{ SOME OTHER PROBLEMS

7.1 Description of main results

In this chapter solutions are given to some problems closely related
to the basic scheme, a short review is made of other authors’ works
related to the theme of this book, and some open and little-studied
questions are presented.

In the previous chapters we mainly considered problems of the
maximization of number of successes (minimization of loss). Anal-
ysis shows that for such problems over a long time interval optimal
strategies do not usually coincide with myopic strategies, i.e. strate-
gies optimal over short time intervals (in discrete time—for one step).

This can be explained heuristically because for the case of a far
horizon, i.e. long time interval, part of the effort is optimally used in
the determination of which hypothesis is true. However, discrimina-
tion of the true hypothesis is not a direct aim of the solution and is
not directly reflected in the form of criterion functional. It would be
interesting to find the optimal strategy in a problem in which the dis-
crimination of the true hypothesis is the direct purpose, i.e. where for
fixed a priori distribution and given observation time (fixed horizon)
the probability of accepting a false hypothesis must be minimized.
The first steps in this direction are made in §7.2, where the problem
of discrimination of the true hypothesis is formulated for 2 x 2 hy-
pothesis matrices in the discrete time case. It is not difficult to show
that in such a problem the solution is to make a decision at the hori-
zon (a terminal control) based only on the value of the a posteriori
probability at the horizon v and to decide that for ¢(v) > 1/2 the
first hypothesis is true and that for ¢(r) < 1/2 the second is true.
Since the discrimination of hypotheses depends on the values of £(v),
whose distribution in turn depends on the strategy used, the problem
reduces to the optimal organization of the observation process. In the
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216 Some Other Problems

problem of loss minimization the optimal strategy always has a thresh-
old character (see Theorem 3.2) and for all symmetric matrices (for
Al < A}) is the same and is independent of the number of observations
remaining. We show that in the symmetric problem of discrimination
of hypotheses the optimal strategy depends on the ratio of the abso-
lute values of jumps (in the 7 coordinates), i.e. on ratio p = |y!|/4°,
where 4! := In(A}/A%), 4° := In[(1 - AN/(1 = A?)], and it does not
always have a threshold character.

We do not have a description of optimal strategies for all possible
p and restrict ourselves to the study of the cases p := k and p := 1/k,
where k is a natural number greater than 1, and we also make some
remarks with respect to the case p=3/2.

In §7.3 we treat the problem of maximizing the probability of the
first jump in a fixed time interval for a hypothesis matrix of size m x N
in continuous time. Since the criterion functional has a simple charac-
ter, it is possible to complicate the character of probability distribution
of jump times. Theorem 7.2 gives necessary and sufficient conditions
for the optimality of a strategy in terms of mapping connected with
the structure of the hypothesis matrix. The contents of this section
were first published in Sonin (1976).

The next section presents the ideas by which the Bayesian ap-
proach, the framework in which most of this book is written, is re-
jected. Most popular amongst non-Bayesian approaches is the mini-
maz approach, where the “quality” of a strategy is defined with respect
to the minimum value of the functional over all hypothesis values for
a fixed strategy. Two-armed bandit problems in such a formulation
were considered, in particular, in Vogel (1960a,b), Fabius & van Zwet
(1970) and other works. We mention that in our case (a finite num-
ber of hypotheses) the optimal strategies derived from the Bayesian
formulation sometimes allow one to define the value function for the
minimax formulation as well.

In §7.4 the problem of the maximization of the number of jumps
is considered in minimax formulation for the case m = 2. Here the
content of Fabius & van Zwet (1970) and Vogel (1960a,b) is briefly
presented. We also mention that it follows from the resulls of this
section that the loss function for Bellman’s case is of asymptotic order
v/n. This completes the proof of Theorem 3.1 from §3.1.
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Section 7.5 briefly presents the interesting work of Rothschild (1974),
devoted to the control of prices, which was mentioned in Chapter 1.
Here also some comments are given regarding the basic assumptions
of this work.

In §7.6 we briefly present work of some other authors related to the
content of this book which was not mentioned in previous chapters.
We also give a list of some unsolved and little-studied problems.

7.2 Discrimination of hypotheses

The problem of the discrimination of the true hypothesis with v — 1
observations is a discrete time basic scheme problem with N = m = 2
over a finite horizon v, where the cost function fn equals zero for all
n < v, at terminal time v the two possible controls 1 and 2 correspond
to the index of the accepted hypothesis (not to the device index) and
the cost f, has the form

0 if 6,=1,a(v)=1 or ) =0, a(v) =2

PBal) = { Dt 6 =1, a(v)=2 orf =0, a(v) = 1.

