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and let
Ay:={(t,n):t> 0,9 < n{(t)}
A= {(t,n): >0, 9> Ut) if t <t,, n>nit) if t>1,}

- (5.50)
A5 == () o (=1V () < (1) < (=0 nl(E))
Ai::A"ﬁﬂi for n>1,7=1,2.

For (t,7) € A%, n = 0,1,2,..., § = 1,2, let U(t,n) := Ui(t,n),

where

Z £ = i)/ (n - )t

(5.51)

Ui(t,m) := tp’(n) + e 2" (e" + ¢)

< AN [0+ (n —r)y] 87}

and the smooth functions f;’(a) are defined on 0 < s < |y?| such that

F0) = o= fi0) =0, f£i(0) = f(WD),
(5.52)

%jO:w" d for » > 1.
2 H0) = 5 D
By direct substitution it can be seen that U(t,n) defined in this way
satisfies equation (5.48) on each of the regions 47, j = 1,2 and is
continuously differentiable on them. To see this it is sufficient, for
example, for (t,7) € A7 to write U(t,n) in the form

U(t,n) := tp(n) + Ci(n,n — 1) exp{—)\';’;t}/(c + expn)

and to solve recursively the equation obtained for C7(5,v) which has
the form ; X
%ﬂ =SF C+7 v+,
We show below that for ¢ < {,_, from the condition of continuous
differentiability, and for ¢ > ¢, , from the condition of twice continuous
differentiability on the curve {(¢) the function U(t,n), the curve I(t)
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and the functions f(s) are uniquely defined sequentially on the re-
gions A7 (n =1,2,...). The curve I(t) and functions f/(s) obtained
in this way are infinitely differentiable everywhere except, possibly,
at a finite number of points where the second derivatives have a dis-
continuity of the first type. Further, it will be proved in lemmas that
U(t,n) constructed in this way also satisfies the relations (5.49), which
completes the proof of the theorem.

We mention that for the continuity of (8/0t)U(t,n) on the curve
I(t) it is necessary by (5.46) that the condition

Lt 1(1) = 0 (5.53)

holds. Let

K(t,n) = p (mMU(t,n++")—tp*(m++")8 ()= () +5'(n) . (5.54)

By construction U(t,n) := tp?(y) for (¢,n) € A2. From this, by direct
substitution, we have after elementary calculations (see also (5.64))
L(t,n) = K(t,q) fort<t,, It)<n. (5.55)

The construction outlined above will be conducted in two steps.
At the first step, we shall show that, from condition (5.53), equality
(5.55) and the continuity of U(t,7), we may define the point t,, the
curve {(t) for ¢ <, and the functions f!(s) for r < n,, where n, is
a number such that (t,,(¢,)) € 4. . Here f! (s) is defined only for
0<s<It,) ., (L) and all fi(s), »r <n,, are infinitely differen-
tiable and satisfy (5.52).

Indeed, if (t,7) € A, then (¢, + ') € A}, and this means that
U(n+9',t) = tp'(n+7"), and after elementary transformations (5.53),
taking account of (5.55) and (5.54), yields

TNy
197l

i(t) =ln (5.56)

so that I'(0) = —§' > §2.

If 8' + 67 = 0, then set ¢, := 0 and the construction will consist
only of the second step. If §' + 62 < 0, then two cases are possible:
either at the intersection of the curve (5.56) with the region A! there
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exists a point #; for which I'(t,) = 6* and then we take t, 1= to
complete the first step in construction of the curve [(t), or at all points
of intersection of the curve (5.56) with A} we have l'(t) > 6* and then
we define ¢, as the root of equation l(¢;) = n{(f;) and continue the
process of the first step of the construction of the curve 7 = [(t) (i.e.
we assume ¢, > ;). From the condition of continuity of the function
U(t,n) on the curve n = I(t) which is

UL (t,1(t)) = ' (%))

exp{—ALl(t)/8
+ =D pa - e = ), (557
F1(s) is defined for 0 < s < I(t,) — ni(t,) in the first case and for 0 <
s < |¥'| in the second case and, by infinite differentiability of p*(n)
and (t), the function fi(s) will possess the same property. Condition
(5.52) for df}(s)/ds is verified directly.

