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we give below only the definitions, similar to those introduced in §3.2
for discrete time, required to formulate the continuous time theorem.
Let {A\} be a hypothesis matrix, with 0 < A} < co. Define

Xi:=max), R:={j:1<j<m, M=)
i

We say that the hypothesis Hy is a nuisance for the hypothesis H; if
Ai = XM = X for all j € R; and X; < Ax. We say that the nuisance Hy
is removable if there exists a j such that Al = 0, A} # 0. This definition
differs little from the definition for discrete time where 0 < A; < 1
and the values 1 and 0 of A were playing the same role. We call a
hypothesis matrix a B-matriz if there exists at least one nonremovable
nuisance and an F-matriz otherwise.

Theorem 5.1

(a) For F-matrices, W,(£) /* Wa(€) < 0o, where W,(£) denotes
the loss function over the horizon v < oo (see (4.9), (4.10)).

(b) For B-matrices, W,(£) /* +00,lim,_o W, (¢)/v = 0. |
Similarly to Corollary 3.1, we have the following.

Corollary 5.1 For any matrices

N
lim V,(&)/v = 3 &

5.2 Minimization of loss over an infinite horizon

for the case m = N =2
In the case of two hypotheses and two devices (m = N = 2) by virtue
of the relations £,(t) + &(t) = 1, B'(¢) + #*(t) = 1 it is convenient, as
in discrete time, to consider the scalars ¢ := ¢; and 3 := (' instead of
the vectors & = (£1,&2) and B = (B',5?) and, instead of the functions
W (&1,&2), Wi(&1,&2) and a(éy,€s), to consider

Wf:(g) = ”f:(eil R ’5)1 IVS(&) A= I'Va('f'fl = ‘S)
and of) := a(£,1-€).
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Define, as before,
=X - M, €:=A =X, e:=g —g, =6 — 8 (5.1)

: Changing the indices of devices and hypotheses if necessary, we
will assume in the sequel without loss of generality that

|8 > |67, §' < 0. (5.2)

Note that if €, - £, < 0, then taking account of (5.2) it is easily seen
that &' # 6%, ' < 0, e; <0, €, > 0. Thus, all hypothesis matrices A
can be divided into the following five groups (see also §3.4):

(0) €1-€2 >0,

(A) e1 <0, g5 >0, 6 <8 <0,

(B) 1 <0, &, >0, §'<82=0, (5.3)
(C) e1 <0, €,>0, 0<8®< -6,

(D) &1 <0, €3>0, 0<6=-4".

In Case O, A has a column all of whose elements are not less than
the elements of the other column; obviously an optimal strategy pre-
scribes the permanent use of the device corresponding to this column.
In this case W(£) = 0. Moreover, in all cases W(0) = W(1) = 0,
therefore it is assumed below that 0 < ¢ < 1 and Case O is not
considered further.

Define (see (5.1))

j
Ti=In pi= e = T T
& W P T ey 1T e gy T T e e
, (5.4)
If A} = 0, we will set p := —&;/A} and if A2 = 0, then ¢ := ¢,/A2.
Using (5.2) it is easy to check that

€1 €2 €7

p >0, g >0, r > 0. (5.5)
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Theorem 5.2 In Case B, W(€) = oo. In Cases C and D the strategy
given by the synthesis
o
1 i<, &oi=a/(pta)
a*(é)=q 0 il {>¢,, (5.6)
—8%/e if {=4,,

is optimal and W () has the form

pé(umM) if ¢ <¢.,
RIGE G o (5.7)
ai-9 (2B it >
In Case A, the strategy given by the synthests
0 if £€>€,, &=r/(p+7),
oa*(€) =1 1 if € <& (5.8)

arbitrary if € =¢,,
is optimal and W (&) has the form
4,99
e o LU wi il SE VR RN

W(e) = pé 2, (5.9)
EW)(€) + (1 = §W)(8) if €24
where the formulae for the Laplace transformations of the funclions

obtained from W;)(€) and Wiyy(€) by a change of coordinates are given
below (see (5.34),(5.95)). [

The statement of the theorem for Case B derives from Theorem 5.1,
since for continuous time in this, and only in this, case the hypothesis
matrix is a B-matrix. However, note that Theorem 5.3, given in the
next section, gives an independent proof of Theorem 5.2 for Case B'.

