3 SOLUTIONS OF SOME PROBLEMS
IN THE BASIC DISCRETE
TIME SCHEME

In this chapter we move from the study of general discrete time sequen-
tial control problems with incomplete information to some problems
of the basic scheme.

Major attention is given in this chapter to a question which was
formulated in Chapter 1. Namely, what is the asymptotic behaviour
of the value function in the problem of maximizing the number of
successes (minimization of loss) for an arbitrary hypothesis matrix
A = {X} when the number of observations tends to infinity?

As mentioned in Chapter 1, all hypothesis matrices are divided into
two classes and for the matrices in one of these classes— F-matrices—
the loss to infinity is finite, while for the other class— B-matrices—it
is infinite.

The corresponding statements are formulated in Theorem 3.1 (the
proof of one of these statements will be deferred to §7.4). The proof
is based on an investigation of the behaviour of some “reasonable”
strategies and is a modification of that in Presman & Sonin (1979).

It seems that, with the exception of some particular cases, it is
impossible in general to derive a description of optimal strategies in a
sufficiently compact form. Descriptions of optimal strategies for finite
and infinite observation horizons for the case of a 2 x 2 matrix are
given respectively in Theorems 3.2 and 3.3. Our proofs are somewhat
different from well-known proofs of these statements (see respectively
Feldman 1962; De Groot 1970).

The chapter concludes with a section in which it is proved that in
the scheme with sharable resources (see §1.6) the wider class of action
rules relative to the basic scheme does not change the loss function.
This fact is useful in the consideration of questions concerning the
closeness of the discrete and continuous time basic schemes, since, as
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96 Solutions of Discrete Time Problems

will be explained in §4.1, the continuous time basic scheme is a natural
generalization of the scheme with sharable resources, rather than of

the basic discrete time scheme.

3.1 F-matrices and B-matrices

In §2.4 it was shown that in solving problems of the basic sch.eme
it is possible to replace a consideration of action rules by randomized
Markov strategies, i.e. a sequence of functions m := {Trn(ﬁ),
n = 1,2,...}. For a fixed a priori distribution £°, the action rule
corresponding to a strategy 7 has the form g := {ﬂn(£(7l)}, where tohe
a posteriori probability (n) is given by formula (2.18) with £ :=¢".

Let

A= max A, Ri:={j:1<j<m, X=X} (3.1)
1<5<m

It is convenient to speak of the truth of hypothesis H; instead of
about properties holding on the set {f; = 1}. {chor‘dingly, 1.1nder
the i*" hypothesis, R; is the set of best devices (i.e. with maximum
success probability) and A; is the common value of success probability

for these devices. ’ .
In the case when for each fixed 7 all the A} are different, consider a
strategy which prescribes the observation of albe§t devnce. c.orreslz;ond-
ing to an hypothesis with maximum a posterior: probability. We ex-

plain heuristically why such a strategy gives finite loss. Indeed, if the

hypothesis H; is true, then for finiteness of loss it i.s sufficient that
after an (on average) finite time we will only use devices from th'e set
R;. But if for each fixed j, all the A} are different and hypothesm.H{
is true, then (as was proved in §2.5) using any strategy the a posterior:
probability of hypothesis H; will quickly tend to 1, and for all other
hypotheses to 0 (i.e. discrimination of hypot.heses oc.curs). Therefore,
applying the described strategy we will relatively quickly begin to use
only devices from the set R;.

The general situation is more complicated. Supg)ose ghat for some
hypothesis H;, a hypothesis Hy exists such that A= AL = A f(.)r all
7 € R;yand A; < A, < 1. In this case we will say that the hypothems.HkI
is a nuisance for H; and write Hy > H;. If in this case the a posterior

'HM is a profloya r\iiaf H; not Vi |

Y
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probability of hypothesis H; is close to 1, then under hypothesis H,
using the devices from R; will on average increase the a posteriori
probability of not only the hypothesis I, but also of the hypothesis
H; (see formula (2.18)) and expectation of loss at each step in applying
the strategy described above will be positive for all time.

To have finite loss, it is necessary that with probability 1 we suffi-
ciently quickly discriminate H; from Hy. If Hy is a nuisance for H;, we
say the nuisance is removable if there exists a j such that either A} =
or /\i =0, M # 0, and then we will call the 7™ device discriminating
for hypothesis H;.

Ifin the presence of a removable nuisance we use the discriminating
device, then for A} = 1 (correspondingly for A} = 0) in the case of
failure (success) the a posteriori probability of the nuisance becomes
0 and with multiple use of the discriminating device such an event
happens on average in finite time.

Therefore, for a strategy giving finite loss it is reasonable to use a
device from the set R; when the a posteriori probability of hypothesis
H; is greatest compared with all others and the a posteriori probability
of all nuisance hypotheses with respect to H; equals 0 (in this case the
hypothesis H; is called preferable). .

Suppose all nuisances are removable and we utilize a stationary
strategy which prescribes, in the presence of a preferable hypothesis,
the observation of the devices which are the best according to this
hypothesis with equal probability and, in the absence of a preferable
hypothesis, the use of each device with equal probability. Then, as
will be shown, the a posteriori probability of the true hypothesis will
grow and we will relatively quickly come to the situation in which the
loss is equal to 0.

Accordingly, a matrix A is called a B-matriz if its elements are
such that there exists at least one nonremovable nuisance. All other
matrices are called F'-matrices. It is obvious that for m = N = 2 only
the Bellman matrices (see §§1.11 and 2.5) are B-matrices.

The following theorem gives an answer to the question posed above
about the finiteness of 1W,(¢).

Theorem 3.1

(a) For F-matrices, W,(£), Wy (¢) < co and there ezists a station-
ary strategy realizing W (£).

s
v f/f>o\
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(b) For B-matrices, W,({),"+oo and Lt s M (E ) 12 = 0 |

We state an obvious corollary of this theorem.

Corollary 3.1 For any matriz

N
,ﬁ&“@erixﬂf (3.2) [

The convergence of 1V,(£) to W (€) follows from Theorem 2..1.
The statement about the existence of a stationary optimal strat?g‘v in
the case in which for some £° the value of W (£°) is finite consists of
Corollary 2.2. So, to prove (a) of the theorem it is onl'}' left for us tlo
check that W (€°) < co. Section 3.3 is devoted to this. In §3.4 it is
shown that for B-matrices W,(¢),”co. The equality im W, (¢)/v =0
will be proved only for N = 2 in §7.4, where it is also shown that for
a minimax strategy the loss up to time v has or(lerp\/.'j. For the case
N > 2, it is also not difficult to construct a stra:tegy such t‘hat los‘:s
up to time v will grow slower than v, but we will not consider this

question.