We consider now the case ¢, >t;. From (t,7) € A} it follows
that (t,n+~') € A}. But since f} has already been defined, then
U(t,n + +') is defined for (t,n) € Al and the equation K(t,77) = 0
gives an infinitely differentiable curve I(t) in the region Al (for this it
is sufficient that on this curve for t < ty, where {, is defined similarly
to t,, the function 8K /8y is not equal to 0, as will be shown below in
Lemma 5.2).

From the continuous differentiability of U(#,7) in a neighbourhood
of the line 7} (¢) the continuous differentiability of the curve I(t) in the
neighbourhood of the point ¢, follows. The infinitely differentiable
function fi(s) is defined for appropriate s from the condition that
UL(t,l(t)) = tp*(l(t)). From the continuous differentiability of ()
in a neighbourhood of the point ¢;, it follows that (5.52) holds for
fY(s). If ty =t,, then the construction of the first step is complete;
if t, < t,, then U(t,n 4+ +') is known now for (t,7) € Al and the
condition K (¢,7) = 0 defines the curve {(t) in the region Al. Asshown
in Lemma 5.3, t, < co for §2 > 0, which means that by conducting
similar constructions recursively at the first step, we can eventually
find ¢, for which I'(t) = &%, and the corresponding f}(s).

Thus, constructing the function U(t,n) in the region

A, = {43 u{tn:t >0, n <&(t—t)+ (L)},

|
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the function U(t,7) is infiitely differentiable on A, N A! except on the
lines 5, k = 1,...,n,, along which the second derivatives could have
a discontinuity of the first type. In the region A, N A? the function
U(t,n) is equal to ¢p*(n) and is infinitely differentiable.

By this construction, the partial derivatives of the function U(¢,7)
have limits with respect to a sequence of points tending to the curve
[(t) from the regions 4, N A or A, N A%, We denote these derivatives
with indices “—” and “+” correspondingly. Then from equation (5.48)
for U(t,n) in the region A', and also from (5.55) and the fact that
K(t,l(t)) = 0 for 0 <t < t, (see also (5.64)), we have that

a- a-

3 U L0) + 85 V(L0) = 50) + e 50(0).

But since U(t,I(t)) = tp?(l(t)) then it is true that

(5.58)

) NS
3 VL)) 5o U(LI0) = U O 3 7(0)- (559

From U(t,n) = tp*(n) for (t,7) € A, N 42 we obtain that 8+ U(t,I(t))/
On and 8+U(‘t,l(t))/3t also satisfy the corresponding relations (5.58)
and (5.59). Since §' # ['(¢), then from this it follows that

o ot
6 ot
gy V(6U) = 5 U 1(1)),

and this means that U(¢,7) is continuously differentiable on the curve

I(t).
* * *
Next consider the second step construction.

Let us say that the piecewise smooth curve I(¢) for 0 < ¢t < { and
the function U(t,7) in the region

A= L:JI {mie>0,(=17y > (1) [#(t - 1) - (D))}
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satisfies Condition C,if in the region 4,, the curve I(t) and the func-
tion U(t,n) coincide with their counterparts constructed at the first
step, 8 < I'(t) < 6% for t, < t < 1, and if in the region AnAi j=1,2,
the function U(t,7) satlsﬁes equation (5.48) and is continuously dif-
ferentiable except, possibly, on a finite number of lines of the type
n = n}(t) + v where the second derivatives of U(t,7) can have a dis-
continuity of the first type. For t, <t < { on the curve n = I(t) the
function U(t,n) is twice r.:ontmuouslj,r differentiable.

Given a vector { with coordinates {1,687}, we denote by 8/8l7 the
directional derivative in the corresponding direction, i.e.
f(t + e, +6%) — f(t,n)
at: f(t,n) = lim . :
If f(t,) is continuously differentiable, then (8/8U))f = (8/8t)f +
§3(8/0n)f. The lines parallel to the vector I in region A7 are called
trajectories.