Formally, to stay in the framework of the basic scheme, acceptance
of the i*" hypothesis at the last step can be identified with the choice
of the i'™ control, 7 = 1,2. Here, similarly to §3.4, since m = N = 2,
the consideration of vectors § :— (61,82), £ := (&,&), B := (8',5?) is
replaced by that of scalars 6 := 8, — 1 — 0y, € =&, B =P,

According to what was said above in §2.4 (see also §3.4), such
a problem can be presented in the form of a Markov model, where
the a posteriori probabilities are points of the state space and the
parameter § is absent. Transition probabilities are given by formulae
(3.54), (3.55) and by (2.23) the cost function fa(€,a(n)) is given by

fals ) =0 i i 2,
fo(6,1) = f1(€) = (1-¢),
fu(’g:z) = fﬂ(é) = f

By Theorem 2.4, to find the optimal strategy and value function
it is suflicient to obtain the sequence of solutions of the optimality
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equation

Fou(€) = Tap1 Fnp1,0(€) forn < v - (7.1)

satisfying the boundary condition F,,,, = 0. In the problem of discrim-
ination of hypotheses, when the cost for terminal solution differs from
zero, the operator 7, has the form T, f(¢) = min(f'(€), f*(€)), and
the operators 7T}, for n < v do not depend on n and have the form

T.f == Tf =min(M"f,M?*f), where (see (3.57))
MIf(€) = p'(&)F(17'€) + (1 - P(€))F(17°€), j =1,2.

Therefore, in spite of the fact that strictly speaking the problem con-
sidered is temporally nonhomogeneous, for the solution F,, of equa-
tion (7.1) we have that F,, = F,_,,. Therefore, similarly to the ho-
mogeneous case, we can transfer to time remaining notation so that n
denotes the length of the remaining time interval (i.e. (n — 1) is the
number of remaining observations).

Equation (7.1) has the form

Fl(é) = 1'1'1111(1 - £:£)J
Foi1(8) = min(M'F,(¢), M*F(£)), n=1,2,....

(7.2)

(7.3)

Here the existence of an optimal strategy and the continuity and con-
vexity of F, for 0 < ¢ < 1 follow from the results of Chapter 2
(Theorem 2.2). As in §3.4, consider the sequence

ra(€) 1= M2E(€) — M Fa(€),

and let ro(€) :=2¢ — 1.

If s observations remain, 0 < s < v —1 and (v — s — 1) is such
that 7,({(v —s—1)) > 0 (correspondingly 7,() < 0) then any optimal
strategy prescribes the use of the first (second) control at the following
step, i.e. for s > 0 to observe the corresponding device and for s = 0
to accept the corresponding hypothesis. If r,(é(v — s — 1)) = 0, then
any behaviour is optimal.

Repeating the discussion in the proof of formula (3.67) we obtain
that r,(€) satisfies the following recurrence relation for n > 1:

rs1(€) = M (] = AL [ra(8)] ",

n=12,... (7.4)

(7.5)
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where at := max(0,a), a :=a* - a".
Consider the case of symmetric hypotheses, where A! := )2 e AL,

A := A3 1= A%, Without loss of generality assume A' < A? and let
7* = n AR,

Y= hl(1 = N)/(1= X)), pi=yll/4% (7.6)

_ Then

21 10

=g =gl == q0%0. (70

As in §3.4 it is convenient to make a change in variables 5 :=

7(£) == In[¢/(1 — £)] and let

Fo(n) := Fa(€M)),  Taln) := ra(é(n)),
where £(7) is a transformation inverse to 7(¢).
The operator M7 transforms to A7 acting according to the formula

(see (3.63))

(7.8)

M f(n) = F () f(n — (~1¥7") + (1 = F(0))f(n — (~1)4°). (7.9)

Consider the case p := k, where k is integer, k > 1 and let 70 1= 4,
—v' := ky. For fixed k and 7Y, consider the sequence of sets G’
n =0,1,..., on the nonnegative half line 5 > 0 consisting of the half
line {n > nky} and intervals of length y separated from each other by
a distance vk, i.e.

