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Further, let the initial point jo,t0 := 0, & := ¢ and some strat-
egy m be fixed. As mentioned in §2.4, for the discrete time problem
for a fixed initial distribution we can find for each strategy at least
as good a nonrandomized strategy, such that for each n = 1,2,...
it defines a measurable mapping a,(:|h) from the space H,_1 into
A. Therefore the strategy m may be considered to be nonrandom-
ized. We construct an action rule such that the cost of the strat-
egy m for the initial point jo,to := 0, & = & coincides with FA(&)
for any functional of type (4.48). For this the sequence of Borel
functions {Bn(jin-1-t1n-1,8), m = 1,2,...} given by the equalities
Bi(s) = ai(sliosto,éo)s P2lirstr;s) i= aa(8l70, 1, t0s 11, €0y €1 (1 |€0s to,
a1 (+|70, tos €0))s @1(+|705 o, €0)), and so on, are sufficient. The theorem
|

is proved.

Now it is possible to make the same remark as in §2.4 about the
correspondence between action rules in the initial problem and non-
randomized strategies in the equivalent problem with complete infor-
mation. It is convenient, however, to have a definition of a strategy in
the initial problem as a function of the a posteriori probabilities.

Nonrandomized strategies in the problem with complete informa-
tion may be assumed to be strategies of type {an(sljomn-15to,n-1:€0,n-v>
n=1,2,...} since the controls may be sequentially excluded from the
history h = oo soneii b=t oS-t} BF the correspondence
stated in the proof of Theorem 4.3, we will also call such a sequence
a stralegy for the initial problem. For this strategy we will use the
notation F7(&) (W7(£)). This notation is appropriate since for given
¢ an action rule corresponds to each strategy.

* * *

The situation when the matrix Qu(-) in (4.50) (or, equivalently, -

the function qﬂv;’n() in (4.48)) does not depend on Tin-2tin-1y 1€
for n > 2 has the form Q,(j,t,s), is of special interest. In this case
(which we will call the Markov case) the formulated discrete problem
is a Markov model (see §2.4). If Qu(j,1,s) does not depend on 7, then
it is obvious that in the corresponding discrete model the j may be
excluded from the state space. In continuous time, this corresponds to
controlling only by the process &(t) rather than the pairs X(t), &(t).
For simplicity, only such a situation will be considered further.
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In the Markov case, a question naturally arises regarding suffi-
ciency of the class of Markov strategies and the existence of Markov
uniformly optimal strategies (a repetition of the questions raised in
§2.4). As usual, the answer to these questions is obtained from a
study of the optimality equation. In spite of the fact that the corre-
sponding theorem holds for arbitrary functions @n(7,t,8) which are
bounded from below and nonnegative for v = co, we give a formula-
tion and a proof only for the case when Qn() does not depend on j
and { for each n and, for the case v < co, depends only on v — s, and
in the case v := co depends only on s. E
. Let F7(t,&) := F7(t,€) be the cost of the strategy m on the
interval [n,o00) for the Markov model corresponding to the ‘discrete
time problem formulated at the beginning of this section.

Let 7 be some nonrandomized strategy in the model with discrete
Fime on the time interval [n,c0) and let 3 := B(n) be an action rule
in the problem with continuous time, which after time 7, coincides
with the strategy = for initial point £(7,,). Using the definition of the
model and the results of Lemma 4.2, we obtain that, independent of
the dependency on the values (3(s) up to 7,,

B[ 008" (5) sl ] = B, (). (4.51)

Let F,(t,€) := inf, F7(¢,€). From Theorem 4.4 and also from formula
(4.51) it follows that ‘

Fo0,€) = F(€) = inf, F°(¢), (452)

where F#(¢) is defined according to (4.48).

. According to §2.4 and to the definition of the transition probabili-
ties (4.49) and the cost function (4.50), the optimality equation for the
function F,(t,£) has the form '

Foa(t,€) = a(i})lefAT“(')Fn(t,ﬁ)

Il

[ eGla@n(s)a* (s)etsla) +

; Fo(s,T¢(sla))a’(s)p!(€(sla))z(sla)]ds| . (4.53)