3.2 Loss for an F-matrix on an infinite time interval

In this section, we construct for an arbitrary F-matrix A ;randomized

stationary strategy 7 (given by a function 7(§) on S) such that
—_— . = N

WT(£°) < oo for any £° € ST, : .
OoTo prove this property for 7, we will fix £° and estimate the right-

hand side of the following equality, which holds by virtue of (2.10) and

(2.3), e L |
W) =Y @(SET L0 NP Es)),  (33)

i=1

where the coordinates of the vector £(s) define the a posterior{i) prob-
abilities of hypotheses at time s for the a priori distribution £,

First, let us introduce some notation. Let A; := {k : Hyp > H;}

be the set of indices of nuisance hypotheses for the i*" hypothesis,
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i=1,...,N. For 0 < e < 1, let

Dii= {£:&/& < eifk #£i6 =0ilk ¢ 4},
N (34)
Dy = {e:6¢ U D

Obviously, the regions D! (i = 1,..., N) are mutually exclusive.
Let us say that in region D} (i = I,... ,n), hypothesis H; is preferable.
This term indicates the fact that for ¢ ¢ D; the probability of any nui-
sance with respect to H; is equal to 0 and the probabilities of all other
hypotheses are small compared with the probability of hypothesis H;.

Now we introduce formally the randomized stationary strategy 7
mentioned above and heuristically described in §3.1. This strategy has
a simple and transparent probability interpretation (repeated here).
If the a posteriori probabilities are such that there is a preferable
hypothesis, then the strategy 7 prescribes the observation with equal
probabilities of the devices which are best according to the preferable
hypothesis. Otherwise, the strategy 7 prescribes the observation of
each device with equal probability.

Formally, the strategy 7 is given by the following relations:

T = (R, s ) P )
ﬁ,(f) L ﬁ(é) = (ﬁl(f)v' X 1ﬁm(€))3 (35)

:TTJ({) = 2: ——fI{D:-}, 2= L iy

where Ry := {1,..., N}, the R; are defined in (3.1), and |R| designates
the number of elements in a finite set K.

If in each column of the matrix A all elements are different, then,
according to (3.3), applying.the strategy 7 the loss at time 7 is equal
to 0 under hypothesis H; only for £(n) ¢ D;. However, in general the
loss will also be 0 when &(n) € Dy, where [ is such that ), = A; and
R;CR;.

Correspondingly, for ¢ — 1,..., N, let

Ei = {[ : )\[ = )\,‘, Rl {; ﬁ’i}r ]TLI = U D; (3())

le ;[,
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From the definition of T(£) we have
(-~ M)wi(e) = 0 it¢ e D, (3.7)
i=1

According to (3.3) and (3.7), D is a region of zero loss when
hypothesis H; is true (i.e. on the set {#; = l})
From (3.3) and (3.7), we may derive the estimate

i, i i
Wr(£%) < cZ&? ; Pr{&(s) ¢ D, }, (3.8)

where ¢ := max;; (Ai — )\f) Therefore, to prove the finiteness of
WZ(€°) it is sufficient to show that if &) > 0 then

S PT{E(s) ¢ D} < o0, (3.9)
s=1
The proof for each i = 1,...,N is conducted similarly, and

thus, without loss of generality, we will consider here only the case
i = N, assuming % > 0. Therefore, as in §2.5, all. events are assumed
conditional on the event {#y = 1} and in equalities between random
values we shall correspondingly omit the multiplier in tf:rrns of Oy.
Also, for brevity, we shall replace Py by P in the derivation.

As in §2.5, we first make a change of variables

0= (& m ). (3.10)
N

Such a change is appropriate, since on the set {#y = 1}, according to
(2.4) and (2.16)(2.18), from £} > 0 it follows that En(s) > 0 for any

s. Consider now the process
1(s) := (£(s)): (3.11)
By (2.93) and (2.91) the coordinates of the process 7(s) satisly the

relations

n(n) =n(n-1)+ i ()Y AN (n) +4%(1 - AX(n))). (3.12)
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Images of the regions D} and D, under the mapping (3.10) we denote
respectively by D; and D; and we will omit the index N in denoting
Dy, Dy, An, Ay. So, for = (Mm,-..»7v_1) and a = —Ine¢

D:=Dy={n:m < —a, k¢ 4, M = —o00, ke A}

{mimi>a,m—n<—a fork#i, k¢ 4,
D!- = Tik = —0C0 fOI' k (= ‘4;} if J’V Q/ :‘li (3.13)
& if N ¢ A

N
Dy = {TFTIQ'_L_JD;}-

Note that relation (3.13) for the case N ¢ A; is obtained from the
condition {x(0) > 0.
To prove (3.9) it is thus sufficient to show that

iP{U(S) ¢ D} < oo, (3.14)

where D = Uiez Di. For reasons of simplicity, first consider the situ-

ation where for each j = 1,...,m all X! are different from each other
and different from 0 and 1. Then

E:D:{n:ni<fu,i:l,...,N—l} (3.15)

and (3.14) follows from the inequalities proved in Theorem 2.8, viz.
> P{m(s) > —a} <oo, k=1,2,...,N—1. (3.16)
s=1

Relation (3.16) holds because all coordinates of the process 7(s)
tend to —oo sufficiently quickly. In the general situation this is not
so. With positive probability the process 1(s) may never enter regions
where the true hypothesis is preferable.

We show below that hypotheses which do not belong to the set 4
will not be preferable a considerable part of the time. Moreover, if for a
considerable share of a sufficiently long time interval some hypothesis
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with index k from the set A is preferable, then this hypothesis will
stay preferable in the future with high probability.

