIwi(va)

<!“inf FBlwk. (z,)

7T€H4 noo

. g
< wléllllc Elw,(z,) + €.

Since € is arbitrary, then from this, (2.76) and Condition (A3) the
truth of (2.75) follows.
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Theorem 2.5 Let

(1) the functions weo(z), s = 0,1,..., satisfy the optimalily equa-
tion (2.71),
(2) the distributions ,(:|z,) realize the operator T, for functions

Woeol); & =135 15
(3) the model Z satisfies (2.75).

Then the randomized Markov strategy 7 = {Top1(- | @), 7 =
5,8+ 1,...} is uniformly optimal for the model Z,.

Proof. For a randomized Markov strategy m := {m.41(-|2,), » =
0,1,...} we will denote 7* := {m4(:[2,), » = 8,8 + 1,...} € 1I,
for any s, and for simplicity we will write w],, and T, instead of
w™ and T*'. From (2.34) it follows directly that for any randomized

Markov strategy = and any function f defined on &, for 0 < s <n
and z € A,,

n

T8 Thy . TTf(®) = BT Y. ar(eraa,) + EXf(s,).  (277)

r=s5+1

Replacing 7 and f by the strategy 7 and w,e(2) and using the
fact that by Condition 1 of the theorem, TV wreo(2) = wWr_1,0(2),
r=1,2,..., we have

wsoo(a") = E;_-F Z q:—(mr—lar) + E:wnoo(wn)

r=s+1

As n — oo the first term on the right-hand side of this equation
by definition tends to w7 _(z) and the liminf of the second item is
nonnegative by (2.75). From this it follows that w]_(z) < w,e(z) and
this means that, by the definition of w,.(z), we have that w(z) =
Waoo(T), which it was required to prove. |

We now formulate the second type of theorem.

Theorem 2.6 Let the sequence of functions f,(z) and the randomized

Markov strategy 7 := {7, .1 (:|z), r = 0,1,...} be such that for s =
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1,2,..., Conditions 1 and 2 of Theorem 2.4 hold, and let the model
Z forallz € X,, s = 1,2,..., satisfy the conditions:

(3a)  limsup, ., BZfu(wa) > 0

— 00

(3b)  for each e > (ltmd each @ there exists an €-optimal strategy
T such that lim,_ o, E™ f(z,) <e.

€

Then f(2) = w,o(z) and the strategy 7 := {7 (- | &), r =
s+1,s+2,...} is uniformly optimal for the model Z,, s =0,1,... .

Proof. By (2.77) for m := 7 and f := f,, we have

Ti Tl - Tl falo)

Ef Z qr(mr—la'r) +Effn($n)' (2'78)

r=s+1

By Conditions 1 and 2 of Theorem 2.4, for f, and 7 the left-hand side
of the last equality coincides with f,(z), the first term on the right-
hand side tends to wfw(a:) as n — oo, and Condition 3a holds for the
second term. From this, f,(z) > w] _(z) > w,e(2). On the other
hand, assuming for simplicity that the strategy =* is Markovian, and
b}j;' Conditions 1 and 2 and the definition of the operator T, ;, we have
that

*

falz) = Tailfsﬂ(f’»‘) = Top1 forr(2) LT fopi(2).

Similarly, expanding f,,;(z) in terms of T,;, and so on, we obtain
W* ﬁ* *
fole) S T T)5, - T fu(e)

=EJ* > g(z,a12.) + EX fo(z,).

r=s+1

Thf first term of the right-hand side of this inequality tends to
wit,(2) < w,e(z)+e and Condition 3b holds for the second. From this,
fo(@) Swye0(x)+2¢. Since ¢ is arbitrary, f,(z)=w,(2). Again, using
equation (2.78) we have that w,e(2) = lim, e BT 3"\, ¢:(2,_a,)
= w,,, and therefore the strategy 7* is optimal for the model Z,. W
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Remark 2.9 At first glance the application of Theorem 2.6 to the
search for optimal strategies is complicated because of the necessity
of checking Conditon 3b. In practice, in concrete problems this may
be effected for a whole class of strategies which will certainly contain

the optimal strategy and in some cases this condition will hold for all
]

strategies.
Remark 2.10 Theorems similar to those given above may be formu-
lated for finding £-optimal strategies. |

* * *

An important subclass of general Markov models is that of homo-
geneous models, i.e. models in which all spaces of states and controls
coincide respectively with some X and A and the sets Fy, transition
probabilities p,(-|z, 1a,) and loss functions g,(2,_1a,) do not depend
on n. For homogeneous models, the operators T, and T} do not de-
pend on n and we will denote them simply as T and 1.

