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6 APPLICATION OF PONTRYAGIN'S MAXIMUM
PRINCIPLE TO CONTROL PROBLEMS
WITH RANDOM JUMPS

6.1 The linear control problem with Poisson jumps

In Chapter 4 a problem of control of a random process X ({) with an
unknown random parameter 6 was stated. An IF-predictable func-
tion () was called an action rule. A measure PP on FE was put in
correspondence with each action rule 8 and each realization of 8 — 8;
(¢ =1,...,N) and the measure Pf = 3 & PP, for which the process
X(t)— fs p(8) diag B(s)ds is an IF?-martingale, was put in correspon-
dence with the a priori distribution &. It was required to minimize
the value of an additive functional depending on the process X(t) and
the unknown parameter @ for a fixed a priori distribution ¢,

Further, it was shown that this problem is equivalent to a control
problem with complete data involving the process pair X(t), £(t), so
that a measure on F,, (rather than on F2), for which the process
Y(t):= X(t) - fy p(é(s)) diag B(s)ds) is an JF-martingale, was put in
correspondence with the a prior: distribution ¢ and the action rule g
and the process £(¢) satisfies a stochastic equation.

In the case of a Markov cost function which is independent of the
values of the jumps of the process X(t), it can be assumed that the
measure is given simply on the trajectories of the process £(t). An
action rule 3 := f(1), which is equivalent to a sequence of functions
18ulJimetntinani]eh = L,...} is conveniently replaced by a strategy,
i.e. a sequence of functions {an(thin-1,610-1), n = 1,...}. In the
Markov case we can be restricted to Markov strategies, i.e. functions
of the type MGy

In this chapter we will study the linear control problem with Pois-
son jumps, in which the behaviour of the controlled process a:(t) is
similar to the behaviour of the process £(t). Since the unknown

189




190 Pontryagin Maximum Principle

parameter is absent in the statement of this problem, the definition
of action rule is not introduced here, and we consider only Markov
strategies.

An interpretation and heuristic description of the linear control
problem with Poisson jumps were presented in §1.10. According to
this description such a problem is defined by the following elements:

(1) A system of differential equations describing the motion in the
state space IR™ of the point @ = (zy,...,zx) in the intervals
between jumps. We assume a linear equation with respect to

the controls o := (a',...,a™) taking values in S™, viz.

z = ad(z) + a’(z) := f(a,z), =€ R", (6.1)
where A(z) := {al(z)} is a matrix, a®(z) is a vector and &
denotes the derivative with respect to s, {5 < s < v < co.

(2) A set of nonnegative functions p(z) := {p'(z),... ,p'“(m)]:,.such
that p?(z(s))a?(s) defines the local density of the probability of
a jump of type j given that the system at time s is at the point
z(s) and the control a(s) is used.

(3) A set of single-valued maps I'(s) := (I''(z), ...,["™(z)) of t‘he
space IRY into itself giving the change in location of the point
in the event of a jump of " type.

(4) A set of functions g,(t,z), n = 1,2,..., defining the cost in-
curred when the n'" jump occurs at time t and after it the system

arrives at state z.

The functions A(z), p(z), g.(t,2) and the maps I'(z) are assumed
to be smooth. For reasons of simplicity, we assume that a°(z) := 0.

The class of admissible strategies is the set of functions m :=
{an(s]t,z), n = 1,2,...}, where for fixed n, t and z the function
an(+) is an element of the set A (see §4.4) depending in a measurable
way on t, . The function a,,(s|{,z) is called the control between
the n' and (n + 1)** jumps given that the n'® jump occurred at time
t to the point .

The measure PI on the trajectories of the right continuous random
process z(s) corresponding to the fized initial point 2o and the strategy
7 is defined recursively as follows. If the n'" jump occurs at time t
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and the process takes the value z — z(t) after the jump, after which
no jump occurs up to moment s > t, then on the interval [t,s) the
process trajectory is deterministic and satisfies equation (6.1), where
o is replaced by a,,(s|t,z) and the initial condition is z(t) = =.
On the interval (s,s + A) the (n + 1) jump occurs with probability
a1 (st 2)p? (z(s))(A + o(A)) and the process takes the value I'Vz(s),
j = 1,...,m, or with probability 1 — 251 o (st 2)p (2(s))(A +
o(A)) the process continues its motion according to equation (6.1).