To formulate these statements precisely, define for £k = 0,1,..., N
the events '

G o= o il{n(r') c Dy} > s/(N + 1)} (3.17)

The event Q for k& # 0 is defined by the condition that the k't hy-
pothesis is preferable at least s/(N + 1) times over the time interval
from 1 to s and the event (§ is defined by the condition that there is
no preferable hypothesis at least s/(N + 1) times. It is obvious that
UM, 0f = Q, and therefore to prove (3.14) it is sufficient to show that
forall k=0,1,...,N

S P [{n(s) ¢ D} N Q] < oo. (3.18)
s=1
If k is such that N € A, then from (3.13) Dy = @ and therefore

P{QL} =0 for N € A,. (3.19)

So we will consider further only those k for which N ¢ 4,.
We prove that for some ¢ > 0, where ¢ depends only on the initial
point £°, the following inequalities hold:

P({n(s) ¢ D} N Q5] < ¢/, (3.20)
P{Q:} < c/s* ifkdA, (3.21)
Pl{n(s) ¢ D} NN < ¢/s* ifke A (3.22)

Since from k € A we have D, € D := Uiz Di, (3.18) follows from
(3.20)—-(3.22).
To prove the relations (3.20)-(3.22) we will consider the behaviour

of the coordinates of the process 5(s).
First, we show that (3.20) is a consequence of the following in-

equalities for some @, ¢ > 0 and any s > 0:
P[{mi(s) #£ —00} N < ¢/s* ific€ A, (3.23)
Pl{nis) > —as}n Q] < /s ifig A (3.24)
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In(le‘ed, if s is sufficiently large, then as > a and, from 7(s) < —as
for all i ¢ A, 5(s) = —oo for all i € A, it follows that n(s) € D.
Therefore for such s from (3.23) and (3.24) it follows that

P[{n(s) ¢ D} n Q]

< PIU ) 7~ U (U nts) > —ash)] n 5] < Nefs?.

€A igA

For the remaining s, the inequality (3.20) may be assumed to hold

})y ar; appropriate choice of ¢. Thus, (3.20) follows from (3.23) and
3.24).

We show now that (3.21) follows from the fact that, for some a,
¢ >0 and any s > 0, the inequality

P[{n(s) > —as}nQy) < /s ifkg 4 (3.25)
holds.

' Indeed, on the set Q] define the time 7 as the (random) last exit
time of the process n(n) from the region Dy in the time interval (1,s].
From the definition of 0 it follows that

s/(N+1) <7/ <s, {rf=r}INQLC{r = r} NQL, (3.26)

and from the definition of the region Dy it follows that for n(s) € Dy,
Mme(s) > a holds. If s is sufficiently large, then as/(N +1) > a and
from (3.25) and (3.26) we obtain that for k ¢ 4

P{Y= " 3 PRin{x =1}

s/(N+1)<r<s

< Y POpn{r =r)

s/(N+1)<r<s

S o gy - Plmudr) > a}00)

/(N H1)<r<s

> Plm(r) > —ar}n Q)

s/(N+1)<r<s

< St

3/(1\’4—])_&_'1“:‘,3

(AN
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i.e. from (3.25) we have (3.21).
Finally, we define

_‘;ik = {l H /\1 = /\k,Rk g R;} U Ak (327)

and show that (3.22) is a consequence of the following inequalities for
some a > 0, ¢’ > 0 and for any s > 0:

Pl{ni(s) > —as}n Q] < /s® if k€A, ig A (3.28)

Indeed, from the definition of the strategy 7 and from (3.12), we obtain
that for n(r) € Dy, k € A, the equality mi(r + 1) = m(r) holds for
i € A with probability 1. The maximum possible positive jump
of the other coordinates is bounded by some number which depends
only on the elements of the matrix A. Therefore, for sufficiently large
7 it follows from n(r) € Dy and 3:(r) > —ar for all i ¢ A that
n(r 4+ 1) € Dy. Thus, using (3.26) we have

P{n(s) ¢ Dx} N

= e 5

s/(N+1)<r<a—1

P[{rg =r} N8y

£ Y P =rin@)
s/(N+1)<r<s-1
< Z: P[{I](r) - Dk} n {'r,v(r ol ]_) g Dk} N QL]

s/(N+1)<r<s—1

< >

s/(N+1)<r<a—1
£ X
a/(N+1)<r<s—-1

i.e. from (3.28) we have (3.22).
So, it remains to prove the inequalities (3.23)-(3.25) and (3.28).
Consider the representation of process 7(n) as the sum of three pro-

cesses introduced at the end of §2.5, viz.
a(n) = 1'(n) + 72(n) + 7(n)
2(0) = 7°(0) ~ 0 (3.29)

7(0) = n(0),

P[{I‘J;gjk{ni(r) —ar} N §Yy ]

Cr/’-"3 < C/Sza
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where

Am(n) = 3 d(n)(n — ') (AXI(n) - /(n)A}y)  (3.30)

jeR)

A"?f = Z aj(n) ('T:Sj(l — X N)+ )‘N”Yk ) (3.31)
jeR]

Ang 1= 3 (@(n) (W AXI(n) +42(1 — AX¥(n)). (3.32)
JER,,

Here v,/ :=In(M /)] , oy o= 1In[(1 = M)/(1 = M 5
k k/ AN Ve k N
RL::{j:)\i:l,Og)\%(\l or

= {d g Ry ML £05 ),

L=l 0 < M1, (3.39)

As already mentioned, the coordinates of the process {n'(n), %, }
are martingales, and their increments are bounded by some fixed num-
ber. From this, by Lemma 2.5, for any a > 0 there exists ¢ such that
forall s >0and k=1,...,N —1

P{ni(s) > as} < ¢/s°. (3.34)

The increments of coordinates of process n*(n) are either equal
to 0 or, if an increment is not 0, with positive probability less than
some fixed ¢ < 1 it takes some positive value (bounded by some con-
stant) and with the complementary probability it takes the value —oo.
Therefore, for any o there exists a ¢ such that for all s > 0 and
k=1,...,N —-1

P{nii(s) > as} < ¢* < ¢/s>. (3.35)

The process 5*(n) is a nonincreasing process, since (see Lemma 2.4)

(1 - Ad)n 1N + A1 X ~b<0 if My £ X 3.36
NI TN Nn)‘j = ~ if Ay 7 Ar. (3.36)
N N

In general not all coordinates of process n?(n) are necessarily de-
creasing; however, we now show that with the occurrence of the ap-

propriate event {1} the coordinates of the process n*(n) entering into
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the formulae (3.23)-(3.25) and (3.28) will go sufficiently far into the
negative region with probability close to 1.

First we prove (3.25).