For 0 < t < t, construct {(¢) and U(t,n) so as to satisfy Condition
C in the corresponding region A. Then, using twice differentiability,
take the derivative with respect to 7 in equation (5.48) in the region
AiN A and write the result and (5.48) itself in the form

o Uln) = ) [L+ U +9) - Utn)], (5:60)
o EU('& {"J )[1+ Ut +47) - UEn)]}, (5.61)
a1 Bn ) “ o p( 1y M) s (O

where the equality (5.61) is true also on the lines where the second
derivatives have a discontinuity. Moreover, by continuous differentia-
bility on the curve [(t) we have

d
S UI)

5 (I(0) [1+ U ++7) - U1, (5.62)

where o/(t) is defined from the conditions

2

% i(t) = 3 od(1)8,

=1

a®(t) i=1—al(t). (5.63)

AR
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Using (5.60), (5.61) and the directly checked relations

ng() 5'(n) = 5'() [p*(n + ") - 5°(n)

= 5(n) [ﬁ‘(n +v°) = 5'(n)] , (5.64)

we may obtain, after not difficult algebraic transformations, that in
the region 47 N A we have

i) :
a5 Ltn) = —X(tn) = p7(n)L(t,n), (5.65)
2 ) . a
X(t,n): ; B ) |+ ) + 5 | U )
= - Zﬁj(ﬂ)aj(taﬂ + 7 )Lt ). (5.66)
ji=1
Here a'(t,7) := 1 — a’(t,7) = a*(t,7), where a*(t,n) is defined in

(5.45), and the last equality in (5.66) is derived from the equations

a
ijU(tﬂ?)

=5 [L+ U +47) = U] + (-1 (8, )Lty m)

for j = 1,2 and from the optimality of a*(t,7) (see (5.46)).

As mentioned before, from the continuous differentiability of the
function U(t,n) on the curve I(t) (5.53) follows, i.e. L(t,I(t)) =
and from its twice differentiability the continuous differentiability of
I;l(t,n) follows, from which, according to (5.65) and (5.53), it follows
that

X(t,1(t) =0 for ¢, <t<{. (5.67)

Now we will use (5.67), (5.62) and (5.60) for further construction of
U(t,n).

_IfI(t) and U(t,n) have been constructed in the region »i for some
t >, so as to satisfy Condition C, then by the first expression for




180 Solutions of Continuous Time Problems

X(t,m) in (5.66), the function X(¢,7) has also been defined on the
region (see Figure 9)

Bi= () {6 : (<17 [ - 0 + (D) =]

i=1

< (1¥n < (-1) [P —1)+ (i) }

and is continuously differentiable there: Y

Suppose X(1,{(f)) = 0 and (—l)J(B/GIJ)X(_t,I(t )) > 0. Then
(6X/0n) (,1(f)) > 0 and by the implicit function theorem the re-
Jation (5.67) defines in B a continuous curve I(t) for ¢ < t <t for
some t, and [(t) is infinitely differentiable except at a finite number
of points, where I'(f) may have a discontinuity of the ‘ﬁrst ty.pe and
§' < U'(t) < 62. Then (5.62) can be considered as an ordinary dn;feren-
tiable equation in U(t,[(t)) for t <1t <t and‘ known U(t,.l(t)—i—'y ) and
(5.60) as an ordinary differential equation in U(t,q) with r.espfac't .to
the corresponding directions with known U(t,n ++v7) and with initial

a from the solution of (5.62). .
datWe show below that, cc(:oustructed in this way, _{(t) and U(t,n) will
satisfy Condition C in the corresponding region A and X(t,,0(t))=0
(the last expression is demonstrated in the proof of Lemma; 5.3). sz
we are able to show that for (t) defined by (5.67), §' < U'(t) < é
always holds, and the constructed U(t,n) verifies (5'.49), then we have
constructed the optimal synthesis and value function. However, for
t > 1, the needed inequality for '(t) has been prove‘d only.for the case
§'4+62 = 0. In Lemma 5.2 it will be shown that (—1)i(8/8V)L(t,n) <0
for §' + 62 = 0. From this, by (5.66), it is not difﬁcullt to s;how thazt
(—1)(8/81)X (t,n) > 0 from which it follows that §' < l'(t) < 6°.
From formula (5.68), proved in Lemma 5.2, (5.49) follows'.‘ '

We show now that if [(t) and U(t,n) satisfying Condition C have
been constructed_in_region A, then I(t) and U(t,7) co.nstructed as
above in region A (I > 1) will also satisfy Condition C, if we assume
that &' < I'(t) < & for t < 1.