[nk/(k+1))

U {nk —s(k+1) <

G {n=nky}u 2
1=1 Y

< nk — sk + 1)—|-1}).
(7.10)

If the left end point of the unit interval closest to zero coincides with
the point -, then we add to the set G, the interval {0 <5 <+v}. Thus

let
G e G, if n#k
Gou{0<n<y} if n=k

{nin>0,97¢G.},

(mod (k + 1))
(mod (k + 1))

Gl:={n:-neG}

(7.11)

Q
-
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Theorem 7.1 Any optimal strategy for the symmetric problem of tzhe

discrimination of the true hypothesis with v = In[(1 — A')/(1 — A?)]
and p = k is of the form

1 if 7(¢) € Gl

m(€)i={ 0 if () € G2

arbitrary otherwise,

(7.12)

where n = 0,1,... and m,(§) denotes the probability with which the
first control is used if n observations remain and the a posteriori prob-
ability of the first hypothesis equals €.

Proof. From the above discussion the statement of the theorem de-
rives directly from the following relations, which we will prove by in-

duction:

Fu(n) >0 if ne Gl

Fa(n) <0 if e G2 (7.13)

Fa(n) =0 if n¢ GLUGE.

By symmetry F‘n(n) = F(—n) which implies that 7,(n) = —7.(7).
Therefore it is sufficient to show (7.13) for > 0.

Simultaneously with (7.13) we prove by induction that 7,(¢) is
linear on each interval whose form in n variables is given by vs <7 <
v(s + 1), where s is a nonnegative integer. To prove this fact we need
the following property of the operator A7 which follows directly from

its definition (see also (7.9)):

(a) If the function f(£) is linear on each interval whose image in 7
variables has the form ys <7 < v(s+1) or ys < -5 < y(s+1),
then M7 f(¢€) is also linear on these intervals.

We turn now to the inductive proof. For n =1, Fi(¢) = min(¢,1 N
). Since MI(b¢ +d) = bf + d (see Lemma 3.1), then from (7.9) it
follows that

MR8 =F(&)=1-¢ if 7(&) =17,
MIF\(§) < Fi(€) i i(é) < y*7

§7.2 Discrimination of hypotheses 221

From this and from (7.4) we obtain that »(¢) = 0, if 7€) > ky
and r(€) > 0, if v < 7(£) < ky. Using property (a) applied to
f(€&) = Fy(¢), we obtain from (7.4) that r(€) is linear on any interval
of the type sy <5 < y(s+1). But rl(f.((l)) = 0 and, as was proved,
r1(£(7)) > 0 and thus 7(€) > 0 for 0 < 7(€) < v. So for n = 1 the
induction assumption is proven.

Let the induction assumption hold for all n < s. Then r,(€) does
not change sign on the interval ys < #j(s) < y(s + 1), and this means
that »}(£) or r;(£) can be taken as f(¢) in formulation of property
(a). From this and from (7.5) we obtain that r4141(€) is linear on each
interval of the type ys < 7(¢) < (s +1). Further, 7,(n) = Ty(—1) > 0
for > 0. Hence, by (7.5) and (7.9), we have that

P)s(n+ ) + (1 = FP())Fe(n — ky) ifn > ky

Ter1(n) = ¢ PX(0)Fu(n + ) ify <9 <ky
Pn)Fa(n + ) = B ()7 (v — m) if0<y<y.
(7.14)

First consider the case n > ky. If 5 € G,y then from the structure of
the sets G, it follows that either - ky € G or n— kv & G!, but then
n—ky€(0,1), s =k (mod (k+1)), and it follows that 5+~ € Gl
In both cases, from (7.14) and the induction assumption for n = 8, we
obtain that 7,,,(n) > 0.

Now let 7 > ky and 5 ¢ G, . Then from the structure of the sets
G it follows that n+ 5 & G1, n— ky & G! and thus by induction and
(7.14) we have that 7,,,(n) = 0.

If ¥ < < ky, then from 5 € G1,, it follows that n + v € G! and
from n ¢ G},,, it follows that 5 + ¢ G!. In both cases, from (7.14)
and the induction assumption for n = s, we obtain that (7.13) holds
in this region for n = s + 1.