150 Continuous Time Problems

Theorem 4.5 For v < oo always, and for v = ;o(:uf;n ai{ ;;ertv;zn{t);;{‘
] ( " ve. the functions Fy(t,&§) saiis
i R A J{Iarkov uniformly optimal strategy
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that condition (c) is true.)
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dﬂ.‘(sla) - i()\.z _ )\{v)aj(s), i = 1_,__‘,N._ (4.54)

ds

lower
From this it follows that n(s|a), and hence {(s",a) and z(slta) a.rerl Zach
semicontinuous with respect to a uniformly with respect to s o
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finite time interval. If in the definition of the transformation 7°() we
consider the interval from ¢ to v and replace Q,;,(¢) with 0 when
@Qni1(€) > M, then we obtain the lower semicontinuity with respect
to a of the “truncated” transformation 7°(). Taking the limit with
respect to both v and M, we obtain the lower semicontinuity of the
transformation 7} with respect to a.
"To check condition (c) we note the following. From (4.52) and Re-
mark 4.3 it follows that Fy(0,£) may be considered to be a solution
of the finite Bayesian problem. Exactly similarly, for fixed n > 0 and
t > 0 the function F,(t) may be considered to be a solution of the fi-
nite Bayesian problem (with initial time ¢, a priori distribution ¢ and
functions Q,(s), r = 1,2,... coinciding with the functions @, ,.(s)).
Therefore, by Lemma 2.3, F,(¢,£) is convex with respect to ¢, contin-
uous on the interior of a simplex SV and its restriction to the interior
of any face of any dimension is also continuous. This implies that
F,(t,€) is lower semicontinuous with respect to ¢. Further, if @nl(s)
is replaced by 0 for n > v, s > v and Q,(s) > M and some action
rule 3 is fixed, then F?(¢,£) will be continuous with respect to ¢ uni-
formly with respect to # and €. (This follows from the boundedness
of @.(s) and the continuity with respect to a of functions é(s|a) and
z(s|a) uniformly with respect to s on each finite interval proved above
(see (4.54)). But then F,(t,£) := infg FP({,£) will be a continuous
function of ¢ uniformly with respect to ¢. From this and continuity
with respect to ¢ follows continuity with respect to both ¢ and & of
the “truncated” functions Q,(s) (for ¢ belonging to the interior of the
simplex or to the interior of any face). Letting ng, v and M tend
to infinity and using the compactness of the randomized action rules
in the problem with continuous time, as in the proof of Theorem 4.3,
we obtain monotonic convergence to F,(¢,£). Thus, F,(t,£) is lower
semicontinuous with respect to both (,¢) as a limit of a nondecreas-

ing sequence of lower semicontinuous functions. So Theorem 4.5 is
proved. [ |

There exist different approaches to the solution of the optimality
equation and to finding an optimal strategy. For example, it may be
possible from the differential equations (1.28) to express the functions
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&(sla) and z(s|a) in a closed form in terms of the control a(:) and,
replacing the expressions obtained into (4.52), we can then find the
control a(-) giving an infimum recursively. However, such an approach
is successful only in simple cases. In §7.3 the problem of maximizing
the probability of the event of at least one jump in a fixed time interval,
i.e. the problem with qbfl = =1, quﬂ :=0 for n > 1 forall 7 and 7, is
treated with this approach.

Another possible approach consists in the following.

For some n, suppose the functions F,,,({,£) are already known,
and that F,;,(t,£) is continuously differentiable. Then according to
(4.52) and (4.28) the problem of finding F,(t,£) may be considered as
a nonautonomous problem of Pontryagin type with state variables ¢
and z with fixed left end point and an integral functional. Such an
approach for the case m = N = 2 will be discussed in Chapter 6. In
particular, the situation described obtains in the problem of maximiz-
ing the probability of the appearance of at least k jumps up to the fixed
time v. The corresponding functional is obtained for ¢}, (s) := —1 for
0<s<w, ¢l (s):=0frn#k.

Finally, one more possible approach consists in obtaining the op-
timal strategies by “analysing” the optimality equation. This will be
the subject of the next section.

4.5 Local optimality equation and optimal synthesis

In the initial problem it was required for a fixed initial distribution £ to
find an action rule (i.e. to demonstrate a sequence f = {fm(j1,n-1,t1n),
n = 1,...}) such that the measure Pf induced on FZ by the action
rule A minimizes the functional F#(¢) (see (4.11) and (4.12)).