Since U(t,l(t)) satisfies equation (5.62), then the theorem ab(.)ut
differential dependence on initial data and paramflzters can he app.hed
to the equations (5.60), considered as ordinary differential equ?.h.()ns
with respect to the corresponding directions (where U(t,n ++7) is a

e e
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known function, and U(t,n) is unknown) with initial data U(t,(t))
and parameters v7 := 5 — §t, j = 1,2. Thus, U(t,n) will be infinitely
differentiable except, possibly, on the lines parallel to the direction
of differentiation where the first derivatives could be discontinuous.
Comparing the limiting values for the directional derivatives near the
curve [(t) obtained from equations (5.60) and (5.62), we conclude that
the function U(¢,7) is continuously differentiable on the curve [(t) and
that L(t,[(t)) = 0. From this it is not difficult to obtain in addition
that the first derivatives are continuous on the corresponding lines.
From relation (5.65) on the regions A7 N A and the identities
L(t,1(t)) = 0, X(¢,{(t)) = 0 the continuous differentiability of L(¢,7)
on the curve [(t) follows, and this implies twice differentiability of

the function U(t,n). Thus we have that the function U(t,7) satisfies
Condition Cin 4.

* * *

The construction of the curve I(¢) and the function U(t,7) for
the case 6 < 0 includes only the first step (see Lemma 5.3) and is

conducted as follows. Suppose that /() has been constructed for ¢ < i
and in the region

A= O{(taﬂ) ty < (- 1)+UT)}

a smooth function U(¢,7) has been constructed satisfying (5.48) in
the corresponding regions A7 which is infinitely differentiable except
on the corresponding lines. Then equation (5.48) with j = 2 can be
considered as an ordinary differential equation in the direction of the
corresponding d/dl? and solved in region B (see Figure 10), assuming
U(t,n) is sought and U(t,n++?) is known, with initial data U(,n) =
0. As a result we obtain the function ﬁ(t,n) on region B. Substitute
U(tyn), U(t,n ++") and U(t,n + %) for (t,5) € B in the expression
for L(t,n) and subsequently consider the relation L(t,I(t)) = 0 as an
equation defining the curve [(t) (as was done similarly for t < t, for
the case 6% > 0) to obtain the curve I(t) for t <t <1 (see Figure 10).
Set U(t,n) := U(t,n) on the region A% N B, and then solve equation
(5.48) with j = 1 on the strip '

{(tn): 8 -D + UT) - - 81 -T)+ U1},
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a=10

Figure 10

Optimal synthesis for the problem of loss minimization in
continuous time with m = N = 2 (in coordinates 7, ¢,
where ¢ is time remaining) for §2 < 0.

which can also be considered as an ordinary differential equation with
initial data U(t,{(t)). As a result we obtain U(¢,7) on the region A.

* * *

We now formulate Lemmas 5.2 and 5.3, from which the statement
of the theorem follows. 3

If, by the above construction on the strip Hy := {(¢,7) : 0 < ¢t < {1},
the curve [(f) and the function U(t,n) are defined such that either
8% < l'(t) for t < {, or there exists ¢, < { such that I(t) and U(t,n)
satisfy Condition C, then we will say that a synthesis has been con-
structed on Hy. Here, L(t,7) will be continuously differentiable except
on the curve [(t) for ¢t <, and in the regions 47, j = 1,2, where
there may be some straight lines parallel to the line 7 = §7t where the

PR
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derivatives can only have discontinuities of the first type. By (5.66)
the corresponding statement is true for X(¢,7). In inequalities of the
type OL/0n > 0 we will assume that at points of discontinuity limits
from both sides have the appropriate sign.

Lemma 5.2 Suppose a synthesis has been constructed on the strip
Hy:={(t,n) :0 <t <{}. Then:

d
(a) a L(tyn) <0 for all (i,7) ¢ Hy £ () if 4 2. (5.68)
(b) For the case §' | §% — 0,
a
(ﬁ L(tﬂi) >0,
d
iz L(t,n) <0 forall (t,n) € Hy, 5 # 1(1). (5.69)
|
Lemma 53 ¢, =coif §% <0, t, < oo if 62 > 0. [ ]

The statements of Lemmas 5.2 and 5.3 were used in the construc-
tion of the synthesis, and the inequality (5.68) provides the optimality
of synthesis on the half plane considered. Indeed, from (5.68) it follows
that in the region A', L(t,n) > L(t,1(t)) = 0 holds, and in A2, the
reverse inequality holds.

