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a single jump with the profit function g¢(¢,z) given by the sum of
the profit for first jump ¢,(¢,2) and the value function F(t,z) for a
problem with a single jump and some profit g(t,z).

All notation for the problem with profit § will be the same as in
the previous sections of this chapter except for the bar above each
symbol. We will assume that the problem with profit g satisfies
Assumption 6.1, so that @(t,z) = F(t,z), ¥,(t,2) = OF(t,z)/d;,
q(t,z) = ¢(t,z) + qi(t,2) and q(t,z)/0z; = P,(t,z) + B (t,2)/ ;.
Let L’(t,z) corresponding to an optimal synthesis @ be the coefficient
of @ in the Hamiltonian H. For the trajectory y(t) corresponding to

@ we have
. = sk okk, O
q(t,y(t) = ¢ + 4 = Za"(p"cﬁ— Pt + aqu:)
k=1
Subtracting from this equality the following equality
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and taking into account (6.19) and (6.20), we obtain

(6.25)

dq(t,y) .. —k 9q(t,y)
) = _gak(t:y) [L (t!y)_ ot ] *

Substituting formula (6.25) in (6.24) for the points IV2(t), j = 1,...,m,
we obtain the formula connecting the coefficients LY and L’ for the
two problems as

>~ o [14(t,2(0)) — ap® (o, ) (1, 2(1)]

e i o pi(z(t)) ;,i a*(t,Ta(t))

x [fk(t,I‘fz(t)) _ %(t,[‘jm(t))]. (6.26)

In studying the problem of maximization of the number of suc-
cesses in the basic scheme with two devices and two hypotheses (i.e.

T —

I S R b I SO A M S5 2 et

§6.4 Derivative of the Hamiltonian along trajectories 203

m = N = 2) and in the solution of the problem By, the formula for
the derivative of the function L := [,! — [ ig interesting. For the case
of the basic scheme it is not difficult to check that 7* and pf* in (6.23)
equal 0 for any m and N. Therefore, it follows from (6.23) that

. " dq’ aq® a o
- L = qplot. L BYH . 11
i A TH i Te (812 Bt)p g

7] a
. (ﬁ - a) PP (e —q').  (6.27)

We notice that, in contrast to Chapter 5, the derivatives along the
trajectory are considered in direct time, therefore now /8l = (8/8t—
67)(0/8y). If Assumption 6.1 holds for the problem obtained after
the first jump, then using (6.25) for the points y = I''a and y = g,
taking into account that in the basic scheme ¢1(t,2) = ¢, we obtain

L(s) — a(s)p" (x(s)) L(s)

e

P’(a(s))a(s,[9o(s)) L(s, Tiz(s))

1

i=1

_’..

e

(1) [P (a(s)) 2 (s, ()

1

i=1

8 a\, .. .. :
s (55 = 55) (7" ) + p'pzq’]-

We show that the second sum converts to 0. For Ej(a,l"ja;(.s)), we
can write the following formula, similar to (6.19), using the facts that

q_b(t) = q(t,2(t)) — ¢ and Y, = Oq(t,z(t)/ Oz,

(6.28)

L(s,y) = PW)F(s,9) - p(y)(a(s,y) — c) + (% = %) q(s,y).

For the case of the basic scheme we have the equalities

P1(m)p2([‘13;) - Pz(w)p](l"za:), M'r2g — 1121—1133’
dp'(y) o
~an PP PP (Ty) =0, £, (6.28a)
99'(s,z) _ Bq(s,1Vx)
o~ an
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These equations are checked directly, and it is convenient to conduct
the check in % coordinates (see also formula (5.64)).

Substituting the expression for I at the corresponding points in
the second sum in (6.28) and using the equalities given above, we
obtain the following equality:

L(s) — a(s)p*(x(s))L(s)

= —ij(az(.s))c—xj(s,sz(s))f(s,f‘j:r:(s)). (6.29)

j=1

Recall that 2(¢) and o/ := a’(t,2(t)) correspond to an arbitrary
synthesis in the problem B(q) with g :~ q(t,z) := qi(t, ) + F(t,z),
where F(t,2) is the value function satisfying Assumption 6.1 in the
problem B(g) and a(t,z) is the optimal synthesis for this problem.

