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The first term of the right-hand side of (3.84) is nonnegative by the
induction assumption and the fact that f > 0 implies M,f > 0. The
second term is nonnegative, since (see (3.75) and (3.76))

T_.,”’iﬂ_l(e) = T”Z-H(f)
= min ['1111'1'7,4.1(5),Tzn'rﬂ—l(é)] = Waia(€),

which means that to prove (3.82) it is sufficient to check that
MYM2W, 1 (€) — MM'M?W,(€) > 0 for any s = 1,2,.... But to
show this, it is sufficient to show that for j = 1,2,

MYM2W, 1 (€) > MM M?W,(€). (3.85)

By Lemma 3.1, the operators AM* and M? are commutative, there-
fore to prove (3.85) it is sufficient to show that

W (€) > MITV,(8), §=1.2 §=1;2 s « (3.86)

By Theorem 2.2, the function 1V,(£) is convex, which means that
according to Property 2 of Lemma 3.1, W,(§) > M7W,(¢). But for
all s, from the nonnegativity of the cost functions, W,,(£) > W,(€).
Therefore (3.86) is proven and hence (3.71) also for v < co .

From this, lim, e W, (£) = lim, o, W)(£). But according to Theo-
rem 3.1, for problems of the basic scheme lim IV, (€) = W (£). From
the inequality TV (€) > lim, o, W/(¢) (see (2.49) and (3.70)) it follows
that (3.71) holds also for v = co. ]

4 PROBLEM FORMULATION AND
SOLUTION METHODS IN
CONTINUOUS TIME

4.1 Reduction of continuous to discrete time

Chapter 2 gives a mathematical formulation of a situation which may
be presented informally as follows. We have m devices, each of them
generating independent Bernoulli (0 or 1) random variables with
parameters depending on the number of devices. We have N
hypotheses about parameter values and a given a priori distribution
£ = (&1,...,&n) € SV on the set of these hypotheses. At each moment
of time only one of these devices may be used (i.e. the control action
takes values in §"‘) and the corresponding random variable may be
observed. Accordingly, since the observations determine a payoff, it
is required at each moment of time to decide which device should be
used based on the data of which device was used at previous moments
of time and the observations that were observed on each.

In the case of continuous time, the analogue of the Bernoulli pro-
cess is the Poisson process. Therefore in continuous time it is natural
to assume that under the i'" hypothesis the device with index j gen-
erates a Poisson process with parameter /\f

However, in continuous time it is not sufficient to take as controls
functions taking values in S™. A heuristic explanation of this fact
was given in §1.6. Therefore, in continuous time the control a(t) takes
values in S™, so that a(¢) corresponds to that fraction of a unit

th device at time ¢, and the jump intensity

resource allocated to the j
on this device under the i*" hypothesis equals A a/(t).

In §4.2 a precise formulation of the continuous time problem based
on the concepts of martingale and point process is given. The
Appendix contains the facts necessary to understand this part. More-

over, in §4.2 it is shown that similarly to discrete time the problem may
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126 Continuous Time Problems

be formulated in the terms of control of the a posteriori probabilities
of hypotheses.

Notice that in §4.2 only nonrendomized decisions are considered;
these are given not by a measure, but by a function of the observations.
In §4.3 it is proved that for the functionals considered the optimal
values are achieved by members of this class.

In §4.4 it is shown that, by considering the given problem as a prob-
lem of sequential choice of controls on the intervals between jumps, it
may be considered to be a control problem in discrete time. In this case
the interpretation of randomized action rules becomes clear, as does
the fact that, for the criterion functionals considered, randomization
does not yield improvement in optimal values. With the reduction to a
discrete time problem, a new definition of strategy is formulated (dis-
tinct from the action rule of §4.2) and the usual optimality equation is
derived connecting the optimal values of functionals at the moments
of successive jumps of the process.

Finally, in §4.5 a definition of synthesis of an optimal strategy is
given and the local optimality equation is studied.

Some of the results presented in §§4.2-4.5 were initially published
in Sonin (1976) and Presman & Sonin (1978a). The general question of
control of jump processes similarin idea to the problems of this chapter
is studied in Rishel (1970), Davis & Elliott (1977) and Yushkevitch

(1980).