Before proving Lemma 5.2, we obtain a formula connecting the
values 0L /8y at different points of a single trajectory.

Suppose ¢ > ¢; and that the points (t,m) and (;,1,) lie on the
same {rajectory in the region 47 (j = 1,2), i.e. 7, = n— &t — ).
By (5.65) we have on a single piece of the trajectory (resulting from
the piecewise differentiability in 5 of the right-hand side of (5.65)) the
formula

a o . a
5[; % L(t}ﬂ) ‘|‘P‘,(T]) 5}“ L(f,!]) - “'N(t!n)! (570)
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where (using (5.66))

. . Y ;
N(tn) = [2) ~ Ben + 9] 5o P0) =Pl 5 Kton+7)
. . s d o
—a’(t,n+“ra")[11(tm+7 i) 2 5i)

.8 i
) 5, L{t,n +7°7)|. (5.71)

Multiplying (5.70) by the appropriate exponent and integrating
along the piece of the trajectory under consideration from ¢, to t, we
obtain

a

t . a .
gy Mtm) = expl= [ 5n — 8(t —w)du} o Lt~ 67(t — 1)

i - . .
*/texp{éf (g i a1y === ol
" , (5.72)
Proof (of Lemma 5.2). First suppose that £ < ¢,. We introduce
1o := inf {s := 1 exists such that 8L(s,n)/80n > 0}.

s<t

| It is easily seen that 9L(¢,7)/0n < 0 in a neighbourhood of ¢ = 0.

From this it follows that £, > 0.

We now consider points (tp,7) € A? and apply formula (5.72) for
t := to, ¢, := 0. By the definition of to, 0L(s,n)/0n < 0 for all s < {,.
From this L(s,n + %) < L(s,n) and (for example, for §% > 0), from
the inequalities

d

d d - ,
— <0, p°(9) >0, — L(s,7+7’) <0, j=1,2
0 (n) P (n) o (

dy
L(s,n+4') <0

we obtain that N(s) := N(s,n — §(to — s)) > 0 for all s. (It is easily
checked that N(s) > 0 alsoin the case §* < 0.) Since L(0,7)/0n < (.),
then from (5.72) we immediately obtain that 8L(to,7)/dn < 0 and this
means that g+
— L(t,1(t)) < 0. (5.73)
dn
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Notice that, by (5.53) and (5.65),

o i _
F L(t, (1)) + I'(t) an L(t,l(t) =0

ot

o LLUD) = X (41() (5.74)
a- ;
oIt L(tal(t)) = —X(t,1(2)).
From this
(1)~ ) 0 L(L10) = X (6 1(1)
¥ (5.75)
)

((2) ~ &) 5 L 1(0) = X(1,1(1).

Since I'(t) > 6 > 6', then from (5.73) it follows that X(tI(t) <0
for ¢ < t, and this means that for ¢ < {

5
an L(t,1(1)) < 0. (5.76)

Applying a formula similar to (5.72) for (to,n) € A for the points
to and t, (where ¢; is the coordinate of the intersection point of the
trajectory passing through (25, 7) with the curve I(t)) and using (5.75),
we obtain that #, > {. Thus, statement (a) has been proved for the
case { < t,. Notice that in this way it is proved that the construction
of the first step described above can be performed at least up to ¢,
and the synthesis obtained here is optimal for t < t,.

Now we consider the case > {,. Since (56.74) and (5.75) are true
for t > t,, then by (5.67) we obtain that

ar 0- . -
= L(t,U(t)) = — L(4,I(t)) if ¢, <t <% (5.77)
dn n

Putting

to:=inf {s : n exists such that #1(s), OL(s,n)/dn > 0}. (5.78)

s<t
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Similarly to the case { < t,, we obtain that OL(te,7)/0n < 0 for
all 7 # I(t,). Suppose that o < I. For [7] > ¢, where ¢ is suf-
ficiently large, L(ty,7) can be written in explicit form and it can
be checked that (5.68) holds. Therefore, without loss of generality,
it can be assumed that the inequality 8L(t,7)/8y < 0 is true for
{tyr 2 4 < 4 % az [~ n(to)| > a1}, where a; is arbitrary and
az 1= az(a,).

