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Similarly, the existence of an optimal action rule for the problem of
minimizing the functional (4.11) formulated in §4.2 may be established
for the case of continuous time. For v = oo, the analogue of Condition

(A2) is '
lim inf Ef/ £Q(s)B*(s)ds = 0.

s—oo {B,v>s

However, to keep the proof free from unnecessary details, we will sim-
ply assume that ¢’(s) > 0,7 =1,...,m, holds for the case v = oo.

If we wish to obtain the existence of optimal action rules for v = oo
for a sufficiently large class of functionals, for example, for all function-
als of the form (4.11) with ¢ > 0, then the topology on II must have
the following property. The weak convergence of the joint distribution
of the values of l;, 714 for any k = 1,2,... must follow from the
convergence of the sequence of action rules B in the given topology.

We introduce such a topology for II in the case of a single hypo-
thesis, i.e. for N = 1 (Theorem 4.1) and give an example which shows
that for N > 1 such a topology cannot be introduced.

However, a topology which yields the compactness of the strategy
space and the lower semicontinuity of the criterion functional may
be introduced if we consider a richer set of randomized action rules.
Since the description becomes overcomplicated in this case, we deal
only briefly with this question and give without proof Theorem 4.3
stating the existence of an optimal action rule.

We study first the case of one hypothesis. The corresponding in-
tensity vector is denoted by A := (M,...,A™) and for reasons of sim-

plicity we assume that M >0forj=1,...,m and that the measure .

corresponding to the action rule 3 is given by PP,

Consider the sample space of variables 71,0y, 72,0,..., assuming
that some 7 coordinates may coincide, and some become +oco (in the
case T, — 400, then 7,4, := +oo and [, is not defined and if 7. < oo,
then 7,41 > 7,). This space may be considered to be metric compact,
if we consider it as a closed subset of a Tychonov product of the
appropriate spaces (nonnegative half line with the point +oo attached
and §™). Functions corresponding to continuous functionals on the
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compact obtained depend continuously on 7, and [, ; for each fixed
k =1,2,... and have a limit at infinity. The total set c:f all probabi‘lihr
measures on this compact is a metric compact in the weak topolo y
(see Dunford & Schwartz [1962]). Here the weak convergence of t!}i
sequence of measures P, to the measure P is equivalent to the fact‘
that for any k& = 1,2,... the sequence of joint distributions of the
?.fa‘lues L1k, 71 induced by the measures P, converge weakly to th

joint distributions of these values induced by the measure P Recal?
that the weak convergence of joint distribution functions is (le.ﬁned in
terms. of the corresponding Lebesgue-Stieltjes integrals of continuous
fUﬂCthflS with limits at infinity, here in 7, ;. since [, x is discrete

. We introduce as a topology on the space of action .rules the top-olo y
induced by the weak topology for measures on the given compact. .

Thleorem_tl.l For .th.e case of one hypothesis, the total set of action
rules Il is a metric compact in the topology introduced above.

Proof. ff‘fccording to the above discussion, if we can prove that the
set of action rules is closed in the topology introduced, then it may be

cons; :
onsidered as a closed subset of a metric compact, and the theorem is
proven,

First we will prove the following lemma.

L:mma 4.3 On the p'rociuct of a Borel space X and the closed half line
{ : 0 <t < oo} (t}v‘zth attached point +00), suppose given a positive
finite measure P. Then the following statements are equivalent:

(a) For any measurable B C X and any t and A, 0 < { < oo
0 < A < oo, the inequalities T ’

ci{A + o(A))P{B x [t,00]} < P{B x [t,t + A)}
< & AP{B x [t,c0]}  (4.30)

hold, where 0 < ¢, < ¢y < 0o and th )
| ey < e function o(A) d
depend on B and t. 7(8) docs not

(b) There exists a measurable function c(x,t) such that ¢, < eldt) £
¢z and for any B and any t, 0 < t < o, E 3o

¢
PABx (0,0} = [ (1= exp{ [ c(e,v)do})u(de),  (4.31)
where p(+) is a measure on X' such that u(B) := P{B x [0, c0]}.
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Proof. Statement (a) is obtained from (b) by substitution of expres-
sion (4.31) in the middle term of relation (4.30) and applying the
inequality ¢; < ¢(z,t) < ¢; and the elementary inequalities y —y*/2 <

1—exp{-y} <y.