4.2 Basic scheme problem statement

Let (2, F) be a measurable space on which are given:

(a) a random vector 6 = (6,,...,0y) with values in Sy,

(b) an m-dimensional jump process X(t) = {X'(¢),...,X™(¢)},
right continuous with X(0) = 0, such that AX(t) takes values
either eg® or e, 7 =1,...,N.

These random variables are interpreted as follows: the set
{w: 6; = 1} corresponds to the i*" hypothesis being true; X7(t) rep-

resents the number of events observed on the j* device up to time

t.
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It is equivalent to giving the process AX(t) to give the sequence
{ma(w), la(w)}, where 7, = Tn(w) is the time of the n' jump of the
process X.(t) and [, := [,(w) indicates the coordinate in which the
Jump at time 7, took place. Here 7, > 0, Th41 > 7 for 1, < 00,
Tatr =00 for7, =o0,n=1,2,... yand I, is defined only for 7, < co.
The process X () is an m-variate counting process, andh{'rn,fn} is an
m-variate point process (see §2 of the Appendix).

Let F; := o(X(s), 0 < s < t) denote the o-algebra generated by
the values of the process X(s) up to time ¢ and set F i= o)}V .'F;
IF = {F};50 and IF? .= {]'—t&}t%g. Moreover, let ,

Tin = (1,000, ), bgi= (.. 1), Fop = o(Tiailin)- (4.1)

An action rule is an IF-predictable function Blt):={P (2);.. ..0™2)}
taking valuesin $™. The coordinate B7(t) is understood as the fraction
of a unit resource directed to the 7" device at time t, which depends
on the results of the observations up to time ¢.

. Let a hypothesis matriz A —{/\f} (i=1,...,N,j= Ly sy 2] Db
given, where 0 < ) < co and X! defines the intensity of the Poisson
process corresponding to the 7** device under the ;" hypothesis in the
case in which all the unit resource is directed at that device.

If the space (0,F) is sufficiently rich, then, as follows from §6 of
the Appendix, the values 8 and X may be given in terms of w in such
a way that to each ¢ € §V (defining an a priori distribution on the
set of hypotheses) and to each action rule B = B(t) there corresponds
a measure Pf on F? such that

a
PPLo; =1} = ¢, (4.2)
and the process coordinates
t
X(1) /D OA diag B(s)ds (4.3)

are orthogonal "’ martingales (the integralin (4.3) is the compensator
of the process X(t)).

From (4.2) and (4.3) it follows that for the measure Pf we have
the representation

N N
Bii= ) &FP8 =3 £,PP, (4.4)
=1 =1
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and the measure P? is concentrated on the set {6; = 1}. This implies

that the elements of the matrix 0*X(t) — (diag 8)A [; diag B(s)ds
having the form

8:(X7(¢) f)ﬁﬁf s)ds), i=1,...,N, j=1,...,m, (4.5)

are also orthogonal IF’-martingales. Obviously, the expressions in the
brackets in (4.5) are also orthogonal JF'-martingales with respect to the
measure P;. The value A}37(s) is naturally called the local intensity
of the process X7(t) under the i'" hypothesis, since an exact meaning

can be given to the equality
P(t S Thnt1 <t+4+ dt?[n.rll = j|f,.“,‘rn+1 2 t,@; = 1)I{Tn < t < Tn_!..]}
= Hi)\gﬁj(t)ir{'rn <t< TrH-l}dt' (4'6)

In particular, if #7(¢,w) = ¢ on some time interval, then on this interval
under the i*" hypothesis the process X (¢) will be a Poisson process
with intensity Alc.

Remark 4.1 Note that the measure Pf is defined uniquely by the
integral in (4.3). Therefore, the consideration of the natural class of
IF-adapted action rules does not give anything new, because for any
IF-adapted function 3 := 3(t) we can find an action rule given by an
JF-predictable function such that the integrals in (4.3) coincide. ~ H

Further, we will not distinguish between action rules which corre-
spond to the same measure Pf. The set of all possible action rules
is denoted by II. Since we will assume that the intensity of jumps is
bounded, then, according to §6 of the Appendix, only a finite number
of jumps can occur on each finite time interval with probability 1

As in discrete time, for v < co the functional V2(¢) denotes the
expected number of jumps (successes) up to time v using action rule
A and with a priori distribution & of the hypotheses. Since (4.3) is
martingale,

m

)= B2 Xi(v) = 1*5f A" (s) ds, (4.7)
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where E denotes expectation with respect to the measure Pﬁ
Con51der the problem of maximization of the functlonal (4.7).
Accordingly, let