Since we consider the Markov case, the description of the mea-
sures given above corresponds to defining the conditional probabilities
at jump moments of the process z(t). Obviously these conditional
measures can be defined under the assumption that the &' jump oc-
curs not later than time ¢, the (k + 1)* alter time ¢ and the process
at time ¢ took the value 2. Such conditional measures do not depend
on the strategies employed up to time ¢ and they can be considered
to be appropriate measures in the remaining model (see §2.4). In this
chapter we will consider problems of the mazimization of functionals
of the type

F(h2) = B S gu(mra(r)) | 7 < ¢ < 7apn,2(t) = 2, (62)

r=k+1

where 7, (r = 1,2,...) is the time of the #'" jump of the process
28 )y To=rts, z(79) = o and n < co0. We consider given a horizon v
(to < v < o), such that g(tz) :=0fort > v, r= 1,2,..., but we
do not show the dependency on v of the cost function g,(t,2) and the
corresponding functional.

This problem can be reformulated in the terminology of Chapter 4
in the following way. On the probability space (€2, F) we are given an
m-variate counting process X() generating the o-algebras F, with
F = Fo. For each value of the parameter zo € IR™ and strategy
7= {an(s|t,z), n = 1,2,...} there corresponds a measure PT on JF,,
an JF'-predictable function 3(s) and a right continuous process z(t),
to =t < 0o, such that X(¢) — [! p(s(s)) diag B(s)ds is IF-martingale,
the process (t) satisfies equation

oft) = zo b [ S8, 5(e)) do [P ) (e )XV (s), (6)
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and for the function ((s) for any n > 0,
I[ta < s < 101]B(5) = anga (8T, (1)) [T < 8 < Tnga]. (6.4)

The problem of maximization of the number of successes up to time
v for the basic scheme is obtained if we put k = 0, n = oo, to = 0,
g-(t,z) = 1 for 0 < ¢ < v and take the appropriate p, f and T.
The only difference from the basic scheme consists in the fact that for
convenient presentation in (6.2) ¢,(r.,2(7,")) of Chapter 4 is replaced
by qr(Tr!a’(Tr))'

Similarly to §4.4, after transformation to a Markov model with dis-
crete time, the question regarding the ezistence of an optimal strategy
can be considered. However, in this chapter we are interested only in
necessary conditions for optimality. Therefore, from the beginning we
assume that there exists a uniformly optimal strategy and that the
optimal value function is a measurable function.

6.2 Reduction of the initial formulation to a Pontryagin type
problem and description of results

First we study the problem with a single jump, i.e. the problem of
maximizing the functional Fgj(¢,2). In such a problem the specifi-
cation of a strategy reduces to the specification of a single function
a(s|t,z).

Let a := (t,z,0(')), where a(-) € A, and denote by z(s|a) the
solution of equation (6.1) with initial condition z(t|a) = @ and control
a(-). Let z(s|a) be the probability that in the time interval [t,s) no
jump occurs given that at time ¢ the process was in state # and the
control a(-) was applied. When it is obvious about which initial con-
ditions and control we are speaking we will sometimes write simply
z(s), 2(s) or z(s|t,z), 2(s|t,z). The jump probabilities are defined so
that the function z(s|a) satisfies the equation

dz(s|a)
ds

a)o(s)p™ (2(sla)), (6.5)

= —z(s

and the probability density that a jump of the ;™" type occurs in the
small time interval (s,s + ds) is given as z(s|a)a’(s)p’(2(s|a)). Using
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the total probability formula we find that the problem of maximization
of the functional FJ(t,z) reduces to the following. For fixed ¢ and z,
the control a(-) € A must be chosen to maximize the functional

m(te) = | "z(sla)}iaf(s)pf(m(sla))ql(s,Ff(w(sla))ds, (6.6)

and then it should be checked that optimal control can be given by
some synthesis.