Remark 6.1 Formula (6.29) can be obtained without considering the
Pontryagin problem, but simply using the optimality equation. Similar
formulae were obtained in §5.3 (see (5.65)) in exactly this way. ]

6.5 Optimal syntheses for the case of symmetric hypotheses

In this section we will obtain the solution of problems By, k = 1,2,.. .,
and as a consequence, the solution of the problem of maximization
of the number of successes in a finite time interval. For the case of
the basic scheme on the time interval [0,v) we call the problem B,
the problem of maximizing the probability that the kth jump occurs
before time v, or, which is the same, that before time v not less than
k jumps occur. Formally, the function ¢, has the form

gi(s,z) = 0, i=1,...,k—1,
i) = I if s <,
T = 0 i s

As shown in §6.2, the solution of this problem reduces to the solu-
tion of a sequence of Pontryagin type problems and to a proof of the
continuous differentiability of the value functions obtained here. The
corresponding Pontryagin problems we will also call problems B,.
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For this problem Al = X2 = A1 A =2 =22 8% = gl =
A* — A' > 0. The differential equations for the state variables are of
the following type (see (4.28),(5.14))

E=—¢(1-€)6'a+ 81— a),
or, in logarithmic coordinates 7 := (£) :=In[¢/(1 - £)),
1= —[6'a+ 8(1 - a)] = (1 - 2a). (6.30)

The function z(s) defining the probability of no jump satisfies the
equation

i =—zlap'(n) + (1 - a)p*(n)), (6.31)
where
PY(=n) = 5'(n) := p'(€(n))
= NE) + (1= E(m)) = (Ne" 4+ 2%)/(e7 +1)(6.32)
Moreover I''n) = 5+ 4!, I’ = 5+ 42, where Y= =yl =InA%/X! = 0.
The criterion functional in the Pontryagin problem By has the form

v 2 o = i
Fe(rn) = [ +(0) Y ad(6)p? (n(s)) Bca (s,m(s) + 47)ds,  (6.33)
i=1
where Iy := 1, F_(s,7) := SUP,e; Fi4(s,7m), and controls a = af.)
are considered to be measurable functions defined on (t,v] such that
0 < a(:) <1. We denote by a(s,7) the following synthesis

1 if 5<0
a*(s,n) 1= a*(y) 1= 1/2 if n=0 (6.34)
0 if 5>0

and describe the regions Gj and G, (k =1,2,...) introduced in the
statement of the theorem given below, viz.

Gr:={(t,n) : £ 2 0,[n] < mu(t)}

Gr:={(tyn): t > 0,(t,n) € Gi}

(6.35)

where 7, (t) := 62t + (k — 1)y'. Notice that similar regions were con-
sidered in §5.3 for the case of an arbitrary 2 x 2 matrix.
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Theorem 6.1 The following statements hold for the problem B :

(a) The synthesis a*(n) defines an optimal control (which is unique
in the region (v —t,n) € Gy ).

(b) For (v —t,n) € Gy, any control is optimal up to the time of exit
from this region, and the optimal value function for (v —t,n) €
Gy, is given by

Fi(t,m) =1 — Fi(t)e"?/(1 + ), (6.36)

where Iy(s) := 0, and for k > 1

Fi(t) = VAIA? [’Hk_w exp{—(A + A2)(s — 1)/2} Fa_y(s) ds

.

T 2exp{— (A £ M)+ (k — L)y — 1)/2)

X [1 = Feoy(v + (k= 1), 0)]. (6.37)
(c) The value function Fi(t,n) is a continuously differentiable func-
tion and Fi(t,n) = Fi(t,—7). ]

Corollary 6.1 The control given by the synthesis a*(7) is the unique op-
timal control in the symmetric problem of mazimization of the number
of successes for horizon v < co.