V.(§) = sup VE(e): (4.8)

As in the case of discrete time, it is convenient to replace the maxi-
mization of the functional (4.7) by the minimization of loss, which up
to time v is given by

w(e) -Auzet VIO = B [C8(A - 0)Ft(s)ds,  (4.9)

where A; and A are defined similarly to the definitions in §2.1 (see
(2.7)). By the nonnegativity of the function under the integral sign in
(4.7), the loss W/(¢) may also be considered for v = co. Denote by

W, (€) = inf WA(£) (4.10)

Bell

the (optimal) loss function up to time v < co.

Basically we will be interested in the problem of maximization of
the expected number of successes, or, which is the same, the minimiza-
tion of loss. However, some of our results will hold for the problem of
minimization of an arbitrary functional in the form:

A = BY [ 9(s)dX*(s), (4.11)

where ¢(t) is an m vector-valued measurable JF'-predictable function
bounded from below, v < co. The case v = oo is considered under the
assumption that the integral and the expectation in (4.11) are defined
for any 3. When it is clear which v is under consideration the notation
will be simplified and we will simply write FP(¢).

We show that there exist two other convenient representations (see
(4.12) and (4.13)) for the functional (4.11).

IfQ =0 x, then any m-measurable IF?-predictable function
$(t) may be representtd as ¢(t) = 0P(t), where the elements of the
matrix ®(t),i=1,...,N,j=1,....m, are IF-predictable functions.
Since (4.11) does not depend on the structure of the space §2, then
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without loss of generality we will consider ¢(t) = 8®(t). Using the
fact that (4.3) is a martingale, we have

FA(¢) = Ef f 68(s)(diag B(s))N'0" ds = EF []V{)Q(s)ﬂ*(s)ds,
’ (4.12)

where Q(s) := {q;-"(s)}, 7l (s) := Mei(s),i=1,...,N,j = 1,...,.m,
and the last equality in (4.12) follows in an elementary way taking
account of the equations 6;6; = 6;, 8;6; = 0 for © # j.

According to (4.7) and (4.9), Q(s) = A corresponds to the numl')er
of successes, i.e. ¢! = 1 and Q(s) = A — A corresponds to loss, i.e.
$i(s) = A;/A — 1 (if A} = 0, assume ¢! = 0).

Remark 4.2 Let I denote the matrix of size N xm, with all its elements
equal to 1. Then, obviously, [ 0I8*(s)ds = v. If v < o0, tl}en
minimization of the functional F?(¢) is equivalent to minimization
of FA(£) + cv = Ef Jo0(Q(s) + cI)8* ds. From this and from the
boundedness from below of the function ¢(t), it follows that for v < co
the function ¢ may always be considered to be nonnegative. o

Another representation of the functional (4.11) is connected with
the representation of any IF'-predictable function f(t) by a sequence
of deterministic Borel functions {f.(jin-1,t1n), 7 = 1,2,...}, where
i = (Liges o dn)y Fine = Qs agn)y 0 € 0 v i o 1005

gr = 1,...,m for k = 1,...,n (see §3 of the Appendix). Namely,
forn >1,
f(t,w) = 3 fallin-a (@) min 1 (@), ) H{Taa(w) <t < 7a(w)}.
n=1

Sometimes we will simply write f(£) = {fa(71n-1,t1n-1,1),n=1,2,...}
to indicate this representation.
Correspondingly, let

Q&f(t) = {égn(jl,nflatl,n—lyt), n = 1,2,. v .},

assuming that ¢?(t) = 0 for ¢ > v, and rewrite (4.11) in the form

oo

FA(¢) = i E2¢"(1a) = 3 Ef¢n(0,lin, 1), (4.13)

n=1 n=1
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where éf:(jl,n,l,t],l) = Pn(€i,Jin,tin). Since any sequence of Borel
functions {f,(j1n-1,tin), 7 = 1,.. .} defines an IF-predictable func-
tion, then any functional having the form of the right-hand side of
(4.13) can be rewritten in the form (4.11).

* * *

We now introduce the a posteriori probability of hypotheses vector
&8(t) := E2(9|F). (4.14)

In discrete time the process £P(n) may be chosen independently of the
action rule #. In the case of continuous time this cannot be done.
This is connected with the fact that the filtration of o-algebras {F,}
in discrete time is generated by observations and controls, but in con-
tinuous time the filtration JF is generated only by the observations.
We will omit the index 3 for ¢#(¢) when this will not lead to confusion.