According to Theorem 4.4, to check that Theorem 5.2 holds in
Cases A, C and D it suffices to show that the control *(¢) and the
function W(¢) in (5.6)-(5.9) satisfy the optimality equality (4.59) and

A A Y
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condition (4.60). The corresponding verifications will be made below,
but for the sake of clarity we first present a general scheme to obtain
the function 1W(£) and calculate the value £, in (5.6) and (5.8). Since
the method given for finding the function IW(€) does not play any
particular réle here and is not used in the proof of the theorem, we
shall give a heuristic discussion of the construction of the function
W (£). But first we shall reformulate some results from Chapter 4 in
a form convenient for us.

* * *

According to (4.9) and (4.24), we consider for ¥ < co the maxi-
mization, with respect to all -predictable action rules B = p(t), of
the functional

Hff(e) = EfLu [_Elglﬁl(s) + €28,(1 — B(s))] ds

= Ef f:[—elg(s)ﬁ(s) +ea(1 = &(s))(1 — B(5))] ds, (5.10)

where the process (£(t),1 — £(1)) satisfies equation (4.28).
By (4.4) the functional (5.10) can be rewritten as

WE(¢) = ¢E° jﬂ [~e18(s)] ds + (1 — £) B8 jo"ezu — B(s)) ds. (5.11)

As in discrete time, it is convenient to make a change of variables (cf.

§3.4)

_ ct =8 1. 2y
7(€) = In i——f’ where ¢:= -52_1 = ﬁ (5-12)

Making the corresponding change of variables in (4.28) we obtain
by elementary calculations that the process n(t) := 7(&(t)) satisfies
the equation

ORTTURDS X0+ [[F86a], (513 |

i=1

where B8'(s) := 8(s), B%(s) := 1 — ().
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Let a(t,n) define a synthesis satisfying the equation

% = - [ala(t,n) +8%(1 - a(t,n))] , 1(te) := 10, (5.14)
i.e. the equation (5.14) is uniquely solvable in forward time for any
to >0, —00 < 1o < co. If n(t|te,no) is the solution of equation (5.14),

then according to Lemina 4.2
(s ) {rn < s < Tapa} = 0|, 0(ma)) I{7n < 8 < Tupa}

In this case, B(t) := a(t,n(t)), so that in the intervals between jumps
of the process X(t) the process 7(t) satisfies equation (5.14).

With the change of variable 7 := #(£), the operator T* of (4.56)
becomes the operator T* acting according to the formulae

Tof(t,n) = Mf(t,n) + (—e)i(m)a + e2(1 = E))(1 — a)

aft,
M= f(tyn) o= - 2L

(5.15)

(5.16)

it | | e j
+ j:zl{[f(t,n +‘Y-7) + f(t,r])] I-’-J(T]) K 63%}‘& ’

where a! := @, a? := 1 — a, £(n) := €"/(c + ¢") is the inverse trans-
formation of 7j(¢) and finally

() = p'((n)) = ME&(n) + 25(1 — &@))-

Now Remark 4.5 and Theorem 4.6 can be reformulated as follows.

(5.17)

Lemma 5.1
(a) Let the function o(t,n) be such that o,(s,n) = a(v — .s,r,ﬂ).,
(0 <t < oo, 0< v <oo,0<s < v) defines a synthesis
satisfying equation (5.14) and let there exist a continuously dif-
ferentiable function U(t,n) suck that U(0,7) =0 and

Fony(t,7) = 0.

Then U(t,7(¢)) = WP (&), where B is the action rule correspond-
ing to the synthesis o,(s,n) with initial state £. If, moreover,

the equality

(5.18)

Tty (2,5) = i{_}f T°U(t,7) = 0, (5.19)

< R R AN A

APl
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holds, then U(t,7(£)) = Wy(€) and a,(s,n) defines an optimal
strategy for the minimization of loss problem on the time interval
(0,v).

(b) Let the function a(n) define a synthesis satisfying equation (5.14)
and let there exist a continuously differentiable function U(n)
such that

T (5) = 0,
ELU(7(£(1))) — 0

where (3 is the action rule corresponding to a(n) and initial point
€. Then U(7(€)) = WP(£). If, moreover,

(5.20)
(5.21)

as t — oo,

T (9) = inf TU(n) = 0 (5.22)
and (5.21) holds for any action rule a(n), then U(7(€)) = W (¢)
and a(n) defines an optimal strategy on the infinite time interval
(0,00). [

Next we give a heuristic description of the construction of the func-
tion W(€). We call a strategy an a-threshold strategy if it is given by
a synthesis a®(7n) of the form

0 if n>a
@)= | e (523)
arbitrary if n=a in Case A .