We show that (b) follows from (a). Indeed, from the right-hand
inequality of (4.30) it follows that P{B x [t,t + A)} < c;Ap(B), and
this means that the measure P is absolutely continuous with respect
to the product of the measure g with Lebesgue measure on the half
line on the set X x [0,00). But then, by the Radon-Nykodym theorem

there exists a measurable function f(z,t) such that

P{B x [0,)} = fﬂf;f(:n,v)dv-,u(da:), (4.32)

for 0 < f(z,t) < ¢y and [5° f(z,v)dv < 1. Accordingly, the right-
hand inequality of (4.30) may be rewritten in the form

/B];t‘m[f(ﬂh'”) —&g(1 ~ /(;U f(z,s)ds)|dv - p(da) <0,

or, taking account of the inequality f(z,t) < ¢z, in the form
t+A v
f f [f(z,v) — c2(1 —/0 f(z,s)ds)] dv - p(dz)
B Jt

t+A
gchfBj; dv - p(dz). (4.33)

From (4.33) it follows that for any € > 0 we can find a set of dv p(dz)
zero measure such that on its complement

flz,v) — (1 — /UU f(z,s)ds) <e.

But from this it follows that a set of dv - p(dz) zero measure can be
found such that on its complement

f(z,v) — (1 — fo f(z,5)ds) < 0. (4.34)

Since the function f(z,t) is defined up to sets of dv - p(dzx) zero mea-
sure, then without loss of generality it may be assumed that (4.34)

holds everywhere. Now set

olz,0) 1= flz,v)/(1 - [D f(z,3)ds).
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It is easily checked that

/Otf(:c,v)dv =1—exp{— fot c(z,v) dv}, (4.35)

and this means that (4.31) holds by (4.32) and, according to (4.34)
and the definition of ¢(2,v), ¢(z,v) < c,. Now substitute (4.31) in
the left-hand inequality of (4.30) and use the elementary inequal-
ity 1 —e™¥ < y. Similarly to the above, we obtain that a set of
dv - p(dz) zero measure may be found such that on its complement
c(z,v) > ¢;. On the exceptional set, set ¢(x,v) := ¢; and redefine the
function f(z,v) on this set of zero measure according to (4.35) by the
formula f(z,v) = c(z,v)exp{— [y ¢(=,s)ds}. Obviously, inequality
(4.34) holds. Lemma 4.3 is proved. ]

To prove that the set II is closed, it suffices to consider an arbitrary
sequence of action rules 8" such that for any k = 1, 2,... the measures
ps" corresponding to them on the sample space of values Uik, 71k are
weakly convergent to some measure and to show the existence of an
action rule corresponding to this limit measure.

As was noted in §7 of the Appendix, corresponding to the ac-
tion rule B(t) := {B.(j1,_1,t1,-1,t), 7 = 1,2,...} the distribution of
the values I,,,7;, has a density with respect to 7y, which, for 0 =
to <ty <.+ <t,,is given by

r i i - Ly .
k=t | B (1 k-1, i) A exp{ﬁ-/t‘ ABr(drk-15t1k-1,8)ds}|, (4.36)

k

wiliere Xa== (¥, ..y A™). Further, it is convenient to replace 7, and
ﬁ,() by 7i, and B,(), where 7 1= 7, — 11, k > 1, Bl i) =
Be(dr-1rt,ts + oy sty + -0 4+ 8,), » = 1,... . Moreover, when

the number k and the index 7, ,_; are fixed, we will write B(:) in-

stead of Bk(jl,kﬁu +). For an arbitrary measurable subset B of the set
{CC = (tl,.. -,tkfl) : t{ 2 0} define

PG, B x [0,)} := PPNy = ji, .. GectsjyFips € B, 7 € (0,4},
PMB % [0,8)} := YRGB % [0,4)1,
)

PM{B} := PMYB x [0,00]}.
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From (4.36) we obtain

PGB x [0,0)) = /Bf;¢(")(j,m,s)dsp(“) (dk), (4.37)

where
(G 2,5) = NE(,5) exp{= [ A" (z,0) dv}.
From (4.37) we may easily derive the following useful inequality:

PG B x [t,t+ A)} <N . AL P{BY}, (4.38)

Second, summing (4.37) with respect to j from 1 tot m and using the
equality [ a(s) exp{— [5 a(v)dv}ds =1 — exp{— [y a(v)dv} we have
that for the measure P(™ and the function c(™(z,s) := A (2, 8),
Condition (b) of Lemma 4.3 holds, which means that the inequalities

(min M)A + o(A))PMYB x [t,00)
< PO Bx[t,t + A)}

< (max M) - A P™{B x [t,00)} (4.39)

hold. '
Finally, dividing (4.37) by A and summing with respect to j from

1 to m we have
> (M) PG, B x [0,1)}

j=1
t s
_ — [ ™(,v)dv} ds P")(d
_Lﬁexl){ foc (z,v)dv}ds (dz)

- f‘ PUR % (s, 00)} ds: (4.40)
0
The distributions P(™{j, Bx[0,t)}, (P™{Bx[0,t)}) have, accord-
ing to (4.37), uniformly bounded densities, thus if they are weakly con-
vergent to some distribution then this distribution also has bounded

density.