Thus, for fixed ¢ and = we obtain a problem of optimal control
with state variables 2, @ satisfying equations (6.1), (6.5), the integral
functional (6.6) and fixed left and free right end points. Let us call
this problem of optimal control with ¢1 = q the problem B(q). For
the solution of this type of problem the Pontryagin mazimum prin-
ciple (see Pontryagin et al. 1961; Boltyanski 1969), giving necessary
conditions for optimality, is widely applied. Its formulation for B(q)
problems, differential equations for the conjugate variables and some
statements concerning the optimal value function are given in §6.3.

* * *

Now consider the problem with a finite number of jumps, i.e. the
problem of maximization of the functional Fo(t,ze), 0<k <n < oo.
The case n—k = 1 does not differ from the case k=0,n =1 discussed
above, therefore assume that n — k > 1. Let

Een(t, ) := sup F (t, ).

Since we are considering only Markoy strategies, then from the
assumptions of the existence of a uniformly optimal strategy and the
measurability of the optimal value function, we obtain directly the
following optimality equation, viz.

v

Firn(t,a) = sup ["2(sla) Y- af(s)p!(a(s]a))

“(')EA t i=1
x [qk(s,l_'ja?(sla))+Fk,ﬂ(s,l_'ja:(s|a))} ds. (6.7)

If the function Fin(t,z) were continuously differentiable with re-
spect to ¢ and z (i.e. a smooth function), then we again would obtain
a problem of the type B(q), where ¢ — a(t, x) + F a (8, 2).
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The optimality principle would then make possible the solution of
the problem with a finite number of jumps by the sequential solution
of problems with a single jump. In some problems (as, for example, in
the symmetric case of the general scheme for m = N = 2 considered
in §6.5), the smoothness of the function F ,(¢,z) can be proved based
on a constructed synthesis which is obviously optimal.

It is well known (see, for example, Boltyanski 1969), that in general
the optimal value function of control problems need not be smooth.
However, the probabilistic special features of the problem B(q) lead
one to suspect the smoothness of the value function (see Assumption
6.1 and its discussion).

Derivation of the optimal control by the Pontryagin maximum prin-
ciple is connected with the study of the Hamiltonian H. In the prob-
lems considered here the control enters the Hamiltonian H linearly.
We denote by 2Lj, the coefficient of o/ in the Hamiltonian corre-
sponding to the functional F (¢,2). An important property in linear
control problems with Poisson jumps consists in the fact that a defi-
nite relation exists between the functions Lj,, and Lj_, | which can be
used as a necessary condition of optimality. This relation was already
presented in the solution of the basic scheme in Chapter 5. In §6.4,
the corresponding statements are proved for the general case. This is
one of the basic results of the present chapter.

In §6.5, as an example of the application of the maximum principle
and the relations of §6.4, the solution of the problem of maximization
of the probability that not less than & jumps occur in a fixed time
(the problems By, k = 1,2,...) is given in the framework of the basic
scheme for the case m = N = 2 and symmetric hypothesis. As a con-
sequence, for this case the solution of the problem of maximization of
the number of successes (minimization of loss) for a fixed time interval
is once more obtained.

* * *

We consider also the problem with an infinite number of jumps
(n = o0) and assume that v < oo and the functions qe(t,z) have
the form gqu(¢,z) := A*g(t,z). The problem of maximization of the
expected number of jumps (A := 1, g(¢,2) := 1) is a special case of
this type of problem. If F(¢,2) is the optimal value of the functional
in such a problem, then for F(t,z) the following equality is obtained
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from (6.7) by replacing Fin(-) and Fy_, ,(-) by F(:):

F(t,a) = sup, "+(5la) 3 /() (w(sla)) [Ag(s, TYa(s]a))
+ F(.s,l‘ja:(sfa))] ds. (6.8)