—62/(6" —6%) if p=a in Cases C and D.

For 7 = a the control « is chosen so that there exists a solution of
equation (5.14). If 7 is an a-threshold strategy then the index m will
be replaced by the index a as, for example, in 179(¢), E¢ and so on.

The above-mentioned construction scheme for 1V (¢) amounts briefly
to the following: initially we show a method for finding the loss function
We(§) for an arbitrary a-threshold strategy and further for defining

the value of the threshold a, which provides the minimal value of
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loss amongst threshold strategies. This a, and W**(¢) appear in the
formulation of Theorem 5.2.

For fixed ¢ an arbitrary strategy 7 defines an action rule (depend-
ing on ¢) and according to (5.11) the value of the loss function W™(¢)
may be represented as

(€)= EWE(E) + (1 — )WEy8), (5.24)

where IW7(£) is the value of the loss function under hypothesis H;,
i=1,2 i

The constructions of the functions Uf(n):= W{,(£(n)) and
Uz (n) == Wg)(&(n)) are conducted similarly, therefore we shall con-
sider below mainly U{(7n). .

If the action rule corresponding to 7 is given by the synthesis a(7),

then we have for UJ(n) (see (5.11)) that
UL (n) = Bf, [ [-eraln(s))] d. (5.25)

Note that the.expectation in (5.25) corresponds to the measure Pf,
but the process 5(s) corresponds to the measure Py with 5(0) := 7(£).
If the function U (n) is smooth, then (and similarly for the function

U™(n) = W7™(&(n))) it satisfies the equation

S0+ ) - U] N - 8 @t et <0, (520

obtained from equation (5.20) by the change of variables £(n) for 1
and (1 — £(n)) for 0.

Similarly to Lemma 5.1, it can be shown that if U(n) is a smooth
solution of equation (5.26) satisfying the condition that ET, U(n(t)) —
0 as t — oo, then U(n) coincides with the value of the loss function
for the synthesis a(n) under H;.

We fix some a-threshold strategy a®(n) and denote by 7 := 7,7 the
first time the process 7(t) hits the straight line 5 = a in the (7,t)
plane starting at the point 1. Then, by the strong Markov property
of the process 7(t), formula (5.25) can be rewritten as

Ur(n) = B2, [ [=era®(n(s))) ds + BLUN@)H{r < oo}, (5.2)
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Ifn(s) < a (correspondingly n(s) > a) for all s < 7, then (5.27) can
be rewritten as

Ui (n) = —era(n) B ;7 + U (a) Pyy{T < oo}, (5.28)

where a(n) is equal to 0 or 1 by (5.23), depending on whether 7 is
greater or less than a.

From formulae (5.23) and (5.13) and from the definition of the
process X () it is easy to derive that under H; the distributions of the
process 7(t) for ¢ < 7 coincide with the distributions of the processes

n—8t+y'N(2)
7 8t + Y’ N(t)

if n<a
if 7>a,

where N7(t) is a Poisson process with parameter M, j = 1,2.

Such processes have the form n + gt + N(t)d, where N(t) is a
Poisson process with parameter A, d := In(A/(X + g)) which implies
that g + dX > 0. Writing the corresponding differential equations, it
is simple to obtain (see, for example, Skorohod 1964, §26) that for the
exit time 7 at the point 7 on the straight line 7 =a,

P{r < co} =exp(a—17) if 3> a, g <0,
P{r <co} =1, Er=(a—19)/(g+d)) if n<a, g>0. (5.29)

We now consider the construction of the function Uf(n) in concrete
cases.

(1) Cases C and D. In these cases formula (5.28) can be used. Then
according to (5.29) we have

s ):{ pla —n) + Ug(a) if < a,

| (5.30)
Ui(a)exp(a —7) if 7> a,

where p is defined in (5.4). The constant U¢(a) is found from
equating left and right derivatives of the function We(n) at the
point a, which gives Uf(a) = p. Similarly,

. q exp(y —a) if n<a, '
Uz(n) = { (5.31)

gin—a)+q if n>a.
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(2) Case A, n < a. Similarly to (1) we have that

Ut (n) = pla — ) + Ui(a),

(5.32)
U3 (n) = Uz (a)exp(n — a).