For v < oo, as before (see Remark 2.2), it suffices to consider
strategies for the initial model on the interval [0,v) and for the sth
remaining model on the interval [s,r). Let m := {mep1(- | =), » =
0,1,...,v — 1} be some Markov strategy on the time interval [0,v)
and 7 := {F,41(-|e), » = 5,...,5 + v — 1} be a strategy in the model
on the interval [s,s + v) such that For(-]z) = m(]z). Then it is
obvious that in the homogeneous case wf, (z) = wiHV. From this it
follows that wo,(z) = w, ,.(z). We therefore introduce new notation

for the homogeneous case, defining

w,(z) 1= we.(z), (2.79)

so that the optimality equation has the form

w,yy1(z) = Tw,(z). (2.80)

Now the value function w,(z) corresponds to any intermediate model
in which the time remaining for control equals s. Correspondingly, it
is convenient to change the notation for Markov strategies in homoge-
neous models, and we assume that in the model on the interval [0, s)
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a strategy has the form
ri= {m (o), mea(le)y. o m(le)). (2.81)

For the sake of brevity, we will call the notation introduced for the
homogeneous case notation in time remaining.

. The homogeneous case applies, for example, to the problem of
mllnlimization of loss in the basic scheme and the notation w,(¢) for
minimal loss in this scheme agrees with the notation just introduced
above. For the homogeneous case, Theorems 2.4-2.6 have a simpler
form. For example, Theorem 2.6 may be reduced to the following
statement.

;orollary 2.1 If the Markov model is homogencous, the function f sat-
zsﬁes the equation f(z) = T f(z), the transition function w(-|z) re-
alizes the operator T for the function f and Conditions Ja and 3b
of Theorem 2.6 hold for f,(z) := f(z), then the stationary strategy
m = {n(-|z), 7(:|z),...} is uniformly optimal and ) = we(a)s M

* * *

In §2.3, the existence of an optimal action rule for the basic scheme
for‘ any fixed { was proven. However, the question of existence of a
u'mforml}r optimal strategy was not touched upon. In the general
situation, uniformly optimal and uniformly e-optimal strategies might
not exist. However, in the case where all control spaces are finite

and for v = co condition (2.75) holds, there exist uniformly optimal
Markov strategies. ‘

Theorem 2.7 If all control spaces are finite, then:

(a) For v < co there exists a uniformly optimal Markov strategy.

(b) If the value function w,o(z) which satisfies the optimality equa-
tion is measurable and satisfies condition (2.75), then a uni-
formly optimal Markov strategy also ezists for v — oo and in the
homogeneous model it may be chosen to be stationary.
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Proof. We index controls by the numbers 1,2,...,m and replace
T® by T7. Let v < oo. Consider a sequence of functions fs.(:c),
s=1,...,v, with f,(z):=0 and f,. 1(z) := T.f,(z). These functions
are measurable by the measurability of the functions T! f,(z) and by
the measurability of the minimum of a finite number of measurable
functions. Let X} := {x : T,f.(2) = T f,(z)},X? = {z: 2z ¢ &,
T,f.(z) = T?f,(z)}, and so on. These sets are als? mlea,m.lrable and
disjoint and X, := UT, XJ. 1t is obvious that the distribution m,(+|z)
which is concentrated on the control j for z € A7} realizes the operator
T, for f,(x). The functions fy(z) constructed and the Markov strategy
7= {ma1(|z), s = 0,1,...} satisfy the conditions of Theorem 2.4,
from which the uniform optimality of the strategy m follows. To prove
the theorem for v = oo it is sufficient, similarly to the case for v < oo,
to construct the sets X7 utilizing the functions W,eo(), take the cor-
responding m,(+|z) which realizes the operator T, for w,e(2) and refer

to Theorem 2.5. |

We now give an example showing that without the condition (2.75)
the statement of Theorem 2.7 is not true for v = co.

0 0
(1,1) (i,1) (14+1,1)
0 ST AR P T i 2Ty
0 0} 0
—_—, P -— P O)—— e Q————
(1?0) (2(,)0) (2,0) (i+1,0)

Figure 8
The transition digraph corresponding to Example 2.5

Example 2.5 (See Figure 8.) Consider the homogeneous morlie.i repre-
sented in Figure 8. The space X' consists of the points (Z,.j), 1 =
1,2,...,j =0,1. From the stale (i,0) it is possible to go tfo (i,1) a.i a
cost —1+1/i or go to (1+1,0) at cost 0. The state (i,1) is absorbing
with cost 0.