If k ¢ A then there exists a j € H; such that )\3 = A # )\ . From
the definition of the strategy 7 and from (2.3) it follows that at those
times r when hypothesis Hj is preferable the values a(r) for this j
will be independent Bernoulli random values with success probability
1/|Ri|. There will be at least s/(N + 1) such times on the set 0.
From this it follows that for this 7

P[{iaf'(r) > t} n sz;] o1 = F(1|Relys/(N +1),8),  (3.37)

r=1

where F(p,n,t) is the value at the point t of the distribution function
of a binomial random variable with probability of success p and num-
ber of tests n. From definition (3.31) and from (3.36), we find that for

this k and j

8

P [{nﬁ(s) < —as}n Qi] > PHZ a(r) > as/b} n QL]

r=1

From this, (3.37) and the exponential character of the tails of bino-
mial distributions—which follows, for example, from Lemma 2.5—we
obtain that if £ ¢ A then for some a, ¢ >0

PH{ni(s) > —as} N Qi) < c/s°. (3.38)

From (3.29), (3.34), (3.35) and (3.38) we have (3.25) and hence (3.21)
also.

Next we prove (3. 28).

ke A id A, then there exists a j € Ry such that )\J + /\
An. For th1s 7, inequality (3.36) is again true. Therefore if th]s j
belongs to RY, then there exist a, ¢ > 0 such that

P[{n?(s) > —as}N] < c/s®, (3.39)
and if j € R}, then

P[{n3(s) # —co} N Q] < ¢/s°. (3.40)
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From‘ (3.34), (3.35), (3.39) and (3.40) we obtain (3.28).

Finally, we prove (3.24) and (3.23).

For any i there exists j such that M # My, Asin tl f of
(3.37), we obtain t N i

3

PHZ a(r) >'t} n n;] > 1 F(1/m,s/(N +1),8),  (3.41)

r=1

a}ild therefore, if this 7 belongs to RY, then there exist ¢ and a such
that

Pl{n(s) > —as} N Q) < ¢/, (3.42)

and if j € R; (for i € A it may be assumed that this membership
holds), then

Pl{ni(s) # —oc0} N QY] < ¢/s°. (3.43)
From (3.34), (3.35), (3.42) and (3.43) now follow (3.23) and (3.24).
This concludes the proof of the fact that

WZ(€°) < oo. (3.44)

3.3 Loss for a B-matrix on an infinite time interval

Let A be a B-matrix. Without loss of generality, re-indexing as nec-
essary the hypotheses, it will be assumed that H, is a nonremovable
nuisance for H,, i.e.

M=XM=)if jeR, (3.45)
A =0 implies X =0, (3.46)
0 < A <A<l (3.47)

We will show that for any action rule # and any ¢ with & > 0 for
i=1,2, WE(¢) = co. Suppose the contrary. If W (&) < oo, then by
(2.10) there exists an action rule g such that ‘

if (Z ) < oo,

iﬁf(L )<oo-

s=1 JER>

(3.48)
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Since a’(s) > 0, the expectations and sums in (3.48) may be inter-

changed. e
The sets R, and R, are disjoint and 372, @

(3.48) it follows that

(s) = 1, so that from

=1 JER, (3.49)
EE[Z T a-f‘(s)] <
s=1jel

Define the F,,-measurable random variable 7 < +oo by
ri=inf{s: @(r) = 1 for all » > s}. (3.50)

jeER,

From (3.49) we have that

o0

P]E{'T<00} {"{Z -y ))<°°}:1’

=1 jeR (3.51)

Pﬂ{"r<oo} < PB{E:: ” s)::oo}:(].

-

We show that under conditions (3.45)~(3.47) the two relations of (3.51)

ontradictory.
N Icndee(l from (2.2)-(2.4) and (3. 45) it follows that for any n and

ny > n,

p{’{ S d(s)=l,nt1<s< n,]fn}
JER

:Pf{zaj(S)1,714‘1535711"?11}

jeR,

holds.
Taking limits as n,

n = m, i.e-

PIE{T = nlfn} - Pf{T < n'-}—n}'

~» o0, we obtain that this equality holds for
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Therefore, by the finiteness of the o-algebra F, there exists a function
¥(+) such that forii =1,2,

PP{r < nlF} = (a(1), AX(1),...,a(n), AX(n)).

From this we obtain that for ¢ = 1,2,
Pf{r <n} = EX(PM{r < nlF})

EP(y(a(1), AX(1),...,a(n), AX(n))). (3.52)

Il

The number of possible trajectories a(1), AX(1),...,a(n),AX(n) are
finite for fixed n and, by (3.46) and (3.47), if the probability of any of
these trajectories is positive with respect to the measure P’ then it is
positive with respect to the measure PP also. Therefore, from (3.52)
it follows that if

PIE{T <n} >0, then Pf{?‘ <n} >0,

which contradicts (3.51).
So, in the case of a B-matrix, W2 (¢) = co for any action rule
and any £ with & >0 for¢=1,...,N.

Remark 3.1 For a B-matrix of second order (i.e. the Bellman matrix)
there does not ex1st a stationary asvmptotlc optimal strategy, since if
at some point ﬁ (€) = 0 and £(0) = &, then £(n) = ¢ and W’f({) =
v(1 — &)(X2 — Ay), which contradicts (b) of Theorem 3.1. However,
there do exist examples of B-matrices of large order which have such
strategies. - |

3.4 Optimal strategies for the case m = N = 2

In the case m = N = 2, or as we will sometimes say, in the case of
a 2 X 2 matrix, a description of optimal strategies in the problem of
loss minimization (maximization of the number of successes) may be

obtained in explicit form.
Let

=2 -2, e/:=A = X2, ei=g —e, = 6! — 82 (3.53)
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Since &; + é; = 1 it is convenient to consider a scalar value & := &
rather than a vector ¢ := (£,&). Similarly, we introduce f(s) :=
B(s) and w(s,¢) 1= m'(s,€) and define W (£) := WJ({,1 - ¢) and
W,(¢) := W,(€,1 - &). g .
According to §2.4 the problem of loss minimization on thf.: time
interval [0,v), v < oo, for the case m = N = 2 may b'e considered
to be a homogeneous Markov model whose states are points £ € (0,1]
and for each state there exist two controls having values 1 and 2.
Transition probabilities in this notation are given by the formulae

P{E(n) = TY¢lé(n — 1) = &, a(n) = j} = p(£),
P{E(n) = T%¢lé(n 1) =& a(n) = j} =1-p(¢), (3.59)
i=12,
where

p€) := e+ N1 - &) =67 + N

1j EN/P(€) i pi(E) #£0 e
ngm{ﬁ i e -0

0j e(1— A)/(1—pi(8)) if pI(€) #1
“:2{6 if (€)= 1

The cost functions are given by
2(€) = €O = M) + (1= e = X),

where N i= IT}?}Z((A‘I s A2 ); (3.56)

and the operators 77 have the form
Tif(¢) := ¢'(&) + M f(¢) _
= g/(&) + P(E)F(TVE) + (1 - p(O)F(IYE).  (3.57)

Formulae (3.54)-(3.56) are a special case of the general formulae

(2.82)-(2.85) for m=N =2, =¢, & =1-¢.
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Changing as necessary the indices of devices and hypotheses, it
may be assumed that |§'] > |62|, §' < 0. If &; - &, < 0, then from this
it is easily obtained that &' # 6%, §' < 0, ¢, < 0,€e>0. So,all 2x2
hypothesis matrices (0 < A! < 1) may be divided into the following
disjoint classes:

(0) e1-€2 >0,

(A) e1<0,e5>0,8' <8 <0,

(B) 1< 0,6, >0, 8 <82 =0, (3.58)
(C) e1<0,e,>0,0 <8< -8,

(D) e1<0,6,>0,0< 8= —4§".