In §4.2 the solution to this problem was reduced to the solution of
a problem of control with complete information involving the control
of the pair of processes X (t), £(t) and the criterion functional (4.24).
In §4.4 it was shown that such a problem may also be considered as a
control problem in discrete time for which the idea of a strategy arises
as well as the idea of an action rule. From a nonrandomized strategy
(an optimal strategy may be chosen from this class) for a fixed a priori
distribution ¢ on the set of hypotheses an action rule for the initial
problem may be constructed.
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In this section we consider only the Markov case, where the func-
tional (4.24) given by the functions Qu(jyn-1,1.n 1,8) (see (4.50)) has
the form @Q,(j,_1, tn_1,5). Moreover, for simplicity we assume that
@n(+) does not depend on j, ;. In this case, instead of the pair X (t),
&(t) it suffices to consider only the process &(t) and we may restrict
ourselves to strategies of the type 7 := Toalat &)y m =il B o 3,
where for fixed n = 1,2,..., ¢ > 0 and ¢ € SV the function an(s(t, &)
takes values in A and a,(s|t,€) depends on ¢ and ¢ in a measurable
way.

On the intervals between the jumps of the process the a posteri-
ori probabilities satisfy the ordinary differential equation (4.28) (see
Lemma 4.2), and similarly to the situation for deterministic optimal
control problems the question arises whether the function a,(s]t, &)
may be given by some function of the time s and the current value of
the a posteriori probability at time s.

Precisely, let there exist a function a(t,€) measurable with respect
to ¢ and ¢ with values in SV, such that the differential equation (4.28)
for any initial point is uniquely solvable (in forward time) with the re-
placement of a(s) by &(s,£(s)). Let E(s|t,{) be the corresponding so-
lution for the initial point ¢,&. If the equality afs|t, €) = &(s,g(slt,e))
holds, we will say that the function a(t,€) defines a synthesis for the
controls «af(s|t, €).

To address the question of the existence of an optimal synthesis
and to find this synthesis, the local optimality equation may be used
(see formula (4.57) below). A heuristic derivation of this equation
is contained in Chapter 1. It can also be derived by differentiating
the equality (4.53) along a trajectory of the process £(t). The local
optimality equation has the simplest form in the homogeneous case,
but for the problem in continuous time the definition of homogeneity
needs to be given more precisely. Let us say that a Markov problem
is homogeneous with respect to jumps if its matrix functions @als,t.8)
do not depend on n. In this case the corresponding problem with dis-
crete time is homogeneous and the functions F,(t,¢) and the optimal
controls a,(s|t,£) will also not depend on n.

If for v < oo the functions @,(-) depend only on the difference
v —s and for v := co the functions Q,(-) do not depend on s, then in
this case we will say that the problem is homogeneous with respect to
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time. In this case for ¥ = co the functions F,(¢,£) will not depend on
¢t and for v < oo will depend only on the difference v — . As in the
case of discrete time, for v < oo in the time homogeneous problem it
is more convenient to consider the time remaining and, by changing
notation, to consider that the function F,(t,£) gives the solution of
the problem on any time interval of the type (¢',v), where v — ' = t.

If a problem is homogeneous in both time and jumps then we will
speak simply about a homogeneous problem. In this case Q(s) is
a deterministic function and s is understood as time remaining for
v < 00.

In the homogeneous problem an expression similar to formula (4.51)
may be proved, viz.

o~ t,6) = inf B, | [ €)@ — )8 (s)dslé(t) = ¢ (4.5)

with an obvious change for the case v := co.

Now we will formulate the statement of the local optimality equa-
tion for the homogeneous case.

We introduce the operator T*(a € S™) on continuously differen-
tiable functions f(t,£) by the formula

1 1(1,8) = - P08 (grade s, €)9(6)a"
£ 3 [FTE) - £(1,6)] POl +£Q(1)a".  (4.56)
=1 .
Theorem 4.6

(a) Let v < oo and suppose that there exists a continuously differ-

entiable function ¢(t,&) such that
inf T¢(t,&) =0,  #(0,€) =0. (4.57)

Then
s 1,8) <inf B8 { [ €60 — )8 (s)dsle(t) = ¢ . (4.58)

If the function a*(t,¢) achieves the infimum in ({.57) and is
such that o*(v—1,£) gives a synthesis satisfying equation (4.28),
then equality holds in ({.58) (in particular, F,(§) = ¢(v,€)) and
a*(v —t,€) defines an optimal strategy.
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(b) Let.u = oo and suppose that there ewists a continuously differ-
entiable function ¢(€) such that

inf T*$(¢) = 0 (4.59)

and for any action rule f that
EJp(E(t) = 0 as t — oo. (4.60)

Then

86 <int B { [T e)Qp* ()dsle(t) =€} (a61)
If the ftfnction a*(€) achieves the infimum in (4.59) and gives a
sgimthe.u:s satisfying equation (4.28), then equality holds in (4.61)
(in particular F(€) = ¢(£)) and a*(¢) defines an optimal strai-

eqy.