It is obvious that w,eo(i,0) = —1, W,ee(i,1) =0 and the functions
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Wyao satisfy the optimality equation, but for the points (z,0) optimal
strategies do not exist. u

We turn now to the basic scheme with the assumption that the
loss functions f, do not depend on previous history, i.e.
fni= fa(AX(n —1),a(n),AX(n)). At the end of §2.1 (see (2.17) and
(2.18)), the process £(n) corresponding to the a posteriori probabili-
ties was defined and it was shown that action rules g := {f3(s), s > 1}
may be considered as functions of the previous controls and the pre-
vious values of the process £(n) and that the cost functions ¢, have
the form ¢, (é(n — 1), a(n)).

In studying the question of finiteness of loss on an infinite time
interval, a significant réle is played by the asymptotic behaviour of the
process £(n) which depends on the action rule 8 and the parameter
value 8. The corresponding analysis will be considered in §2.5.

In studying other problems it is more convenient to use a repre-
sentation of the basic scheme, derived from the general results of this
section, in the form of a Markov model in which the parameter @ is
absent.

Consider that the controls have m possible values 1,...,m. Tran-
sition probabilities for 7 = 1,...,m are given by

P{é(n) = TiElé(n — 1) = &, a(n) = j} = p'(€)
P{é(n) = T%¢|é(n — 1) = ¢, a(n) = j} = 1 — p(¢), (2.82)

where p/(&), TY¢, T'% are defined by formulae (2.16) and (2.17)).
The operator T7 corresponding to the control a(s) = j has the
form

T £(8) = a,(&5) + P (E)F(TVE) + (1 - pP(€))F(TY¢),  (2.83)

and in the problem of loss minimization ¢,(£,7) has the form

N

g4(€,7) == ¢7(€) = D &(hi — M), (2.84)
i=1
The optimality equation in the problem of loss minimization becomes

W(¢) = min TV, 4 (8), (2.85)
Si<N
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where, in light of the discussion of homogeneous problems, s is the
time remaining.

From the results of this section, it follows that an optimal strategy
for the problems of the basic scheme may be found in the form of
a sequence of functions {m,41(§), n = 0,1, ...} taking values in R
(randomized Markov strategies), and moreover, actually taking values
in SN (Markov strategies). Here, for fixed £(0) := ¢ each strategy
defines an action rule by the simple formula

B(n,w) = m(&(n)), n=12,.... (2.86)

From theorems proved in this section applied to the case of the
basic scheme, the following result, which we will use in the sequel,

may be derived.

Corollary 2.2 For problems of the basic scheme:

(I) For v < oo always, and for v = oo when condition (2.75) holds,
there exists a uniformly optimal Markov strategy.

(IT) If in the homogeneous case for v = oo there exists & such that
F(&) < oo, then there exists a uniformly optimal stationary

strategy.

Proof. Since the control space in the case of the basic scheme is finite,
then for v < oo Theorem 2.7 may be applied directly, and for v = co
it suffices to prove that the optimal value functional W(€) exists (is
finite), is measurable, and satisfies the optimality equation. Finiteness
of W (&) := F(¢&) follows from (a) of Theorem 2.2, and its measurability
follows from convexity, which was stated in the same theorem. It was
proved in Theorem 2.3 that F(&) satisfies the optimality equation. M

2.5 Evolution of a posteriori probabilities

At the end of §2.1 we gave the recurrence relation (2.18) for the a
posteriori probability {(n) and showed that the problem of loss mini-
mization may be considered to be a problem of the optimal control of
the process &(n). As will be seen below (see §3.2), in studying loss
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an important role is played by the asymptotic behaviour of £(n) as
n — oo. In this section Theorem 2.8 is proved, from which it follows
(see Corollary 2.3) that if the elements of each column of the matrix
A := {A]} are different from each other and different from 0 and 1,
then for any action rule 8 discrimination of hypotheses holds with
probability 1, i.e. the relation

P{{lim &(n) =8} = 1 (2.87)

n—oo

holds.

If some elements of the matrix coincide, or any are equal to 0 or
1, then relation (2.87) does not always hold, as is easy to see from the
example of the Bellman matrix with 0 < A] < A? o A% s Xliaay;
In this case, using the action rule f'(n) = 0, #%*(n) = 1 we have
é(n) = £(0) and (2.87) does not hold. However, analogues of relation
(2.87) and estimates of rates of convergence for é(n) hold with less
rigorous assumptions on the matrix A as in Theorem 2.8. This result
is basic for the study of loss on an infinite time interval in §3.2.