Denote by n) = {m(¢),s = 1,2,... ,v} a uniformly optimal
Markov strategy for the problem of loss minimization on the inter-
val (0,v), where v < co, and s is the time remaining.

In Case O there is a column all of whose elements are not less than
the elements of the other column and there obviously exists an opti-
mal strategy prescribing the constant use of the corresponding control
(device). The description of optimal strategies for the remaining Cases
A-D is similar, the difference between them consisting in the behaviour
of the a posteriori probability.

Theorem 3.2 There exists a sequence I, n — 1,2,..., such that 0 <
l, <1 and for any v < oo any optimal strategy for the problem of

loss minimization over the time interval to v for Cases A-D has the
following form:
1 for 0 < ¢ < I,
m,(€) =<0 for I, < £ <1

arbitrary for £ = [,

where s =1,2...,v.
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Proof. According to Theorem 2.4 it is sufficient to show the existence
of sequences {l,} such that for all s =0,1,...

T'W,(€) if0 <& <l
TW,(€) := min{T'W,(¢), T°W,(£)} =
T”V,(f) i{ l.s—l»l S é S ].
(3.59)
To show this, it is sufficient in turn to check that the functions

re31(€) 1= T*W(€) — T'W,(¢) (3.60)

are continuous, strictly decreasing with respect to € and r,4,(0) > 0,
ro41(1) < 0 for s = 0,1,... . Then /, may be taken as the zero of the
function r,(&).

Continuity of r,(¢) follows from the continuity of W, (&) for v < oo
(proved at the end of §2.3) and the form of the operators T and T?
(see (3.57) and (3.55)).

Further, it is convenient to conduct the proof in the coordinates
n = 7(€) := In[cé /(1 — €)], where ¢ := —g;/€5. Actually, the value of
¢ in this transformation may be taken arbitrarily. As will be shown
below, however, the value ¢ = —¢;/¢, is taken to obtain the equality
1(h) = 0. .
~ For reasons of simplicity, assume that all Al are different from 0
and 1. Then, if £(0) differs from 0 and 1, {(n) differs from 0 and 1
for all n and, correspondingly, 7(£) takes only finite values. Cases in
which ,\f may be equal to 0 or 1 are considered similarly, but in such
cases 7j(£) may take the values —oo, +o00. The inverse transformation
to 77(€) is denoted by

E(n) ="/(e" + ). (3.61)

Further, let

Wa(n) = W& Taln) = ru(En)) (3.62)
Pn) = pPEm), P = Em),

and designate by 77, T and M7 respectively the operators acting on
functions depending on 7 corresponding to 77, T and M7, Then

R f(n) o= P 42 + (1= ) +9%),  (3.63)
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where

Y i=n(A/A), 7= [(1- M)/ - M) (3.64)

and
Tif(n) := §(n) + M f(n). (3.65)

First we formulate a lemma about the properties of the operators

T3, T3, M3, M7,
Lemma 3.1 The following properties hold:

(1) Mi(b¢ +d) = b¢ +d.

(2) If f(€) is conves, then MIf(€) < f(£).
(3) Mi(f - g)=Tif - Tig for any f and g.
(4) M'M?f = M2M'f, T'T°f = T*T'f.

(5) If f(n) is a nonincreasing function, then ﬂ’f(n) is also a non-
increasing function.  Moreover, _if f(n) is continuous and
f(n + 1) # f(n ++°"), then M'f(n) is strictly decreasing
in some neighbourhood of 1. Similar statements replacing the
words “nonincreasing, decreasing” with “nondecreasing, increas-
ing” and with the condition f(n++v'?) # f(n++°2) can be applied
to the operator M2,

Pmpertile.s J and { and a property similar to 5 hold also for the oper-
ators T7 and M7,

Proof. Properties 1-4 may be checked directly from the definition
of the operators M’ and T7 (see formulae (3.55)(3.57)). Proper-
ties 1 and 2 reflect the fact that the process ¢(n) is a martingale
and Property 4 has a clear interpretation: the result of the sequential
use of the first and the second devices does not depend on the order
of their use. This is proved directly by virtue of the easily checked
equality p'(n)p*(n + ') = p*(9)p'(n + 7'?). (This last relation is a
special case of the elementary formula P{4 N B} = P{4}P{B|4} =
P{B}P{A|B}.)



114 Solutions of Discrete Time Problems

To prove Property 5, we write the following equation (for n < 7'):

T £ (o) — A £(n)
— F) 0+ )+ = FNf0 )
- ﬁ"(n)f(j ] mifl fj(ff))f(n + ‘r.“') (3.66)
— (F ) - PN+ ) = f(' +4%)
+(F @) AT = fn+ ")

(L= PO+ %) = o+ ™).

Let j = 1. In Cases A-D, it follows from 8' <0 that 4'' < 0,
4% > 0. Moreover, from §' < 0, formula (3.55) for p'(¢) and the
monotonicity of the transformation (3.61), it follows that p'(n) is
strictly decreasing. Therefore if f(7) is a nonincreasing function then
each of the three terms in the last sum of (3.66) is nonpositive. If,
moreover, f(5) is continuous and f(n +7'') # f(n + 4°'), then this
inequality also holds for #" which are near enough to 77, and this means
that the second term on the right-hand side of (3.66) is strictly posi-
tive. This proves Statement 5 for j = 1.