For 5 > a, formula (5.28) cannot be used, since in Case A, §2 < 0,
v* < 0 and if the process 7(t) hits the straight line n = @, with
probability 1 it hits it from below. We use the fact that Uf(n) must
be a solution of equation (5.26). For > a, equation (5.26) has the

form
dU
3 U6 4 - ven)] - 750 o

We shall find the solution of (5.33) which satisfies the additional
condition lim,_,o U(y) = 0.

We apply Laplace transformation to equation (5.33). Defining
U(N) := A [ exp(—As)U(a+s) ds and using the fact that the function
Ug(n) for n < a is defined by (5.32), we obtain

(5.33)

(5.34)

~ “AyP -1 texp(M?) o,
— s = Aipy.
U(4) - Ui{(a) A(A82 + A7 — Mexp(Ay?)) e

The constant Uf(a) is defined from the condition that
lim, . Uf(n) = 0. Since this condition is equivalent to the equal-
ity U(0) = 0, then we put (—1)U2(a) equal to the right-hand side of
(5.34) as A — 0,i.e. y2-7%- A} p/2(8% — AlyP).

The computation of Ug(n) is conducted similarly with the excep-
tion that the expression for the Laplace transform has the form

U(X) [~ — 82X + Mexp(M?)] + &2
+ Ug(a) [A6 + (M(A = 1))(AT = A exp(My?))] = 0. (5.35)

The constant Ug(a) is found from the equality to 0 of the limit of the
left-hand side of (5.35) as A — 1, from which it follows that Uj(a) = r,
where 7 is defined in (5.4).

§5.2 Minimization of infinite horizon loss 167

Combining the formulae derived and taking into account that
U(n) = EmUs(n) + (1 — En))U3(n), we have in Cases A, C and
D that the value U%(n) for 7 < a can be written as

Al exp7n

1) =————[pla—1n)+U(a) + cQexp(—a)],

5.3
pip—— (5.36)

where @ := g in Cases C and D and @ := 7 in Case A, Uf(a) := p in
Cases C and D, Uf(a) =% - 4% A2 p/2(8% — A24?) in Case A.

In Cases C and D, a formula similar to (5.36) holds for > a, and
it is easily checked that min, U%(n) = U™ () holds for any 7, where
a, :=In(cQ/p), i.e. in the class of threshold strategies the strategy
with the threshold a, will be optimal, which coincides in ¢ coordi-
nates with the value £, in (5.36). In Case A, define a, := In(cQ/p).
According to (5.36), for fixed # < a, the best strategy amongst all
a-threshold strategies with a > 1 is the a, -threshold strategy.

* % %
We now show that the function U*(n) := U**(y) constructed sat-
isfies equation (5.22) and relation (5.21) for any action rule 3. From

Lemma 5.1 the statement of Theorem 5.2 follows for Cases A, C and
D. Equation (5.22) can be rewritten as

inf [aK* + (1 - a)K?] =0,
where
K’ = K'(n)
=) [V ++) - Uu@m)] - Jj%% +lesl€n),
=g =14

In Cases C and D we substitute the formula obtained for U*(n) in
the expressions for K' and K?; it is seen directly that for 5 < a,,
K'=0, K* > 0 hold, and for n > a,, K! > 0, K? = 0 hold, therefore
the functions U*(n) and a*(5) := a®*(7) satisfy equation (5.22), and
d?U*(n)/dn? is continuous at the point y := a, .

(5.37)
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In Case A, similarly to Cases C and D, we obtain for 5 < a, that
K' =0, K* > 0 and lim,_., K*(y) = 0. Using the representation
(5.24) and the facts that U, (1) satisfies equation (5.33) and U, (1)
satisfies the analogous equation, it is easily checked that K2 = 0 for
1 > a,. Thus, U*(n) and a*(7) satisfy equation (5.20) and U*(n) is
continuously differentiable at the point a,.