To study the asymptotic behaviour of the process £(n) for an arbi-
trary matrix A it is convenient to change to coordinates corresponding
to the logarithm of the maximum likelihood. The transformed process
satisfies linear equations (see (2.93)), while equation (2.18) for the
process £(n) is nonlinear.

First, we define the function In(z/y) in the case where z or y may
be equal to 0 as ‘

0 fea=y=0
Infafay) s oo ifz>0, y=0 (2.88)
—co ifz=0, y>0,

and set
0:00:=0:(~00):=0 and —oo+a:=—oo if a<oo. (2.89)
Define the matrix B(¢) := {Bi(¢)}, where
Ba(t) = In(6/&) €€ 8", (2.90)
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and consider the process

n(n) 1= 8B(&(n)) (2.91)

It is obvious that all coordinates of the process n(n) take values less
than +oo with probability 1, since on the set {6; = 1} it follows from
£:(0) > 0 that &(n) > 0 for any n. Similarly to £(n), the process n(n)
depends on the initial point £, but we assume that £ is fized and do
not indicate this dependence.

According to (2.10), in studying loss on an infinite time interval for
some fixed ¢ and a corresponding action rule 3, it suffices to consider
expectations with respect to Pfj for those 1 for which & > 0.

Theorem 2.8 If the elements of each column of the matriz A are dif-
ferent from each other and differ from 0 and 1, then for any action
rule B, any constant a > 0 and any i such that & > 0,

o0

Y. PP{mu(n) > —a} < oo, k

n=1

-1,2,...,N, k#i1. (2.92)

Proof. The proof is similar for all i, therefore we consider only the
casel|i = 'N.| Accordingly, all events are assumed conditional on the
event {fy = 1} and, correspondingly, the multiplier depending on fy
is omitted in equalities between random variables. In addition, we will
write simply P in place of P2, Since on the set {fy = 1} it is true
that nx(s) = 0, then we will consider the (N —1)-dimensional process
(m(s)s--. nn-1(s)), retaining the notation 7(s) for it.

In (2.18) multiply the k™M coordinate for 1 < k < N — 1 and the
N% coordinate by a’(n)AX7(n). Divide the first of the equalities
so obtained by the second and take the logarithm of the coeflicients
on both sides of the result. Then repeat the operation, multiplying
this time by a/(n)(1 — AX7(n)), and sum the expressions obtained
with respect to j from 1 to m. As a result we obtain the following
recurrence relations for 7(n) holding on the set {8y = L}y vz

o) = nln— 1)+ D @A) 1971 ST, (283)
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where
Y= (), F=lm, r=0,1,
: Al . I = 4
15 k 0
R . L | i
e n X, T =1 A k=1,...,N -1, (2.99)

We show that under the conditions of Theorem 2.8 the process
n(n) may be represented as a sum

n(n) :=n'(n) +n*(n), 7'(0):=n(0), #*0):=n(0), (2.95)

o 1 . . .
W here (.1; (n), Fn) is a martingale with bounded increments and 7%(n)
is a strictly decreasing process with respect to all coordinates. Set

m

Anmﬂ=:g£amx¢f~wmaxwm—wkawn, (2.96)
A(n) = L )1 - Moy + Myr), (2.97)

2'(0) = 0, 72(0) = n(0), '(n) = () + 3 An(s),

/{)5‘.‘; r=1,2.

Then, accordi é to (2.93), n(n) = n'(n) + n*(n).

From (2.4) it follows that the process {5'(n),F,} is a martingale
and further that the random values Ayj(n) are bounded in modulus)
by €1 := max; (|7’ — 721|max{)\f-‘\r, 1 - )‘f\,})

We show next that the process #%*(n) is strictly decreasing with
respect to each coordinate. First we prove a useful lemma. '

Lemma 2.4 For any z, y such that 0 < z, y < 1,

(1-a)ln

-y y
o + aIn v <0, (2.98)
and equality holds only for = = y.
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Proof. Denoting the left-hand side of (2.98) by f(z,y) and taking the
derivative with respect to y, we have that df/dy > 0 for y < z, and
Af /0y < 0 for y > . Since f(z,z) = 0, the statement of Lemma 2.4

follows. -

From Lemma 2.4 with = — /\f'\., Yy = ,\f; it follows that under the
condition of Theorem 2.8 the coeflicient of a’(n) in (2.97) is negative
for every j. Since 370, a’(n) = 1, then this means that the process
ni(n) is strictly decreasing. The jumps of this process are not less in
modulus than a positive number ¢, (= min; |(1 — .L),ng + A}"\r'y;ﬂ),
and this means that for fixed n(0) there exists an ng such that for

n > g

P{n(n) > —cn/2} = 0. (2.99)

To study the behaviour of the process n'(n) we prove the following

lemma, which will also be used in §3.2.