If we show that in some two-dimensional circular neighbourhood
of the point (t0,{(t0)) with radius az, 0L(t,n)/0n < 0 except on
the turnpike, then we can conclude that OL(t,n)/0n < 0 for {t,n :
t < to+aq, 7 #£ U(t)} for some a4. So we arrive at a contradiction with
the definition of ¢y and our assumption that ¢, < ¢,

We consider a neighbourhood of the point (4,1(ty)) of radius a
and the parts of the trajectories passing through the points of the
interval {(to,n) : I(t,) — a < 1 < l(to) + a} and through the points
of the turnpike {(%02) : te <t < 2 + a} (for reasons of clarity
only the intersection of the neighbourhood with 42 is considered). By
the above-mentioned inequality for 81,/8p, for appropriate a, and a,
we have that 8L(t,7 + ¥)/0y < 0, 7 = 1,2. Using the continuity
of the remaining terms of formula (5.71), and also the inequalities
dp'/dn < 0 and dp?/dy > 0, we obtain N(¢,7) > 0. From this, (5.52)
and AL(t,1(t))/0n = 0, OL(to,m)/0n < 0 for g # I(t), we obtain that
dL/8y < 0 in some neighbourhood of (t0,1(t)) with the exception of
turnpike points, which it was required to prove. Thus ¢, 24 and,
moreover, 3L(ty,n)/0n < 0 for n + l(to). Thus, statement )a) has
been completely proved,

The proof of statement (b) of Lemma 5.2 repeats the proof of the
negativity dL(t,7)/8n given above and is also based on (5.65) and
the differential properties of the functions L and X. In the formula
analogous to (5.74), 8/l appears instead of d/0n and in some re-
gions (for example, where differentiation with respect to I’ coincides
with the direction of the trajectories) a formula similar to (5.70) holds
involving second derivatives along the trajectories rather than mixed
derivatives. The check of the inequalities (5.69) at ¢ = 0 is conducted
directly. These inequalities hold only for 8" + 6% = 0. The sign of
the derivative 8/81 is opposite to the signs of 0/81” and L/8y, be-
cause this condition holds for ¢ = 0, and the signs of dp'/dn, dp?/dy
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coincide correspondingly with the signs of Op' /012, 8p%/01% and are
opposite to the signs of ap'/ol, dp2/an, [ |

Proof (of Lemma 5.3). Consider the case §2 < 0 and suppose that
tx < 00. Then a synthesis is constructed on the strip H,, and, accord-
ing to (5.75), A, i(t) =0 necessarily holds. As mentioned above,
from Lemma 5.2 applied to the strip H,_ it follows that on this strip
L(t,n) > 0 for all (t,m) € H,, N AL, According to formula (5.66), for
the points of the curve {(t) we have

X U) = =B UL, 1(t) +4") - PHUBLAE, U(t) + 7).

Moreover, 4% < 0 holds for &2 < 0 (see formula (5.4)) and there-
fore L(t,,1(t,) + 7%) > 0. Since L(t,,l(t,) +4") > 0, we obtain that
Xl Y2.)) <0 Thusihe assumption that ¢, < oo is not true,

Consider now the case §? > 0. Assuming that {, < oo we construct
# curvew =r3(3) siich that-5(2) > I(t) for all ¢ and Y(t) > 0ast— 0o,
which obviously contradicts the inequality () > 82 (which must hold
for all ¢ when ¢, = o).

As mentioned in §4.3, in problems of Bayesian type the value func.
tion V(2,¢) is for fixed ¢ a concave function of ¢ and in our case

VU£)<(1—OVUJU+£VUJ):tPH1—£%+£d,

or, which is the same,

Ut <tAl—ﬁ_C.__ Z_Em
(t,n) [%+mm+acﬂwn. (5.79)

We substitute (5.79) in expression (5.54) for K(t,7) and using the fact
that K(t,7) = L(t,y) for 5 > l(t) we obtain, for appropriate ¢ and 7,

Elpm) & =2l

s B N
et expr (expn =1 Alt) := R(t, 7).

For y(t) := In(1 + At), the function R(t,7(t)) equals 0, and since
L(t,n) < R(t,), then Y(t) > I(t). Since Y(t) = 0 as t - oo and
U(t) > 6% > 0, we come to g contradiction with the assumption that
t, < co. Lemma 5.3 is proved. L]

This completes the proof of Theorem 5.3. m