To prove the inequality XK' > 0 for § > a,, we use the fact that
for L(n) := K'(n) — K?(), the formula

(5.38)

azd—figgl) =2 P (e’ (n+ )Ly +47) — p*(n) L(n)

holds.

Indeed, as shown above, for 4 > a,, L(n) = K'(n), K*n) = 0
hold. From the last equality and (5.37), we can express dU /dn through
the values of U(-) at the corresponding points. We substitute this
expression in the definition of K'(n), differentiating and taking into
account that in the corresponding regions either K'(n) = 0 or K%(3) =
0, and after easy calculations we obtain (5.38). A more detailed proof
is given in §5.3, where a general formula is obtained holding for all
v < oo (see (5.65)).

From the obtained relations K'(5) = 0, K*(5) > 0 for < a, and
K'(n) > 0, K*(3) = 0 for n > e, , formula (5.38) for 5 > a, can be
rewritten as

1
PG B ) B ) (K4 ) - Kn)] (539)
By the continuous differentiability of U*(7), we have that Kd, ) =0.
From this and from (5.39) it is easy to see that ((dK*')(dn))(n) > 0,
K'(n) > 0 for n > a,, which means that U*(y) satisfies equation
(5.22).
To complete the proof it remains to show that (5.21) holds for
U*(n). It suffices to check that in all the cases considered, A, C and

D, the function W (&) := U*(7j(¢)) satisfies

%l_r.% Wres(f) = }Er% gy =0 (5.40)
and that

E(t) — 8(w) Pf—a.lmost surely as ¢t — oo (5.41)

TS AR T e v
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for any strategy §3.

To check (5.40) is nontrivial only in Case A as ¢ — 1, by con-
struction W(1)(€) — 0 as ¢ — 1, and from formulae (5.35) it is eas-
ily obtained that Uz*("?) grows linearly along %, which implies that

(1= Wa)(€) = (1 - E)U(7i(£)) — 0 as € — 1.
To prove (5.41), we write the process 7(t)0(w) using (5.13) as

0(t) = 1(0) = ~ 035~ Xi’) [ pi(s)

Oy - o [ Bi(s)ds.  (5.42)

=1

But the processes B/ := 6~7 [Xj(t) Y féﬁj(s)ds], J = 1,2, are
orthogonal martingales according to (4.5) and therefore

E¢ B! + B’
B man 2 t . LT
=X GPNE o [ )ds] <13 0N (sas)
j=1 : i=1
Since A/M # 1 in Cases A, C and D, therefore
in [si _ xii
o [5 ATy ]
= min [M - a3/ + (/X)) = ~a<0.  (5.44)

Using now in sequence (5.42), (5.44), Chebychev’s inequality and (5.43)
we have

PBI(E) - 9(0)) < bat/2)
- pf{Bg + B < 9[@/2 + i(af = 71')‘{)/:51'(5)613)]}

S PB4+ B! < —8at/2} < PE{|B! + B2| > at/2)
<4E{(B} + B??/(at)? < o/t
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which implies that from @ = 1 it follows that n(t) — oo, i.e. f(t).ﬂ% 1
almost surely with respect to the measure Py as { — co. By jconmder-
ing (1 —8)(n(t) —n(0)), we similarly obtain that from # = 0 it follows
that £(t) — 0 as { — oo almost surely with respect to the measure
Pf, which completes the proof of the statement of Theorem 5.2 for
Cases A, C and D.

Consider now Case B. In §5.3, we prove independently Theorem
5.3 which states the existence in Case B of an increasing continuous
function [(t) such that {(0) = 0, I(t) — co as t — co and .the optimal
strategy in the problem on the time interval (0,v) is given by the
synthesis a(s,n) := o*(v — s,7), where o*(t,7) = 1 for n < I(t),
a*(t,n) = 0 for n > I(t). R

For any k and n, let o := k/e,€(7), define s from the condition
[(s0) = n + |6'|to and assume that v > o + s0.

Denote by 7(t) the process (5.13) on the interval (0,v) correspond-
ing to the action rule #* which is given by the synthesis a(t,n) for the
initial point 5. Let 7 := min (v, mingc,<,{s: 7(s) > (v — s)}]. For
t < 7, B*() = 1 holds, which means that X?(t) = 0 and by (5.13),
n(t) <+ |6t

Suppose that 7 < 5. Then

p(r) < n+ |8 <+ |8t = I(s0) <Uv —to) <U(v —T)

and the obtained contradiction shows that 7 > t;. Therefore, from
(5.10) we have that

WoA&) = lex 2, | [ ()8 ) ]

= lea B 07 > leal€(n)to = k.