Lemma 2.5 Let (Sn,Fn,n > 0) be a martingale such that Sy = 0,
|Sy — Snoa| < e, n > 1, where ¢ is a constant. Then for any a > 0

P{S, > an} < exl)(—rta2/4cz). (2.100)

Proof. We need the inequality

2
e —w <e”

, (2.101)
which for z > 1 is obvious, and for # < 1 can be proved, for example,
by expansion in series or by the elementary inequalities e —1>a>
CL

Using the equality E[(S, — Su_1)|Fa-1] = 0, which holds by the
definition of a martingale, the inequality (2.101) and the boundedness

of |S, — Sn_1l|, we have

E|elSn=Sn-1¥|F, 4] = E[(e!5 1) — 48, — Suy))|Fn-1)
E[e(gnisnii)?l?ifn—l} S e(d)z'

A

Using this inequality sequentially, we have

EeStt = E[eS 1 E[elS S| F, )] o el Eefumtt < et
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Substituting this estimate in Chebychev’s inequality
PLS, mnn) = PLe 5. g0 of w-R00E S5t

which holds for at > 0, and setting ¢ := a/2¢?, we obtain the state-
ment of the lemma. [ |

Applying Lemma 2.5 to the sequence 7}(n), we find that for any
a>0 .

P{ni(n) > an} < exp{—na?/4c?}. (2.102)

From this, by (2.99), we have for n > ng

2
P{mg(n) > —ean/4} < P{yi(n) > e;n/4} < exp{-n (:—2) }
€1
and this means that for any a > 0
> P{m(n) > —a} < . (2.103)
n=1
Theorem 2.8 is proven. |

Corollary 2.3 Under the conditions of Theorem 2.8, (2.87) holds.

Proof. From (2.103) we obtain by the Borel-Cantelli lemma that for
k # i such that & > 0

P{’!erolo m(n) = —oo} = 1. (2.104)

From this, taking into account the equality ¥V, &(n) = 1, (2.87)
follows directly. ]

In the general case, where A} may be equal to 0 or 1 or may
coincide for several values of 7 for fixed j, relation (2.93) also holds;,
bpt in this case one needs to take into account that the coefficient of
a’(n) for some j may be —oco. Therefore we must separate the sum
with respect to these j into a third process n*(n). For the remaining
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j we preserve the decomposition (2.95)-(2.97), omitting those terms
with coefficients 0. Accordingly, for 1 < k < N — 1 define

R:={j: M\ = ,Ug).jr<lor)\f;:0,0<)\f-.v§1},

(2.105)
Ry:={j:j ¢ R N # AN}
and represent 7(n) as the sum of three processes
1(n) = n'(n) + 7(n) + *(n), (2.106)
where
7'(0) :=1"(0) := 0, 7%(0) :=1(0) (2.107)
Ank(n) = 3 @)yl APNAXI(n) - Myad(n)  (2.108)
JERY
Ani(n) = 3 @(n)((1~ X + Xen) (2.109)
jER}
A(n) = 3 @)y AX () + 41 — AXI(n)).  (2.110)
JER),

Note that these indices j, for which Ay =1, M £1, X £ 0o0r My =0,

'}; # 0, )\i # 1, are included in R}, but not in Rj, for the following
reason. Despite the fact that 'ﬁgj or 'y;j take value —oo for these j, by
convention (2.89), the coeflicient of af(n) for these j in (2.108) equals
0 with probability 1,-and the corresponding coefficient in (2.109) has
a negative value.

The process {n}(n), Fn} is again a martingale with bounded jumps,
and the inequality (2.102) is applied to it. The process 7i(n) may have
an increment equal to 0, but under the condition that the increment
does not equal 0 it takes a positive value (bounded by a fixed constant)
with positive probability not equal to 1 and with the complementary
probability taking the value —oo.

The truth of the conclusion of Theorem 2.8 is connected with the
fact that under its conditions the process ni(n) is strictly decreasing.
According to Lemma 2.4 the process #(n) is nonincreasing since all
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coefficients of a’(n) in the sum defining An?(n) are negative. How-
ever, in the general case the presence of jumps for 7%(n) depends on
the strategy, since not all indices j are included in the sums defining
Ani(n).

In §3.2 the behaviour of the processes ni(n), n2(n) and 7(n) will
be considered for some special strategies.