As was proved above, the function 74+1(€) is linear on the interval
0 < 5(€) < v and equals zero for 7(¢£) = 0. Therefore by the structure
of set G},, (7.13) holds on this interval from the relation just proved
for 7 = 7. So Theorem 7.1 is proved. ]

Remark 7.1 1f 7,(¢) gives an optimal strategy in the symmetric probh-
lem of discrimination of hypotheses with some 4° and ! = —p7°, then
the strategy 1 —7,(¢) will be optimal in the problem with 3% := —4!,
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' = —4° i.e. p = 1/p. Indeed, if we consider the matrix {1 — A/}
instead of the matrix {A]}, then an optimal strategy does not change,
since this transformation simply corresponds to exchanging the terms
“success” and “failure”. On the other hand, if we now exchange the
device indices, then an optimal action rule will change to the opposite
action and the hypothesis matrix will have the form A! := 1 — A%,
Ai=1-2 ]

Remark 7.2 From the previous remark and Theorem 7.1, it follows
that if in symmetric case p = 1/k, where k is a natural number not
equal to 1, then an optimal strategy in the problem of minimization
of loss is optimal also in the problem of discrimination of hypotheses.
At the same time, for p = k the optimal strategies in these problems
take opposite actions. |

Remark 7.3 It can be shown that for the continuous time problem of
discrimination of hypotheses an optimal synthesis has the form

0 i E<1/2
o (mb) = 1 if £>1/2
£ 1./2 if € =1/2

i.e. a solution has the opposite character to that for the problem of
maximization of the number of successes. This agrees with the solution
for p = k, since in discrete time p > 1 if and only if A} + A? < 1 and
continuous time can be considered as the limiting case of discrete time
with an unbounded increase of number n of observations with success
probabilities AJ/n in each test. |

As in the minimization of loss problem, in the problem of discrim-
ination of hypotheses for p = k and p = 1/k there exists an optimal
strategy which has a threshold character, i.e. for £ < 1/2 it prescribes
the use of one device and for £ > 1/2 the other. We show that with
other values of p this can fail.

Example 7.1 Consider the symmetric problem of the discrimination

of hypotheses with 4! = —3v, 4% = 2y, i.e. p = 3/2. Property (a)
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holds in this case too, therefore, as for the case p = k, we obtain that
r1(€) 1= MPF(€) — M'Fy(€) is linear and positive on the intervals
(1/2,€(27)), (£(27),& £(37)) and otherwise is equal to zero for £2172,
So, for n = 1 the optimal synthesis has the same character as for the
case p = k. We show that for n = 2 the character of the optimal
synthesis changes.

Consider r,(¢) := M¥r}(¢) - AIlrf(E). From the definition of
M7 it follows that M} (€) is piecewise linear and positive on the
intervals (£(—2y), E('y)) and (€(37), 5[67)) and by symmetry the func-
tion M'r{ (£) is positive and piecewise linear on (E( Vs £(2y)). From
this it follows that ry(£) is strictly negative on (€(y), ¢ £(27)) and, by
linearity and equality to zero for £ = 1/2, is also strictly negative on
(£(0),€(7)). So, for & > 1/2 the interval (1/2,£(2v)) on which the sec-
ond control must be used is exchanged for the interval (£(27),£(37)),
where any control is optimal, and subsequently by the interval
(€(37),€(67)), where the first control must be used. |

7.3 Maximization of first jump probability

In this section we consider problems closely related to the basic scheme
(in continuous time) for profit functions ¢; of the type q; := 1, g(t,z) =
0 for i > 1. In other words, consider the problem of maximization of
the probability of at least one jump (a realization of a 1) in a fixed time
interval . In this case the strategies 8 do not depend on the observa-
tions, i.e. A coincides with control up to the first jump ag(slé) = a.
Therefore in this section we will speak about controls instead of strate-
gies (or action rules).

However, now we do not assume that the distribution of the first
jump time with respect to the ;' coordinate is exponential, i.e. the
observation process is not a Poisson process. Instead of the density
function exp(—A? f; a?(v) dv) we will consider arbitrary nonincreasing
logarithmic convex functions of the variable f; af(v)dv.

We show that such a problem is equivalent to a convex program-
ming problem of optimization theory. For this problem, we give a
description of the set of optimal controls for each initial point ¢, and
also prove the existence and continuity with respect to ¢ of the deriva-
tives of the value functions F,(£). As was mentioned in §1.9 and in
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§6.2, this fact is of interest in the consideration of similar problems in
which the number of observations is greater than one.