Proof. Indeed, a*(n) defines the unique optimal control for each
problem Bj in the whole strip {(¢,7) : 0 < ¢ < v}. Therefore, from
the equality E¢ = 372, P{m < v}, where £ is the number of jumps
up to moment v, and 7, is the time of the k" jump, it follows that o*

defines the unique optimal control in the problem of the maximization -

of the number of jumps also. [ ]

Proof (of Theorem 6.1). The proof is conducted by induction in
which the maximum principle and formula (6.29) derived in the previ-
ous section have important roles. Let Ek(s,q,z, ¢, z9) := zLi(s,n,¢,9)
be the coeflicient of o in the Hamiltonian M for the problem By;
the function Ly(s) = 2(s)Lx(s) = z(s)Li(s,m,6(s),%(s)) corresponds

to some fixed control a(s) and some initial point and Li(s,n) :=

ARSI
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Li(s,m,¢(s,n),%(s,1)), where ¢(s,7), ¥(s,n) correspond to the syn-
thesis a*(n).

From the maximum principle it follows immediately that if Ek(s) >
0 then for optimal control a(s) =1, and if L,(s) < 0, then a(s) = 0.

We denote by Li(s|t,n) the value function Ly(s) corresponding to
the control a®(n(s)) and to the initial point (¢,7).

It will be shown by induction that in addition to statements (a),
(b) and (c) of the theorem, the following statements also hold:

(d) Assumption 6.1 holds for problem Bj.
(e) Li(s,n) = —Li(s,—n)

B 0 if (v—s,n) € GrU{n=0}
|l <0 i (v—s5,7)€EGK >0, s<wv

Ly(v,m) <0 for g >0, Ly(v,n) =0 for >0, k> 1.

(f) Li(s|t,n) (and in particular, Ly(t,n) := Li(t|t,n)) is decreasing
with increasing 7 for (v — s,7) € G, where s < v for k = 1 and
s<viork>1.

Assume that statements (a)-(f) hold for every k < r and consider
the problem B,, »r > 1. From statement (d) for k = » — 1 it follows
that formula (6.29) can be applied and has the form

Lo(s)/2(s) = Li(s)+ai*(n(s))L.(s)
=~ 7 ((s))a* (n(s) + ") Leoa(s,m(s) +7")
=P ()L — ™ (n(s) + 7)) Lr-1(s,n(s) + %)
= iXoenilmla)) (6.38)

First we prove that

Li(s) = 0, (6.39)
and for r > 1
: 0 if (v—s,n(s)) € G, U{n(s) =0}
L(s)=1¢ <0 if(v—s,7(s) €GC,, n(s)<0 (6.40)
>0 if(v—s,n(s)) € G, 7(s)>0.
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Indeed, the relation (6.39) is obtained from (6.27), (6.28a) and the
fact that in this case ¢* := ¢! := 1. Moreover, from (v — s,7) € G, it
follows that (v —s,n+97) € G,_;, and by (6.38) and statement (e) for
k =r—1 we obtain that dL,(s)/ds = 0 for (v —s,7(s)) € Gj. Finally,
from (e) and (f) for k& = r—1 and the monotonicity of p'(n) and p*(n),
it follows that for (v — s,7) € Gy, the function X,_(s,7) (see (6.38))
is strictly increasing with respect to 5 for fixed s and X, ,(s,0) = 0.
Since L,_,(s,n) = —L._1(s,—7n), the last equality holds for all s, not
only in Gy. From this (6.40) follows.

Consider statement (a). The existence of an optimal control was
proved in §4.4 and follows also from the general results of the theory
of optimal control.

We show that o* defines the unique control in region Gj. For
r = 1 with any control, the trajectory passing through the point
(v — 3,m(s)) € Gy, n(s) > 0, arrives at s = v at some point 7(v) >
0. Since by (6.19) and (6.12), Li(v) = 2(v)[p(n(»)) — p*(n(¥))],
then L;(v) < 0 for n(v) > 0, and this means, using (6.39), that
L.(s) = Li(v) < 0 for the trajectory considered. Therefore, by the

maximum principle, the optimal control is given by a(s) = 0 for
(v—s,7n(s)) € Gy, n(s) > 0. Similarly, a(s) =1 for (v —s,75(s)) € Gy,
n(s) < 0.