B
s

=
b
-
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But if the limiting distribution has bounded density, then weak
convergence is equivalent to convergence of the probability of any mea-
surable set. Therefore, we may take limits with respect to n in the
inequalities (4.38)-(4.40) and the limiting distribution P will also sat-
isfy these inequalities. By the Radon-Nykodym theorem and by (4.38)
for P it follows that there exist f(7,,s), such that f(j,2,s) < M and

P{j, B x [O,t)}:/B/:f(j,a:,.s)ds P(dz). (4.41)

From Lemma 4.3 and (4.39) for P it follows that there exists ¢(z,s),
such that min; ¥ < ¢(z,s) < max; M and
ot
P{B x [t,00)} :f exp{—f e(z, s) ds} P(dz). (4.42)
B 0

From (4.41), (4.42) and the fact that (4.40) is also valid for P, it
follows that we obtain for P

>(V)7 f(G,21) = expl - [ ez, ) da). (4.43)
Let _ il
Fi(e,t) = (V) G2 exp{ [ e(o,8)ds}. (4.44)

From (4.43) it follows that Bi(-) = (B}(-),-..,B7(-)) € S™. In (4.41),
instead of f(j,z,s) substitute the corresponding value from (4.44).
Summing with respect to j from 1 to m and comparing with (4.42)
we see that

AB*(z,t) = c(z, t).

Since the given inferences hold for any k, it follows that the density of
limiting distribution P is represented by (4.36). This completes the
proof of Theorem 4.1. |

Theorem 4.2 In the case of one hypothesis for the problem of the mini-
mization of the functional (4.11), there exists an optimal action rule
B” for any v < co. If ¢(s) > 0, then an optimal action rule exists
also for v := o0, and lim, o F, = Fy, and for v — co any limit point
of B¥ will be the optimal action rule for the problem with v = co.
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As was said before, each function ¢(t) is represented in terms

.}, and

Proof.
of the sequence {¢I(j1,—1,t1,-1,t), 7 = 1,2,..

Ff = Z E'Gqsil,.(ll,rﬁls Tl.")?

r=1
where
0 if t>v

q5i,r(j1,r—1,t1"._l,t) ::{ o |
¢£(Jl'r_l’t1.r-—1,t) lf t <

Define

FP(M,n) ZEﬂ (Ml (b ror,ms)] -

By the assumption of the theorem and Remark 4.2, it may always be
assumed that ¢/ (:) > 0 and this means that for fixed 3 the functions
FP(M,n) are monotonically increasing with respect to n, M and v.
But the limit of monotonically increasing sequences and the integral of
continuous functions are lower semicontinuous, so (see also Lemma 2.2)
for proof of the theorem it suffices to show that, for any v < co and r =
1,2,... and any positive bounded measurable function f(7y,_1,t1,+),

the function

Bt (4.45)

is continuous with respect to 3. If the function f(j1-1,%,-) is continu-
ous with respect to t;, for each fixed j,_1, then expression (4.45) is
continuous with respect to A by the definition of the topology on the
space of action rules. It was shown in the proof of Theorem 4.1 that all

joint distributions of the pairs 7y,,l;, have uniformly bounded densi-

ties with respect to 7; .. Thus continuity with respect to g is preserved
for all measurable bounded functions. Theorem 4.2 is proved. |

We give an example of a sequence of action rules such that the
corresponding sequence converges weakly, but for N > 1 the limiting
measure does not correspond to any action rule.

R SR AR AL b R e R s s e

[Errr———
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Consider the case of two devices and let B(¢) := 8'(t). Let the

sequence of action rules A(")(¢) be such that the corresponding ﬂ( )(tl
and A" (,t1,1) have the form (j = 1,2)

M) = 1/2,

0, 1) = ()

_{a, if tIEBn:U{szg:<s§2r+1}
= n n

r=0

b if t ¢ Ba,

0<a, b<1, a#b.