If it is known that the function F(t,z) is smooth, then the problem
obtained can again be considered as a problem of optimal deterministic
control in continuous time and the maximum principle can be used to
write necessary conditions of optimality. Tt is possible to be in the
situation in which the function F(t,2) is unknown and we know only
that it satisfies relation (6.8), but nevertheless a synthesis satisfyin;g
the necessary conditions of optimality can be constructed. It is also
likely in this situation that if 7 is the strategy corresponding to this
synthesis and the function

F(t,z) = ET [Z )\kq(Tk,m(Tk))lT1 > dyalt) = m} (6.9)
k=1

is sntmof:h, then F(t,:n) = F(t,z). The discussion of this hypothesis

and its connection with related statements is contained in §6.6.

6.3 The problem B(q)

According to the general theory of (deterministic) optimal control for
the sc?lutlon of the problem B(q), with state variables z, ¢ satisfying
equations (6.1), (6.5) and functional (6.6), it is necessary to consider
the Hamiltonian

H{oty5,2,2,8, %) = 20Q"(5,2) - zap" () + aA(z)g"

o’ [zpj(:r:)(qj(S, z) —¢) + g:‘;taf(‘n)]

fl

[
—

3
=

c= aj_ij(s’;]g,z,¢,";)

=1

[

= zZaij(s,:n,qb,l,E/z), (6.10)
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where a := (a',...,a™), Q(s,z) := (p'(z)g'(s,2), ... ,pm(a':)qm(s,:n)).,

¢(s,z) := q(s,1¥z) and ¢ and ¥ = (¢1,...,¥m) are conjugate vari-

ables. o ‘ :
The conjugate variables ¢ and 1; satisfy the following equations:

oH = OH
¢:“5—z—’ '—ﬁam;'

Make the change of variables ¥; to v¥; := 1;/z. Sucl:h a change is
always possible because z(s) > 0 for all s. The equations for ¢, ¥;
then have the form

¢ = —aQ* + pap*
: aQ op* 84 Ao 4 =1 ....N (611
¢i=*aawi+¢aamifaami¢ +ap Y 1 e ( )

Since the boundary condition for the problem B(gq) has the form
F*(v,z) = 0, then the transversality condition reduces to

¢(v) = 9i(v) = 0.

If we define H := 'ﬁ/z, then H := H(a,s,z,$,¥) will not depend
on z and in all subsequent formulations the variable z need not be
mentioned. .

If a := (t,z,a(-)), where a(s) is some control and (¢,z) is the
initial point, then the trajectory z(t) := (t|a) can be constructed
(as the solution of equation (6.1)). Then we can substitute a(s) and
z(s|a) into (6.11) and solve equations (6.11), (6.12). As a result we
obtain ¢(s) := ¢(s|a) and ¥(s) := 9¥(s|a) corresponding to the control
a(-) and the initial point (t,z).

The maximum principle states that if a(s) is the optimal control
for the problem B(gq) and z(s) is the corresponding optimal trajectory,
then there exists a nontrivial solution ¢(s), ¥(s) of equations (6.11),
(6.12) such that at any time s, t < s < v, the mazimality condition

(6.12)

max H(a,s,2(s), ¢(s), $(s)) = H(a(s),s,2(s), 4(s), ¥(s))  (6.13)

holds.
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We formulate the set of conditions (Assumption 6.1) which will
be used in the following section to derive the formula establishing the
connection between coefficients of the Hamiltonians in two sequential
problems (these conditions apply to the problem after the first jump).

Assumption 6.1
(a) There ezists an optimal synthesis.

(b) The optimal value function F(t,z) is smooth with respect to t
and z.