We consider next the case » > 1. Let a trajectory corresponding
to an oplimal control &(-) pass through the point (v — s,7(s)) € G.,
n(s) > 0, and let L,(s) > 0. Denote by 7 the exit time of this
trajectory from the region G! := {(s,n) : (v—38,n) € G,, n > 0}. From
(6.40) it follows that L,(v) > 0 holds for all v such that s < v < 7, and
therefore it follows from the maximum principle that a(v) = 1 for this
v. From this, by equation (6.30), 7(s) is monotonically increasing and
n(7) > 0, and this means that v = v. But L,(v,9(v)) = 0, because
F, 1(v,n) =0, ¢(v) =0, ¥(v) = 0. This is a contradiction and thus
L(s,7(s)) < 0 and @(n(s)) = 0 = a*(n(s)) for (1 - 8,1(s)) € G

Similarly, we obtain that in the region GV := {(s,n): (v — s,7) €
G,,n < 0} the optimal control also coincides with «*. From this
it follows that on the points of a trajectory belonging to G. (corre-
spondingly G”), 7(s) is monotonically decreasing (increasing). From
this fact it follows immediately that the optimal trajectory passing
through the point (v — s,0), v — s - (r — 1)|y'| cannot reach the
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regions G, G, consequently n(v) = 0 for all v > s and the corre-
sponding optimal control &(v) = 1/2 = a*(5(v)). Thus, it is proved
that the synthesis a*(n) defines the unique optimal control in the
region (..

Consider the proof of statement (b) for & = r > 1. From this the
optimality of a*(n) in the region G, will be proved, which completes
the proof of statement (a) for k& = ».

Consider an initial point (¢,7) such that (v — ¢,7) € G, and a
control which is arbitrary up to the time of exit from the region @, and
afterwards coincides with the optimal control. From the optimality
of a*(n) in G, proved above, it follows that the exit time from N
coincides with ¢, = v + (7 — 1)y and 5(t,) = 0.

To prove statement (b) it is sufficient to show that for the control
under consideration

F(tym) =1 - F,(t)e"?/(1 + "),
where F(t) is defined in (6.37).
Since Fy(t,n) := 1, (6.41) will hold for r = 0 if we set Fy(t) := 0.
From (6.33) and the equality z(s|t,n) = z(,|t,n)z(s|t,,n(t,)), which
follows from (6.31), we have, in light of the optimality of a*(n) for
s > t. and the equality 5(t,) =0 (r > 1)

‘ 2
F2(t,n) f 2(8) Y al(s) n(s) + ) ds
i=1

» (2, 0). (6.42)
By direct substltutlonl (6.31) using (6.30) it is easy to check that
2(slt,m)

. 1
= (") +1)/(e" + 1)) exp{— [n(s) —n+ (N +X*)(s — 1))},

1(s) := n(slt,n). (6.43)

From (v — s,m) € G, it follows that (v — 5,7 + 77) € G,_; and this
means that formula (6.36) can be used for F,_i(s,n(s) + 47), which
gives

(6.41)

(s))Fr1(s,

Fr71(~9:7?(3) + 'Yj)

=1 [F7(n(s))] TV IA2 V2E_ (s) /(™) 4+ 1), (6.44)
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Substituting (6.44) and (6.43) into (6.42), we have

2

Fe(tn) = [ (slton) Y ad(s)5 sl m)) s

i=1

en/?

en+ 1 f:r VAN exp{—(A' + N?)(s — t)/2} F,_y(s) ds

T 2t 1, ) Ey(t, 0). (6.45)

According to (6.31), the first integral in (6.45) equals 1 — z(t,|t, 7).
Substituting this equality into (6.45) and then using (6.43) for s = ¢,
and then the fact that n(t,) = 0, we obtain formula (6.41), which
completes the proof of statements (a) and (b).