If 7 = 2, then in Cases C and D we obtain similarly that '2 > 0,
4°2 < 0 and p*(n) is strictly increasing and in Case A we obtain
that v'2 < 0, %> > 0 and p’(n) is strictly decreasing. In Case B,
M2f(n) = f(n) holds. In all cases, if f(n) is a nondecreasing function
all terms in the last sum of (3.66) are nonnegative. If f(n) is continuous
and f(n+7'2) # f(n++°?) (which is only possible for 6% #£0), then all

derivations are similar to the case with j = 1. The lemma is proven.
8]

Now we return to the proof of Theorem 3.2. As was mentioned,
it is sufficient to check that the function 7.(v) is strictly decreasing
with respect to n and changes its sign. The proof of this fact is by

induction. N
For s — 1 we have, by the equality 1Wp(n) := 0 and the relations
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(3.56), (3.55) and (3.53), that
f1(n) = T*Wo(n) — T'W,(n)

=) —q'(m) = () - p'(n)

= &(n)(er — €2) + €2
'I-‘heref‘ore, 71(n) is strictly decreasing with respect to 7 and changes
sign, since €(n) is monotonic (see (3.61)), and e; < 0, €5 > 0. More-
over, 71(0) = 0, so l; = £(0) = —e,/(e, — €2).
By Statement 4 of Lemma 3.1 and the equality W I
: : ty W, = LW,
we have that s i

Fasi(n) = T2Wa(n) — T'Wo(n) |
= (Tzfﬁ?ﬂ‘-l(”) - T'T I—:f’n_l(q))
+ (T T*Waor () — T T Wi (n)).

Using Statement 3 of Lemma 3.1, this i -
; . expression for 7,
written in the form , I +1(n) may be

Fﬂ+1(7])
= M*(TW,_1(n) - Tlﬁ;n—l(’])) - Hl(fwn—l(ﬁ) - Tzﬁn—l(’?))-
From this, using the optimality equation (3.59), we obtain

a1 () = M [Fa(n)]* — M2[Fu(n)] ", (3.67)

where a* := max(a,0), a~ := max(—aq,0).

Suppose the result is proved for s = n, i.e. that Tn(n) is strictly
E_lecreasing with respect to  and changes sign at the point 7 =
7(1,). Then from Statement 5 of Lemma 3.1 and from (3.63) it foﬁo;’vs
that M'[r,(n)]* is strictly decreasing for n < 7, — 4'! and equal to
0 for K > fn — ', Similarly, M?(7,(n)]” is nondecreasing for all
1, strictly increasing for n > 7, — max{y°?,4!?} and equal to 0 for
7 < 1 — max{y°?,4'?}. From (3.58) it is not difficult to see that in
.a,ll cases y'' < 4'2. Therefore from (3.67) and what was said above
it follows that #,,,(7) is strictly decreasing and for some n := 1
changes sign. et

Theorem 3.2 is proven. |
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Remark 3.2 If §, = 0, i.e. we have the Bellman case, then 4% = 4'* =

0 and it follows directly from the proof that the sequence [, increases.
‘ ||

] . . . . . _ 2
Remark 3.3 If the matrix {\}, 4,7 = 1,2, is symmetrlc,'l.e. o == X
Al = A%, then it is easy to check that [, = 1/2 and the optimal strategy

becomes stationary, i.e. it does not depend on the number of trials
|

remaining.
Remark 3.4 Suppose the cost function g,(¢) depends on the num?)m? of
tests and specifically is given by the (original) cost (3.56) multiplied
by ¢, where {cx} is a nonincreasing sequence. It is. easy to che\:ck
that in this case the statement of the theorem remains true. (The
proof is similar to the above with appropriate changes to Property 4
of Lemma 3.1.) u
* ® *

Consider now the problem on an infinite time interval. If A is an
F-matrix (i.e. either A? # A2, or A} = A} and A} = 1)., then as 5= 0o
we have W,(¢) — W(€) < oo and we may take limlt:s in the optimality
equation (3.59). In this case the functions r,({). given by .(3.60) als.o
converge pointwise to some limit r(¢). The limit function r(¢) is
continuous for 0 < ¢ < 1 by the continuity W(¢) (see Theorem 2.3)
and does not decrease with respect to ¢, as the limit of a sequence
of nondecreasing functions. Let I, be the limit point of the sequence
{1,}. By Theorems 2.5 and 2.3 the following theorem holds.

Theorem 3.3 For F -matrices the strategy given by the functions

1 if 0<¢<ly,
ra(£) 128 0 if 1o <é<l

arbitrary if £ =l

: ' nimization n infinite time
is optimal for the problem of loss minimization on an infi e

interval.

We note here that [, is a point at which the limit function r(¢)
changes sign. If we can prove that, similarly to all r,(£), J({) h‘t’lS
a single sign change, then it will follow that the strategy given in
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Theorem 3.3 is the unique optimal strategy. We will not prove this
fact, but will only indicate one of the possible ways to prove it, It is
possible to calculate the value of loss corresponding to the stationary
threshold strategy, i.e. the strategy given by the function

1 if 0<¢<!
'ﬂ'((f) = 0 if l < 6 g 1
arbitrary if £ =1

(a calculation method is given, for example, in Reimnitz 1977). Then,
amongst thresholds we need to choose one that gives minimal loss and
prove that corresponding to this threshold the value function and the
corresponding threshold strategy satisfy the optimality equation and
that the function r(¢) changes the sign at this point. We shall use

such an approach to prove the corresponding theorem in continuous
time.

3.5 Scheme with sharable resources

We give a formal description more general than that of the basic
scheme control problem of §2.1, in the framework of which we will
formulate the scheme with sharable resources discussed in Chapter 1.
The difference here from §2.1 is that now the control space is not a
set of vertices of the simplex, but the simplez itself (for N = 2 it
is an interval) and the observation space is expanded by a vector b
showing the state of the devices (i.e. which devices are switched on
and which are switched off). For simplicity, we consider only the case
m=N =2,

On a measurable space (§2, F) suppose given the following:

(a) A random parameter value § with values in 52, corresponding
to the two hypotheses.

(b) A one-dimensional random process a ;= {a(n,w), n = 1,2,...},
where a(n) := a(n,w) takes values in [0,1] and is interpreted
in the following way. Two independent trials are conducted at
time n. The probability of a positive result for the first trial
equals a'(n) := a(n) and that for the second trial equals a’(n) =

I —a(n). If the result of the first (correspondingly, the second)



118 Solutions of Discrete Time Problems

trial is positive (1), then an observation is taken on the first
(second) device at time n (the device is switched on), and in the
case of a negative result (0) the observation is not taken (the
device is swtiched off). Note that an observation may be taken
on either one of the devices, or on both or no observation at all.
(c) A two-dimensional random process b := {b(n,w), n = 1,2,...}
and another X' := {X'(n,w),n = 1,2,...}. Here b(n) :=
b(n,w) := (b'(n),b*(n)) takes one of four possible values (0,0),
(0,1), (1,0), (1,1) and corresponds to the results of the two
trials described above conducted at time n, i.e. b(n) = 1 cor-
responds to the fact that the j'" device is switched on at time
n. Thus if a’(n) = 0, then b’(n) = 0, j = 1,2. For the process
X', we let X'(0,w) := (0,0) and define X'(n) := X'(n,w) :=
(X'(n), X'?(n)), where X'9(n) corresponds to the number of
successes observed up to time n on the j*" device; here AX'(n) :=
(AX'Y(n),AX"?(n)) := X'(n) — X'(n — 1) takes values (0,0),
(0,1), (1,0), (1,1) and, if b(n) = 0, then AX7(n) =0, ; = 1,2.