(¢) The equalities

ar
F(t,:ﬂ(i)) = ‘?S(t)a é‘;(tsw(t)) = "/)i(t) (6'14)
hold, where () is the optimal trajectory and @(t) and ;(t) are

the corresponding conjugate variables. |

In specific problems (see §6.5) it can sometimes be proved that
Assumption 6.1 holds, which gives the possibility of constructing an
optimal synthesis. There are examples of problems B(q) for which (a)
holds but (b) does not (the appropriate counter-example was shown
by Zelikina 1985). At the same time we show in Lemma 6.1 that the
first of the equalities of (6.14) holds for an arbitrary (not necessarily
optimal) synthesis and for the corresponding F(t, ).

The question of conditions implying assumptions (a), (b) and (c)
for the general case is open. It scems that (c) always follows from
(b). We show also (Lemma 6.2) that from regularity of the optimal
synthesis and continuous dependency of the trajectories on the initial

point, continuous differentiability with respect to ¢ of the function
F(t,z) follows.

Lemma 6.1 For an arbitrary synthesis a(t,z), the value of the func-
tional F*(t,z) coincides with the value of ¢(t) on the corresponding
trajectories, i.e. F(t,z(t)) = ¢(t).

Proof. We show that F'*(1,z) satisfies the same differential equation
as ¢ on the corresponding trajectories. The statement of the lemma
follows from this, since for ¢ = v we have B(v) = F*(v,z(v)) = 0. We
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denote by «(:|t,2) the control corresponding to the synthesis af(:,-)
and the initial point (¢,z), and by Ry, the operation of differentia-
tion along a trajectory at the point (¢,2). Notice that for the given
synthesis z(s|t,z) = z(s|t,, 2(t1|t,2)) and a(s|t,z) = a(s|ty, z(t|¢, z))
for ¢t < t; < s. Therefore

Ro,a(slt,z) =0,  Ry.a(s|t,z) = 0. (6.15)

Differentiating the equation
Fo(t,2) = ftvz(slt,:n)a(s|t,a:)Q*(.s,:1:(3|t,a:))d.s
along the corresponding trajectory, taking account of (6.15), we obtain
R F*(t,z) = —a(t,z)Q(t,z)
+[’ (Ruoz(slt, )] a(slt, 2)Q* (s, 2(s|t, ) ds. (6.16)
Since, according to (6.5),
“(sltsn) = exp{ - [ ault, )" (a(ult,2) du |
then by (6.15) we have
Ry 2(slt, @) = —a(t,z)p*(z)z(s|t, z).
From this and from (6.16) we obtain that
R F(t,z) = —a(t,z)Q" (¢, 2) + a(t,z)p* (z)F*(L, z).

So F=(t,z) satisfies the same equation as ¢(t). Therefore ¢(t) =
Fo(t,z(t)). u

(6.17)

To prove the continuous differentiability of the function F(t,z)
with respect to t, we write the functional (6.6) as

Fe(tya) = [7 [ u(ds,dyltyz)as,v),

where p®(ds,dylt,z) = p*(s,dy|t,z)ds is a joint distribution for a
jump moment and the position after the jump. By p denote the
corresponding distribution for the optimal synthesis.

RS TN A S

T T e e ]

§6.3 The problem B(q) 199

Lemma 6.2 If the optimal synthesis a*(s,z) is reqular and such that to
close initial points correspond close trajectories (in the uniform norm),
then the derivative of the value function F(t,x) with respect to { ezists,
s continuous and is given by

oF(t,z) v dq(s,y)
— = [ / (s, dylt, 2) Y2

7/1@ (v, dylt,z)q(v, y)dy. (6.18)

P'roof. We denote by at := a} and a™ := aj respectively the strate-
gies corresponding to the following synthesis defined on the strips
{s,z:t <s<v}and {sszit+ A<y} A0,

a*'(s+A,2) f1<s<v—-A

ak(s,z) := {

a’(s,z) if v—A<s<y,

ax(s,z) := a*(s - A,z) if t+A<s<w.
By the definition of the value function we have that

F(t,z) > F*'(t,2), F(t+A,2) > F* (t+ A, z).

From this we can assess the increment in the value function as
I := F* (i + A,z) - F(t,z)

F(t+ A,z) - F(t,z)

F(t+A,z) - F*'(t,2) = L.