For the process X () the corresponding filtration JF of o-algebras
is right continuous (see §4 of the Appendix). Therefore the process
£(t) may be assumed to be right continuous with left-hand limits.

As in discrete time, for ¢ € SV we set p(€) 1= €A, so that

p(&) = {p'(&),-- .. 0" ()}, p(8) = Z Né:. (4.15)

Take the conditional expectation with respect to Fi of the martingale
(4.3). Noting that F, ¢ F? and taking the conditional expectation
with respect to F,- under the integral sign, we see that the process

V() = X0~ [ pe(s-)) ding B(s) ds (4.16)

is an IF'-martingale, and this means that the integral on the right-hand
side of (4.16) coincides with the compensator of the process X (t) with
respect to the filtration #°. The matrix characteristic of Y(t) equals,
according to §6 of the Appendix,

<Y, V() > = [ ding ple(s-)) ding Bls)ds. (4.17)

Now we describe how the a posteriori probabilities are changing.
Unlike the case in discrete time, when &(n) changes by jumps at each




132 Continuous Time Problems

moment of time, now £(t) has a jump at the jump moments (?f the
process X (t) and in the intervals between jumps the tra_]ectorlf.:s of
the process £(t) are the solutions of ordinary differential equations.
This can be written generally as the following stochastic integral equa-
tion (4.18), where the integrals may be understood here as Lebesgue-
Stieltjes integrals for each w.

Lemma 4.1 For Pfﬁ almost every w

E(0) = €+ [ gléls ) ding ple(s ) dY (e, (118)

where g(€) := (diag £)A — £*p(€) and it is assumed in the definition of
the inverse matriz [diag p(€)]”" that if p’(€) =0, then 1/p’(§) :=0.

Proof. Consider the process v*(t) given by the right-hand side of
formula (4.18). According to §8 of the Appendix, v* is a square
integrable martingale. From (4.16) and (4.17) it follows that for any
square integrable martingale of the form

(0 = [ @) fs), (419)
where f(s) is a matrix with predictable elements,
ERo(0C(1) = B [ 9(6(s)) ding (o)) f(s)ds (4.20)

holds (see §8 of the Appendix).
On the other hand, from the definition of the process £(t) and

(4.16) we have
EZe*(t)(2)
— BPO*C(1) = ES6° fo dY (s)f(s)
= B¢ [[(07 dxX(s) ~ (ding O)A(ding B(s)) ds) (2
B /; (diag 8)A — 0 plé(s))] ding B(s)f(s)ds. (4.21)

Since the elements of the matrix f(s) are IF'-predictable functions,
and the elements of the matrix 8*X(s) — (diag 6)A [y diag B(s)ds
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are IF'-martingales (see (4.5)), the first term in the right-hand side of
(4.21) is equal to 0. Taking the conditional expectation with respect
to F, inside the integral in the second term we obtain

ERE(00(t) = B [ g(6()(ding B(S(s)ds.  (4.22)

In the right-hand side of (4.22), £(s) may be replaced by &(s-) and
therefore comparing (4.20) and (4.22) we see that

Ef [(€7(t) — " (1)¢(1)] = o. (4.23)

Since £*(t) — v*(t) is an IF-martingale and, according to §8 of the
Appendix, an arbitrary martingale can be represented as in (4.19),
then as ((t) in (4.19) we may take £(t) — v(t). Therefore the equality
&(t) = »(t) holds Pf almost everywhere for each fixed ¢. But £(¢) and
v(t) are continuous from the right, and this means immediately that
the equality £(¢) = v(t) holds Pf almost surely for all ¢. The proof is
complete. u

By (4.14) the functional F2(£) (see (4.11) and (4.12)) can be rewrit-

ten as

FU(E) = BY [ €(5)Q(s)3" (s) ds. (4.24)
We want to find
F.(€) = inf F2() (4.25)

In the initial formulation a fixed ¢ and 3 define a measure on Y
As is shown by (4.24), in solving the minimization problem for the
functional (4.11) with respect to all possible action rules it suffices to
consider measures on Fo,. Similarly to the discrete case, the introduc-
tion of a posteriori probabilities allows for fixed ¢ and 8 a measure to
be relatively simply given on F,, and the random variable § may be
excluded from consideration.