Consider statement (c). The equality F.(t,n) = F.(t,—n) fol-
lows from the proven symmetry of the optimal synthesis, the relation
p'(n) = p*(—7n) and formula (6.33).

To prove the continuous differentiability of F.(¢,7) it suffices to
consider 7 > 0. We substitute an optimal control in (6.33) and use
the fact that p!(0) = p2(0), Fr_1(s,7") = Fr_1(s,7?) and n(s|t, ) > 0
if 7 > 0 to obtain that the function under the integral sign equals
z(8)p2(n(s))Fr-1(s,m(s) + v*). Denote by 7(t,7) the time the line
n = 0 is reached by a trajectory which exits from the point (¢,7). The
functions z(s|t,n) and #%(s|t,n) have continuous bounded one-sided
derivatives with respect to ¢ and  which coincide for all s except at
time 7(t,n) and the function F,. ,(s,7n) is continuously differentiable
by the assumed truth of statement (c) for k = — 1. (If » = 1, then
Fy(t,n) = 1.) Therefore, we can differentiate under the integral sign
and the function so obtained is continuous as a function of £ and 7 for
n > 0.

Using the equalities (8/8n)n(s|t,n) = 0, valid for s > 7(¢,7), and

(8% /0n)z(s]t,n) = 0, we obtain that (8% /8n)F.(t,n) = 0. "Thus, the
continuous differentiability of F,.({,n) has been proved, and this com-
pletes the proof of statement ¢) for k = r.

Consider statement (d). The coincidence of ¢(f,n) and F.(t,7)
was proved in Lemma 6.1, therefore to check statement (d) for k = r
it remains to prove the coincidence of ¥,(t,n) and (9F,/8n)(t,n).

Notice that for the part of the optimal trajectory on the line = 0,
we have (8/0n)F,(t,n) = 0, 9.(t,n) = 0 (the last equality is obtained

e T
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immediately from the equation for () and the boundary condition
Y(v) = 0). Therefore, it is sufficient to show that for n > 0 the
function (8/8n)F,(t,n) satisfies the same equation as ¥(t) on optimal
trajectories. The optimal trajectories here have the form n(t) = no— 8%t
for n(t) > 0.

From the equality ¢(t,5) = F.(t,7) and equation (6.11) for ¢ we
find that '

9 2 0 ~2 )
(& —é aT,) F(tn) = p*(n)Fr-1(t,n) — B2 (0) Fo_a(t,n — 4*) (6.46)

holds for 5 > 0 (see also (6.17)). The right-hand side of this relation is
continuously differentiable with respect to . If we consider a/01* =
0/0t—8%(8/0n) as the derivative in the direction 7 = —6%¢ in the (t,7)
plane, then from existence and continuity of the repeated derivative
(8/0n)(8/01*)F,(t,n) it follows that the other repeated derivatives
exist and the equality (8/81%)(8/0n)F,(t,n) = (8/8n)(8/01)F,(t,n)
holds. Using this equality and differentiating (6.46) with respect to
7, we obtain that for » > 1 the function (8/8n)F,(t,n) satisfies the
same differential equation as 1(t) on optimal trajectories. Therefore,
statement (d) is proved.

Consider statement (e). The boundary conditions for L.(s,m) at
8 = v, r > 1 are obtained from (6.12), (6.19) and the nature of the
function g(s,7n). Statement (e), for k =+ and s < v, follows immedi-
ately from the proven relations (6.40), equality L,(s) = 2(s)L.(s,n(s))
and the above boundary condition for L.(s,n). Here the equality
L.(s,n) = —L.(s,—n) follows from the proven symmetry with respect
to the line 5 = 0.