Analogously to §2.1, the:following o-algebras are defined for n > 0:

Fi, = o(a(s),b(s), AX'(s), 1 < s < n),
F g 1= FaVo(a(n +1)),
Flrpn o= F gy Vol(bn +1)),

Fl = F, v o(8),

—'g —
F s 1= Fap Va(d),

-7?,;11 = ‘7?:1+1 Vo(f).

Now at each time n = 1,2,... a nonrandomized action rule §',
depending on the realizations of previous controls (to which the process
a(n,w) corresponds) and previous observations (to which the processes
b(n) and AX'(n) correspond), define the probabilities for conducting
the next pair of trials. A (randomized) aclion rule is a sequence of
random measures {4/ (do,w), n = 1,2,...} on the interval [0, 1], where
G'(da) := f'(da,w) is F)_,-measurable for each n > 1. We denote by
I’ the set of such action rules. Given & <= [0. 1]. corresponding to the a
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priori probability of the first hypothesis, and g’ € I, a measure Pf‘ is

defined on F. | by the following formulae (compare with (2.2)-(2.4))
Pls =1} = ¢,
Ff{, =1} = 1-¢,

P{a(n) € AIF2,} = Bi(A), (3.68)

PP (n) = 11F )} = i(n),

2
'Gf S ~ . .
PELAX'(n) = 11E0} = (3 M6)W (n),
i=1
together with the property of conditional independence of the coordi-

nates of the vector b(n) (correspondingly AX(n)) when conditioned
on F . (correspondingly F,°).

Loss up to time v < co again has the form (compare with (2.8))
W) = vng + 21 - €)) ~ B [X"'(v) + X"2(v)]

= 3 EPO(R - A)a*(n).

n=1

Define W/ (€) := infgem WE(€) for v < oo.

Now we are in a position to describe the scheme with sharable
resources. It results from that described above by excluding from the
observation space the vector b(n,w) (i.e. by restricting the o-algebras

~1
F,, and F ) and make the corresponding changes in the definition of
the action rules.

Let

Fu = a(a(s),AX"(s), 1 < s <n),
—~1
Fat1 1= F Vo(a(n +1)).
Consideration of this o-algebra means that (unlike the case for the
o-algebras 7 and F ) we do not discriminate between an absence
of success at some time connected with the fact that the device was

switched off and a similar event connected with the fact that the result
of the observation was a failure.
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Consider the action rules " := {Bl(da), n = 1,:‘2,...}, where
B!(de) is an F)!_,-measurable random measure on the |11J;erx:a1 [0,.1],
n=1,2,..., and denote the set of such action rules by II”. The mea-
sure P?" on F! is defined by formulae similar to (3.68), except that in

the third formula F.% | is replaced by F.8.  and the last two formulae

n

are replaced by

N
" ' —"g . .
PP{AXY(n) = 1|1F )} = (3] Nbi)d (n). (3.69)
i=1
In this case @’(n,w), j = 1,2 may be considered as the proportion
of a unit resource allocated to the j'* device, since accord]n.g to (3.69)
under the i'™ hypothesis as a result of the use of a control a in [Ul, 1) the
probability of a success on the it device equals o’ A}, where o' := a,
2 =1 a.
a?
It is obvious that any action rule 8" € II" belongs also to II', and
the corresponding measures coincide on F.?. Therefore, if for v < co
(and B” € 11") we define

wo'(e) = 3 B [8(A = Aa*(n)]
n=1
W) = jinf, W),

then, obviously, W!(¢) > W/(£). Moreover, each acti.on rule @ for
the basic scheme may be considered as an action rule in the schelme
with sharable resources (i.e. from I1”), such that the corr-espondlng
measures 3"(da), n = 1,2,..., are concentrated on two points o = 0
and o = 1 and the loss values of the two models coincide. At the same
time the set of action rules for the scheme with sharable resources is
significantly larger than that for the basic scheme. So,

W.(&) = W)(&) > W (¢)- (3.70)

We show that the possibility of sharing resources does not cause the

loss functional to decrease.
Theorem 3.4 For any v (1 < v < o)

W.(€) = T(€). (3.71)
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Proof. Asin Chapter 2, it is convenient for the proof of the theorem
to transfer study to the process (n,w) corresponding to the a poste-
riori probability of the first hypothesis. As is shown in Chapter 2, a
consideration of the problem in terms of this process is equivalent to
the study of the following homogeneous Markov model.

The points ¢ of the interval [0,1] are the states and the controls
are also points o in [0,1]. Using the control a € [0,1] the point ¢
makes a transition with probability (1 — a@)a to the same point ¢.
This corresponds to the situation in the initial problem in which both
devices are switched off. With probability a-a-p'(€) (correspondingly

a-(1—p'(€))) a transition to the point ['"''¢ (correspondingly Itg)
occurs, This corresponds to the observation of a success (failure) on
the first device when the second device is switched off. Analogously,
the transition to the points I''?¢ and I2¢ occurs with probabilities
(1= a)(l —a)p’(€) and (1 — a)(1 - a)(1 — P*(€)) respectively. (Here
the function p’(¢) and the transformation ¢ (7 =1,2;¢ =0, 1) is
defined by formula (3.55).) The situation in which both devices are
switched on and two successes are observed corresponds to a transition
to the point T''T"'2¢ | which occurs with probability

1l = @) MAE+ 051 — €)] = a(l — a)p'(€)pH(IM¢)

= a(1 - a)p*(£)p' (I"2%). (3.72)

The equalities in (3.72) follow directly from (3.55). (See also the proof
of Property 4 of Lemma 3.1.) Similarly, the transition to the points
%, TO'T02¢ and I'°'1"%¢ occur with the respective probabilities

a(l — a)p'(€)(1 — p*(I"e)),
a(l — a)(1 = p'(&))(1 - p*(I"¢)),
a(l = a)(L - p'(&))(P*(I'¢)).
The cost function in the corresponding model is given by
9°(&) := aq'(¢) 1 (1 - a)g*(¢),

where ¢(¢), 7 = 1,2, is defined in (3.56). It is not difficult to

check that the action of the operator 7 corresponding to the control
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a € [0,1] is given by the formula

P56 = gl FE) (L =or)l ~ ) TPf(E)
+a(l = a)[g'(€) + ¢°(€) + f(€) + MM [(£), (3.73)
where the operators 77 and M7, j = 1,2, are defined in (3.57).