Proof. Let the action rule 8 := fB(s) be fixed. For the continuous‘

differentiable function ¢(v—t,¢), the change of variables formula holds
(see §9 of the Appendix):

B = 0,€(0)) = dlv - ,E(1)
vra
+ [ [5t = 28060 ~ (gradeb — o, €060 - ae(e1)8* ()] ds
+3 [[[o0 - T - g0 - s 86 N]axts) (e

at ¢ .S v < v < co. Note that for any predictable vector-valued
function ¢(s) we have that

2 [ [ orix )17]

= BL | [ o)ding Ao lpe(€(5)) ol

Taking the conditional expectation with respect to £(t) in (4.62) and
then adding and subtracting the value [ £(s)Q(v — 5)B3*(s) ds within
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the expectation operation, we obtain
$(v —1,6) = Eg [d(v - v,6))IE(t) = €]
- B, [ 109w — 5, €(5))ds
1 [ [ en)Qe — 8" (s)asle(®) = €]

set v := v and by (4.57) we obtain (4.58). For v =00 in-
f‘t(:;::f Z)o(’v —8) we need to t.al((e Q(s) a,nd*let v tend to inﬁnlty.d'-I‘heln
(4.61) follows from (4.59) and (4.60). If (v—1t,€) (qurespc’:n 1tn§)y
o*(£)) is a synthesis for the strategy defined by f.he fl,u:lCthIl a*(slt, &),
then for the action rule in (4.58) (correspondingly in (461)) corre-
sponding to this strategy, we will achieve equality, which complete:
the proof of the theorem.

Remark 4.4 Statement (a) is the analogue of Theorem 2-.5 for di'screte
time and (b) is the analogue of Theorem 2.6. The requirement 11:1 (tl:)
that (4.60) must hold for any action rule # may be weakene :
formulating conditions similar to (b) and (c) of Theorem 2.6.

Remark 4.5 Similarly to Theorem 4.6 it may be shown that. if a(é)
gives a synthesis satisfying equation (4.28), @ gives the a.ctllon ruie
corresponding to this synthesis and that if there exists a continuously
differentiable function ¢(¢) such that

THOG(¢) =0, ELH(E(t) -0 as t— oo,

then ¢(¢) = Fﬁ(ﬁ). The correqunding statement holds also for v <

0.
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5 SOLUTIONS OF SOME PROBLEMS IN THE
BASIC CONTINUOUS TIME SCHEME

In this chapter, using the ideas and methods introduced in Chapter 4,
we will study the problem of loss minimization in the continuous time
case. In §5.1 we give without proof Theorem 5.1, describing the be-
haviour of the loss function at infinity, which is similar to Theorem 3.1,
proved in §3.2, concerning the discrete time case. In §5.2 a complete
solution is given for the problem of loss minimization over an infinite
time horizon for second order matrices with m = N = 2: a description
of the optimal synthesis is given and the loss functions are written in
explicit form in terms of the coefficients {AJ}. The results of this sec-
tion are a reworking of the corresponding paper of the authors (1978b).
In §5.3 we consider the same problem over a finite time horizon. This
problem is considerably more complicated than in the finite horizon
case since its solution is not stationary. Therefore, instead of explicit
forms for the optimal synthesis and loss function we give an iterative
construction of the optimal synthesis and describe some of its prop-
erties. The corresponding results were first published in the authors’

work (1978a).

5.1 [F-matrices and B-matrices

In §3.2, for the case of discrete time, we introduced the definitions of
the hypothesis matrix classes and formulated Theorem 3.1, proved in
the following sections. The main assertion of this theorem consists in
the following. All hypothesis matrices {M} may be divided into two
classes. For the matrices of one class (F'-matrices) the loss function
tends to a finite value as the length of the observation interval tends to
infinity, and for the second class (B-matrices) the loss function tends
to infinity. A similar theorem holds also for the case of continuous time
and its proof essentially repeats the proof of Theorem 3.1. Therefore
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