Considering the proof of statement (f), we assume without loss of
generality that 5 > 0. As before, we denote 7(¢,m) as the time the
line 7 = 0 is hit by a trajectory starting at the point (t,m). Then by
statement (e) for » = 0 and formulae (6.38) we have

*Er(‘glta 77)

T(tn) = 7(t,n)
= f, L.(v|t,n)dv = fa [Di(vlt,n) — Dy(v]t, 7)) dv,
(6.47)
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where
Dy(vlt,n) = —2(v[t,n)p' (n(v[t,n))Le1(v,n(v]t,n) +77)
< o (n(vlt,n) + '), (6.48)
Dy(vlt,n) = 2(vlt,m)p*(n(v]t,n)) Lo (v, n(vlt,n) +4%)
x [1—a*(n(vlt,n) +~°)]. (6.49)

By (6.40), we have that D;(v|t,n) — Da(v|t,n) > 0 and, moreover,
it is obvious that 7(¢,n) is increasing with increasing 7. Therefore it
follows from (6.47) that to prove statement (f) it suffices to show that
D, (v|t,n) is monotonically increasing and Dy(v|t,n) is monotonically
decreasing with 5 for fixed t and v.

Consider Dy(v|t,77). From the definition a*(n) it follows that ei-
ther Dy(v|t,n) is equal to 0 or all items in (6.48) are positive. But for
t<v <T1(t,n)

(vlt,n) =1 — 6(v - 1), (6.50)

holds, and therefore by statement (f) for & = » — 1 the function
Lo_1(v,n(v|t,n) + 4') is decreasing with 5. From (6.50) and (6.32)
we obtain that 5'(5(v|t,n)) is also monotonically decreasing with 7.
The same statement is obtained from (6.50) and (6.43) with respect
to z(v|t,n). Thus, the proof of monotonically increasing of D;(vlt,n)
with respect to 5 is complete.

Consider Dy(vl|t,n). From (6.50), (6.43) and (6.32) it isaot difficult
to show that

2(v[t,n)p*(n(vlt,n)) = p*(n)z(vlt,n +7°). (6.51)

From (6.50) we have 5(v|t,n) + ' = n(v[t,n ++*). From this and

from (6.51) and (6.49) it follows that

Dy(vltyn) = 5*(m)2(vlt,n + 7°) Lea (v (vt n +4%). (6.52)
But p?(n) is increasing with 7, and the product of the last two terms
in the right-hand side of (6.52) is negative and is decreasing with n by
statements (e) and (f) for k = r — 1. Thus, Dy(v|t,n) is decreasing
with 7 for fixed ¢ and v, which completes the proof of statement (f)
and Theorem 6.1. |
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Remark 6.2 Using a formula similar to (6.51) a recurrence relation
can be given for Fi(t,7) not only in the region (v — t,7) € Gy, but in
the whole half plane. |

6.6 Problems with an infinite number of jumps

In this section we briefly present a heuristic method for considering
the problem with a criterion functional of type (6.9), when the value
function enters on both sides of the corresponding equation. In the
previous section we overcame the difficulties by considering the se-
quence of problems with recursive functional equation of the type
Fi(t,2) = sup [ 2(sla) Y ()0 (a(s]a))[Aa(s), TV (sa))

+ Fi_y (s, I‘jw(s|a))] ds,

where a := ({,z,a(-)) and Fi(¢,2) converge as k — oo to the value
function F(t,z) sought. However, this method was successful only
because the optimal synthesis has the same form in all intermediate
problems and therefore in the initial problem. In the general case
such a solution method, although in principle possible, can be practi-
cally unrealizable because of the complexity of the construction of the
syntheses for the intermediate problems.

Another method of solution consists of the following. Suppose that
the value function is smooth. Then we can obtain a formula similar to
that obtained in §6.4 except that L] and LI | are both the function
L, which is the coefficient of o in the Hamiltonian . This formula
is a necessary condition which can be used to construct the optimal
synthesis. The second step in the solution consists in the proof that
the functional F'*(¢,z) corresponding to this synthesis is a smooth
function. Since the synthesis was constructed with the assumption
that the value function is smooth, it does not follow automatically
that F**(¢,z) = F(t,z). Finally, based on the smoothness of F*(t,z)
and the necessary optimality conditions, it can be shown that F*(¢, z)
satisfies the Bellman equation. From this it follows that F(¢,2) co-
incides with F(t,2). By this method we can, for example, prove the
optimality of the strategy given in §6.5 for the problem of maximiza-
tion of the number of successes.