IA

A

Consider first I;. We have
v
1 von S P (S dylt+ Ay 2)g(s,y) ds

_ft me w(s, dylt,z)q(s,y) ds.

By the (temporal) autonomy of the system (6.1) and the definition of
the strategy ajy, we have p® (s + A, dy|t + A,z) = p(s,dy|t,z) and
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therefore

1 = fv A/ (s,dylt,z)(q(s + A,y) — q(s,y)) ds

f f (s,dylt,z)q(s,y)ds.

From continuous differentiability of the cost function g(s,y) it follows
that after dividing by A the first integral in I, will converge as A — 0
to the first integral in (6.18). From the regularity of synthesis it follows
that along the trajectory the function a(t) is continuous from the left
and this means that p(s,dylt,z) is continuous from the left at s. Thus,
after dividing by A the second integral in I; converges to the second
integral in (6.18). Thus, limI;/A coincides with the right-hand side
of formula (6.18). Similar statements are obtained by considering the
expression I,. So, formula (6.18) is proved. The continuity of the right-
hand side of (6.18) follows from the assumption made with respect to
the optimal synthesis. |

6.4 Formula for the derivative of the Hamiltonian along
trajectories

First we derive a formula for the derivatives of the functions
Li(s,z,$,%) along trajectories of the system (6.1) (see formulae (6.10)-
(6.12)) for some fixed control. In this section we assume that all con-
trols (optimal and non-optimal) are given by synthesis. Let a(-|t,z)
be the control for the initial point (¢,z) corresponding to a given syn-
thesis. We define the functions ¢(s,z) and ¥(s,z) by the formulae
#(t,z) := ¢(tla), ¥(t,2) := ¥(t|a), where a := (¢,2,a(:|t,z)). Then
for any trajectory corresponding to this synthesis ¢(t) = ¢(t,z(t)),
P(t) = (t,2(t)), and by Lemma 6.1, ¢(t,z) = F*(t,z). Correspond-
ingly, set Li(s,z) := Li(s,z,¢(s,z),%(s,z)). Then for any trajectory
Li(t) = Li(t,2(t), #(t),¥(t)) = L(¢,2(t)) and we have
N
Li(s) = p'(2(s))q’ (s,2(5)) — p’(2(s))$(s) + X dhils)al (2(s)). (6.19)
i=1

For a function f(s,z) we denote by £ the derivative along a trajectory

of system (6.1) and 0f/dl* := 8f/0t + ¥N (0f/0z;)a*. Then for a

T
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smooth function f we have

k
= E o 6.20
k=1 alk ( )
Differentiating (6.19) we obtain
Lo [apig
. k
=2 { ot~

k=1

N
PR ] — o+ hal. (621
Bl‘”’ Z il ; (6:21)
From (6.11) it follows that
N
i g s Bpk ap 6p N 5
.l = — k oy L
I Z“[ oi o ?ap Z’/"(ah )]

(6.22)

Substituting (6.22) and the expression for ¢ in (6.11) in (6.21) we
obtain

I * 1] o 3«} BPJ 3p Ba 3&"
7 . k (7 ) ( _ Oat
ATl = g [pe o (et o) * E’/" sy
oplq?  Op* q

We denote the items in round brackets i m formula (6.23) by rik, pl p sk

respectively. It is obvious that ri* = ,p, p:’ , 8k = gk and
therefore 170, 37, a*a’ri* =0, and so on. From this, premultlplvmg
(6.23) by o’ and summing on j, we obtain

m m a
E —ap*L’) =) o*p* (;t (6.24)
j=1 k=1

If all the Li(s,z) are smooth functions, then (6.24) can be written in

the form . ,
L L ar’ - -Og?
j LE i 5 B Rk S
E a E @ (Blk pL—p Bt ) 0.

=1 k=1

Consider now the case where the number of jumps equals two or more.
Then (see (6.7)) it can be assumed that the problem considered has