It is easy to see that for any hypothesis P"){r; € B,} — 1/2 and
therefore, according to (4.36), for a hypothesis with parameters \ =
(A1, A%) we have

JLI&P(H){TI >ty h=4nn-n>t}
: oo AJ' 1 2
= lim EBXP{_(A + A%)s/2

gAG

J,a s+ +/\2] dv}ds

e M

= lim ft 1 exp{—(A" + A%)s/2 — A%(A — A2)F)(5)t} ds
s 1 2

= [ exp{=( 4 A)s/2 (1) s, (4.46)

where

F(t) = 1exp{—J\"’t}(exp{—()x1 —Mat} +e T )2

5 xp{A' — A*)bt}). (4.47)
Let the limiting measure be defined by some action rule to which
B1(t) and F,(7,¢,,t) correspond. Then, comparing (4. 46) and (4.36),
we obtain that 3,(t) = 1/2, 8,(5, 1,4 +t) = B(t) for j = 1,2 and for
any hypothesis

£(8) = exp{- Nt} exp{ [ (V' X)3(s) da).
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From this and from (4.47) it follows directly that B(s) depends on
(A' =A%), If A' and A* are different for different hypotheses, this
contradicts the definition of action rules.

Notice that the limiting measure corresponding to (4.46) is a con-
vex linear combination (with the coeflicients 1/2) of the measure cor-
responding to the action rules 8;(t) = 1/2 and f,(7,t,s) with one of
the measures identically equal to @ and for the other equal to b. So our
example also shows that the set of measures corresponding to action
rules is not convez.

However, formula (4.46) allows a different interpretation. It can
be said that by(j,t,,t) takes two values a and b, each with the prob-
ability 1/2. Such a randomized [(3,(j,t:,t) addressed both hypotheses
simultaneously.

In the general case, to give a randomized action rule the given se-
quence of functions {B,(j1,-1,t-), * = 1,2,...} must be replaced by a
given sequence of measures pi,(-|j1,r—1,%1,-1) on the space of measur-
able functions (t) taking values in §™.! To introduce a topology on
the space of such randomized action rules the problem formulated may
be considered to be the discrete time problem of §2.2, where the con-
trol space A, = A consists of measurable functions «(t) taking values
in $™. The set A is considered as a subset of the space L>(0,00) with
the weak topology induced by L'(0,00). It is known (see Dunford &
Schwartz (1962, TV.13.6, IV.13.27)), that A is a metric compact in this
topology, and that convergence is equivalent to convergence for each
t > 0 of the integral f; a(s)ds. The state space A, = X corresponds to
the time and value of the n'" jump of the process X(¢). An important
role is played by the fact that the transition probabilities correspond-
ing to the different hypotheses are absolutely continuous with respect
to the transition probabilities corresponding, for example, to the case
A= [Tipas 5 1):

The method of introduction of the L* topology is described, for
example, in Schél [1979], where the statement of Theorem 4.2 is veri-
fied for functionals of a more general form than (4.11) which can de-
pend on previous controls. By this method the existence of an op-
timal randomized action rule for each fixed £ € SV may be proved.

1The equivalent construction is given in terms of the continuous flow of o-algebras
of the observed process and control in Presman (1986).
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The existence of an optimal nonrandomized action rule follows from
the general statement concerning the Bayesian problem that for any
strategy a not worse nonrandomized strategy can be found (see Dynkin
& Yushkevitch 1976). As a result we have the following theorem.

Theorem 4.3 In the minimization of functional (4.11) (for any v,
0 Bl o) and any ¢ € SN there exists an optimal action rule.
If ¢(s) > 0, then an optimal action rule ezists also for v = 0o and

lim, o F,(€) = Fiu(£). m

Since the above-mentioned approach is cumbersome and does not
give an answer to the question of how to find an optimal strategy
and what properties it possesses, we will not bother to prove Theo-
rem 4.3, but will discuss in the sequel another reduction to discrete
time after the transformation to a problem with complete information
has already been effected. In this case, as usual, the simplest case
is Markov. First we make a remark about properties of the function

£,(¢).