Construction of such a measure and the transformation of the func-
tional to (4.24) corresponds to transformation from the initial control
problem for the random process X (¢) with incomplete information (i.e.
with unknown value 8) to the control of a pair X(t), £(t) of processes,
where {(t) satisfies the stochastic integral equation (4.18).
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According to §7 of the Appendix, to construct the measure on Fo it
suffices to define the conditional distributions of the time and coordi-
nate index of the next jump by the formulae

Tnts i
Plrus =7 > s} = exp(= [ BI"(E()) dv)

for T, < oo, (4.26)

P{lyy = j|Fr, Ao(tasa)} = ﬁ;}(tn:;l)g‘}((ﬁf((::jrl: ))))

for 7,41 < o0, (4.27)

The right-hand side in (4.26) is conveniently expressed in terms of
Tin and l;,,. As mentioned before, the IF'-predictable function G(t) is
represented in terms of a sequence of deterministic functions
{Bn(Fin-1,t1m), 7 = 1,2,...}. The function Baldrmetsttn=iyt)s con-
sidered as a function of ¢, we will call the control between the (n —1)*
jump and the n*" jump, and an action rule we will understand to
be both an IF-predictable function 8(t) taking values in §™ and the
sequence {Bn(j1.n-1,t1,n-1,1)} of controls between the jumps.

To express the right-hand side of (4.26) in terms of 7, and li5,
B(s) must be replaced by Bni1(lin,T1,n,8). The function £(s—) of
(4.27) on the interval (7, 7o41) is also very simply expressed in terms
of €(7,) and Bny1(lyny T1m, $) using equation (4.18).

We will introduce the following notation. Let a := (t,€,af(:)),
where a(s) := (a'(s),...,a™(s)) is a measurable vector-valued func-
tion defined for s > 0 and taking values in ™. Denote by £(s|a) and
z(s|a) the solutions for s > ¢ of the differential equations (compare

(1.10))
d . *
L (ska) = ~g(€(sla)o" (5
= {5*(5|G)f(5l0) = dia,g 6(3;&)]!\0*(3) (428)
%Z(sla) = —z(sla)a(s)p" (&(s]a))

— —2(s|a)é(sla)Aa* (s),
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with initial conditions é(t|a) = €, z(t|a) = 1, and let

7 (s]a) := aj(s)pj({(s[a))/a(s)p*(é(s|a)). (4.29)

Lemma 4.2 Let B = {Bn(J1in-1,t1n-1,¢), n = 1,...} be an action rule
and @ := {7,,€(mn), Bnt+1(lin, Tin, t)}. Then:

(1) P{Tny1 — Ta < 8|F..} = 1 — 2(1n + s|@) for 7, < oco.
(2) P{ln+l = j|fr.. Vo(tan)} = 7rrj(7’rn+1|a) for Th4 < oo,
(3) &(s-) I{rn <s < Tat1} = &(8]@) I{mn < s < Tapr }.

(4) If lnyy = 7, then {(Tni) = D ¢(Tps1la) for Thyr < oo, where
the transformation TV is defined in (2.17).

(5) For any predictable function f(t) ={fat1(jin,tin,t),7 = 0,1,...}
v/\‘r,l+1
B[ 1s) dsl )

ATy

S Jnt1(liny T1ny 8)z(s]a) ds.

Proof. Statements 3 and 4 follow directly from the stochastic integral
equation (4.18), written in the form of differential equations between
the jumps and of a relation between pre- and post-jump states at the
jump times. Statements 1, 2 and 5 are obtained from (4.26) by substi-
tuting the function f,1(l; n,T1,n,8) in place of B(s), replacing £(s_)
by the corresponding expressions from Statement 3, and replacing f(s)
by the function fo1(lnyTin,s).

4.3 Existence of an optimal action rule

As mentioned in §2.3, to prove the existence of the optimal action
rule in discrete time for v < oo, it suffices to introduce a topology
on the space of action rules II, so that II is compact in this topology,
and the functional W (8) is lower semicontinuous with respect to .
If, moreover, Condition (A2) holds, then semicontinuity follows and
this means the existence of an optimal action rule for v = co and
the optimality of the pointwise limit (as v — o0) of the finite horizon
optimal action rules.