Since k is arbitrary, it follows that T1,(£) — co as v — o0, and this

completes the proof of Theorem 5.2. [ |

SRS it

R
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5.3 Minimization of loss over a finite horizon for the case
m=/N =2

In §1.12 we discussed the optimal synthesis for the problem of loss
minimization over a finite time horizon v as follows. There exists a
curve /(t) dividing the half plane {(¢,7) : ¢ > 0} into two parts. If the
time remaining equals ¢, then the optimal strategy prescribes use of the
first device if 7(£(v —t)) < I(t), and of the second if 7(¢(v — 1)) > I(t).
On the curve [(t), the control is chosen so that a solution of equation
(5.14) exists and the constant ¢ in (5.12) is chosen so that the equality
1(0) = 0 holds. We formulate here the precise statement, assuming as
before that (5.2) holds and e,6;, < 0 and defining I' := di(t)/dt.

We will say that condition C,, is fulfilled for the function n = I(t),
t > 0,if 1(0) = 0, I() is smooth and §2 < I'(t) < co on 0 < ¢ < ¢,,
I(t) is piecewise smooth and §' < I'(t) < 62 on t, < t < oo.

Theorem 5.3 There ezists a t, (0 <1, < o) and a function (t) which
satisfies condition Cy, such that any optimal action rule in the problem
of loss minimization over the time horizon v is given by the synthesis
a(t,n) := a*(v — t,1), where

1 if n < (1)
0 if 5 > (1)
*
t = :
TGN -y sy i), 15, )
arbitrary ifg=Ilt), 0LE<H,
Here:

(a) in Case D, the curve n = I(1) is a turnpike, i.e. t, =0,
(b) in Cases A and B, the curve is a switching line, i.e. &, = oo,

(¢c) in Case C, part of the curve is a turnpike and part is a switching
ling; 16,0 <4, < oo, |

Remark 5.1 In the case of symmetric hypotheses, it is easy to derive
from the proof given below that t, = 0 and [(t) = 0. The same result
will be obtained independently in §6.5. |
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Proof. To prove the theorem we use Lemma 5.1, but it is convenient
to consider the problem of maximization of the number of successes
rather than the problem of minimization of loss. The theorem will be
proved if we construct t, and I(t) satisfying C,, and the continuously
differentiable function U(t,n) such that U(0,7) = 0 and U(t,n) and
a*(t,n) from (5.45) satisfy the optimality equation (5.19). For the
problem of maximization of the number of successes this equation has
the form

oU(t,n)

= = sup [aBU () + (1 - )B*U(t1)] , (5.46)
where
B = 5 1+ U +99) - U] -8 20,
ji=1,2.
If we define
L(t,n) := B'U(t,n) - B*U(t,n), (5.47)

then from the above it follows that it suffices to construct I(t) and
U(t,n) such that

gb—rgt’—n—):BjU(t,n) if (t,g) € A (5.48)
(~1YL(t,y) <0 if (Ly)e A, j=12, (5.49)

where

A= (L)t > 0, < U0}, AT={(tm) 20, n > (1)}

In the general case it is unrealistic to expect to obtain an explicit
expression for [(t) and U(t,n), and therefore only an algorithm for
their iterative construction will be given. In the lemmas given below
it will be proved that this algorithm can be realized at each step. These
lemmas are proved for Cases A and B; in Case C, only the existence of
t, < oo and the possibility of constructing I(t) and U(t,n) for t <1,
are proved, which yields optimality in this region.

* * *
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We consider first the case 6 > 0. Before we give the algorithm,
we assume given some curve 77 = {(t) satisfying the condition C, and
then show that for this I(t) the general solution of equation (5.48) can
be found.

We introduce the regions 47 (7 = 1,2, n =0,1,...) as follows (see
Figure 9).
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Figure 9

_Optimgl synthesis for the problem of loss minimization
in continuous time with m = N = 2 (in coordinates 7, t,
where ¢ is the time remaining) for 62 > 0.

Define for n = 1,2,...

m(t) =8t (n—1)y', () =8t - 1) +U(t) — (n = 1)