Remark 4.3 From the representation (4.4) for the measure P and
the definition (4.25) of the functional F,(¢), it follows that F,(&) for
each fixed v < oo is a solution of a finite Bayesian problem, and this
means that it satisfies the condition of Lemma 2.3. So, the statement
of Theorem 2.2 holds for F,(¢) in continuous time, and in particular
F,(€) is convex with respect to ¢ and continuous on the interior of
the simplex SV, and its projection on the interior of a face of any
dimension is also continuous. -

4.4  Reduction to a discrete time problem and existence of a
Markov uniformly optimal strategy in the Markov case

At the end of §4.2, the initial basic scheme problem of minimization
of the functional FA(¢) with respect to all possible action rules B e
II (see (4.11)) was reduced to the problem of control with complete

information of the processes X(t), £(t) with criterion functional (4.24),
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which can be rewritien as

Po(e) = Bf [ ¢(s)Q(s)B" (5) ds

Tn

_ i Eff £(5)Q(s)8" (s) ds, (4.48)

Tn-1

oo
0

n=1

where_Q(.‘:‘) = {_qf(S)}, gi(s) = Mpl(s), i =1,...,N,j =1,...,m
and ¢!(s) := {¢L.(Fin-1,t1,n-1,8), n = 1,...} are I, -predictable func-
tions. We assume that if ¥ < oo, then Q(s) := 0 for s > v and do not
indicate the dependence of FA(¢) and @(s) on v. As hefore, suppose
that ¢i(s) > 0 for v = co.

Based on the sum representation of (4.48) and Lemma 4.2, this
problem may be transformed to a problem with discrete time and com-
plete information (see §§2.2 and 2.4), where the réle of time is played
by the jump number. This approach corresponds to consideration of
the embedded chain for the process X(t), (1), at jump moments ¢ of
this process. We thus consider the following problem in discrete time.

The state spaces X,, n = 0,1,... coincide with

X={G, &) :j=1,...,m,0<t <00, &€ S}U {o0}

equipped with the Borel o-algebra and the control spaces coincide
with A, consisting of some element d, and of all measurable functions
defined on [0,00) and taking values in ™, so that A, = AU {d,},
where A := {a(-) : a(s) € §™, 0 < s < c0}.

Asin §4.3 the space A will be considered as a subspace of L*(0, 00)
with the weak topology with respect to L'(0,00).

The control d, applies only in the state {oo}, and as a result of its
application the system stays in the same state. If at time k the system
is in state (j,t,¢) and the control a(-) is applied, then the transition
probabilities do not depend on k and are given by the formulae

0 if w<t

Pty < ulj,a}= 4.49
{trer < ulj,a} {[z(u|a.) i sy M 899)

P{£k+1 = P£(5(1k+1|fl))s Jrey1 =1 |9 oty Bt OO}

= Irf(fk+1|(1), [=1,...,m,

84.4 Reduction to discrete time problem 147

where a = (¢,€, a(-)), the functions z(u|a), £(u|e) and m'(u]a) are de-
fin.ed in (4.28) and (4.29), and the transformations I''(¢), [ = 1,...,m
coincide with transformations I'"! defined in (2.17), so that (T¢); =
Me&/PHE). T limy o, z(v|a) > 0, then with probability equal to this
limit the system jumps to state {co} at time k + 1. ‘

Let the cost function at the n'® step (n = 1,2,...) be equal to 0 for
the trajectory in state {co}. For the trajectory jon-1, ton-1, fon1
a1,n(+) the cost function is defined by the formula i a

@n(Jon-1, ton-1,€on-1,a1,n(-))

a /to: €(slan)Qn(J1,n-1,t1,n-1, 8)on(3)2(s|a,) ds. (4.50)

Here a, := (t,_1,&u-1,@.(-)) and the matrix Q, (n=1,2,...) defines
the representation of the F,-predictable matrix @(t) by a sequence of
deterministic functions, so that

Qn() = {Q;f,n(')) =il 3,... }) Qin() = ’\3 f,n()

Notice.’. that in spite of the fact that all controls a(-) are defined on the
same interval (0, 00), the values of a(s) for s < ¢ do not play any réle
in the application of the control a(-) in the state ¢,¢.

Theorem 4.4 The problem of minimizing the functional (4.48) with re-
JPect to‘ a-ll action rules B € I is equivalent to the formulated discrete
time minimization problem with initial point jo,tq := 0, & := £.

Proof. Let a strategy = in the discrete time problem be put in cor-
respondence with each action rule 8 := f(s) := {Bn(F1n-1,t1,n-1,8)
i 1,2,...} in the following way. The strategy = puts )a detelrminis:
tic .function an(slk) := Bu(F1n-1, tin_1,8) in correspondence with the
_trajectory b = (Jom-1,to,n-1s o1, @1 n1(*)), n = 1,2,.... It is eas-
ily seen that these functions are the measurable images of H,_; in A
and this means that they actually define a strategy. We obtain, by the:
constructed correspondence and the choice of transition probabi‘lities
and a cost function for the problem with discrete time, that the cost
of the strategy 7 for the initial state jo, 1o := 0, o := £ coincides with
FA(£) (see (4.48) and Lemma 4.2).