Since we have constructed a model (in initial form) with discrete
transitions (see §2.4), by Theorem 2.3 the optimality equation holds,

i.e.
W,,1(€) = min T°W,(£), (3.74)

0<a<l

where s denotes time remaining. .
Note that the optimality equation for W,yq1(£) may be rewritten

as

Wea(6) = min [oT"W,() + (1 — )T?IV,()]

0<a<l

= V(€)= a.(€) + MIV,(6), (3.75)
where q,(¢) := ¢'(&) i 0 <€ <41, q,(€) := g} E) Tl £ £ £,

M'f(E) i 0<€ <l

3.76
M2f(E) if Ly < E<1, (3.76)

M FlE) = {

and the sequence {[,} is defined in Theorem 3.2.
We will also need the following properties of the operator M,,
s = 1,2, which are true from (3.76) because they hold for M"' and M?

(see Lemma 3.1 ):

M, [f(f) + g(g)] = M,f(§) + ﬂf,g(f), (377)
M, [f(€) — 9(&)] = Tef(€) — Tug(£), (3.78)
M, [cé +d] = c€ + d. (3.79)

Now we return to the proof of (3.71) for v < co. It is obvious that

(&) = min [¢'(€).4°(£)] = 1(€), (3.80)
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so (3.71) holds for v = 1. Lel (3.71) be proven for all v < s. Then for

v = s+ 1, taking account of (3.73), relation (3.74) may be rewritten
as

Wia(€) = Wena(§) + min {[a- a(T'W,(&) - W,pi(6))]

+ (1= a)(L = @) [T*IW,(£) = Wapa(¢)]
+a(l - a) [q'(€) + ¢2(€) + M MWW, (¢)
+ Wa(€) = 2W,41(€)]} . (3.81)

By (3.75) the first and second terms within the minimization of
(3.81) are nonnegative. If it is possible to prove that the third term is
also nonnegalive, then taking account of (3.70), it follows from (3.81)
that W, (€) = W,,1(8).

So, to prove (3.71) it is sufficient to show that for all s = L2, e

Au(€) = ¢'(&) + ¢°(&) + M MPIV,(€) + TV, (€) — 2,54 (¢) 2 0. (3.82)

This relation will also be proved by induction. Since (&) = 0,
then from (3.80) it follows that 44(¢) > 0. For ¢ < s, suppose it is
proven that 4,(¢) > 0.

Applying the operator M, to (3.82), using (3.77) and (3.79) se-
quentially and subtracting the result from A, (¢), we have that

As1(€) — M,4,(6)
= q'(€) + (&) + M' MW, 1 (€) + W,,4(€)
—2W(8) — 4(€) — q(E) — MMM (E)
— LW.(£) + 2T,17,4,(¢) . (3.83)

Now using the equality 1V,1;(£) = T,1T,(€) (see (3.75)), from (3.83)
we have that

Ao (€) = MoAL(E) + 2[T0V0h(€) — TWapa(€)]
+[Arar,, (6 - MM (€)] (3.81)
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The first term of the right-hand side of (3.84) is nonnegative by the
induction assumption and the fact that f > 0 implies M, f > 0. The
second term is nonnegative, since (see (3.75) and (3.76))

ToW i () 2 TW,54(E)
= min [T'W,41(€), T* W (€)] = Wara(€),

which means that to prove (3.82) it is sufficient to check that
MIM2W,, (&) — M,M'M?W,(¢) > 0 for any s = 1,2,.... But to
show this, it is sufficient to show that for 7 = 1,2,

MYM2VW,,1(€) > MM M?W,(£). (3.85)

By Lemma 3.1, the operators M*' and AM? are commutative, there-

fore to prove (3.85) it is sufficient to show that

W,y1(€) > MIW,(8), d=12 8212, 0 (3.86)
By Theorem 2.2, the function T1,(£) is convex, which means that
according to Property 2 of Lemma 3.1, W,(£) > MW,(£). But for
all s, from the nonnegativity of the cost functions, W,;,(£) > W,(¢&).
Therefore (3.86) is proven and hence (3.71) also for v < co .

From this, lim, o, W, (§) = lim,_ W/(£). But according to Theo-
rem 3.1, for problems of the basic scheme lim W, (£) = W (¢). From
the inequality W (£) = lim, ., TW.(€) (see (2.49) and (3.70)) it follows
that (3.71) holds also for v = co. |

4 PROBLEM FORMULATION AND
SOLUTION METHODS IN
CONTINUOUS TIME

4.1 Reduction of continuous to discrete time

Chapter 2 gives a mathematical formulation of a situation which may
be presented informally as follows. We have m devices, each of them
generating independent Bernoulli (0 or 1) random variables with
parameters depending on the number of devices. We have N
hypotheses about parameter values and a given a priort distribution
£=(&,...,&n) € SN on the set of these hypotheses. At each moment
of time only one of these devices may be used (i.e. the control action
takes values in §"‘) and the corresponding random variable may be
observed. Accordingly, since the observations determine a payoff, it
is required at each moment of time to decide which device should be
used based on the data of which device was used at previous moments
of time and the observations that were observed on each.

In the case of continuous time, the analogue of the Bernoulli pro-
cess is the Poisson process. Therefore in continuous time it is natural
to assume that under the i hypothesis the device with index J gen-
erates a Poisson process with parameter A/

However, in continuous time it is not sufficient to take as controls
functions taking values in S™. A heuristic explanation of this fact
was given in §1.6. Therefore, in continuous time the control a(t) takes
values in 5™, so that a’(t) corresponds to that fraction of a unit
resource allocated to the j' device at time ¢, and the jump intensity
on this device under the " hypothesis equals Aai(t).

In §4.2 a precise formulation of the continuous time problem based
on the concepts of martingale and point process is given. The
Appendix contains the facts necessary to understand this part. More-
over, in §4.2 it is shown that similarly to discrete time the problem may
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