Let 4, be the set of measurable vector-valued functions taking val-
nes in §™ and defined on the interval [0,v] and let Ri(q),
i =1,...,N, j = 1,...,m be nonincreasing continuously differen-
tiable functions of a scalar variable ¢ such that »(q) := —In R{(q) is
a convex function, R}(q) < 1 and for each j we may find 7 such that
Ri(q) is strictly decreasing. _

We assume that the probability of no jump in the j*" coordinate
under the i*" hypothesis on the time interval [0, s] using the control
o(+) € A, is given by Ri(f; @’(v)dv). Since we are interested in the
maximization of the probability of at least one jump with a prior:
distribution of the probability of the first hypothesis £, then the func-
tional to be considered is

N

@) =1- Y& IR ([ w)av). (7.15)
i=1 i=1 0

Therefore the value F2(£) is the same for all o € A, such that

IE &(s)ds = ¢*, where q:= (¢*,...,q™) € Q. and

m

Qs = {d ="d"5s 038" )8 ¢ >0 i=1,...,m, qu:u}. (7.16)

i=1

Using the equality Rf(q) = exp{—rf(q)} and denoting

I Ri(e®) := 3 #i(') = Ri(a), (7.17)

j= i=1

the initial problem can be rewritten as the following equivalent convex

programming problem.
Given v > 0, ¢ € SV, minimize
N m o N
Y &exp{- ) _ri(¢")} = ) &exp{-Ri(q)} (7.18)
i=1 i=1

i=1

with respect to all possible ¢ = (¢*,...,¢™) € Q..
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We also call the elements of set , controls. Define

; . L _d—rf ; m
P(&q): ;&dq,-(q ) Eesm,
I(6,9) = {j : (&, ¢) = max p*(¢,q")} (7.19)

and call a pair (¢,q) edmissible if j ¢ I(¢,q) implies that ¢/ = 0.

We write the values of the a posteriori probabilities of hypotheses
¢' at time v for initial point ¢ using the control a(-) € A, in the event
of no jump up to time v. By Bayes’ formula we have

& =Gen{- R} Y Gexp{-Rala)}  i=1,..,N, (7.20)

where ¢/ := [V ai(s)ds, j = Ly oo 17,

Denote by ®,,, the map §™ — §™ given by formula (7.20) for fixed
v, g€ Q,.

It is easy to check that the inverse map @ (for fixed v, q) is given
by the formula ’

& = Giexp{Ri(q)}/ Xk: & exp{Ri(q)}. (7.21)

The normalizing multiplier in (7.21) we denote by
K(€',q) == {1/ 3 & exp{Ru(q)}. (7.22)

From the continuity of the functions 7/(¢/) and (7.22) it can be con-
cluded that for all ¢ € Q,,, where 0 < v < 1y and for some ¢ G
0= Riq) <€ Ozex K(E,q) < C. (7.23)

The existence of an optimal control for fixed ¢ and v (or, as we

~will say, of a (v, £)-optimal control) follows directly from the continuity

(with respect to ¢) of the criterion functional (7.18) and the compact-
ness of Q.. The description of the set of optimal controls for different
v,€ can be given in terms of the notion of an admissible pair and the
map ¢!, -
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Theorem 7.2

(a) For the control g to be (v,€)-optimal it is necessary and sufficient
that the pair (®,3€,q) be admissible.

(b) If § and g ave (v,€)-optimal controls, then
év.ﬁf = (I)Mag'

(¢) The derivative with respect to & of the value function F,(§) is
continuous with respect to variables &,v for ¢ belonging to the
interior of simplez SV,

In principle the theorem makes it possible to find optimal controls.
One needs to find all admissible pairs {(¢',q) : & € §™, ¢ € Q. } and
consider the map @} acting on them. Since for each point (v,£) at
least one optimal control g exists and the pair (®,3£,7) will be admis-
sible, each point & will have at least one pre-image. From statement

(b) of the theorem it follows that for all such pairs ¢’ will be the same.

Remark 7.4. The functions pi(&,q) involved in the definition of ad-
missible pairs (see 7.19), like the map ®, have obvious probabilistic
meanings: p’(¢’,q) is the probability density of a transition of the
7th device from the state 0 to the state 1 in a small time interval
(v — dv,v) under the condition that the value of the a posteriori prob-
abilities of hypotheses at time v — dv coincides with ¢ and the total
resources assigned to devices up to time v — dv coincide with g, i.e.
v ai(s)ds = ¢*, j = 1,...,m, and &¥(s) = 1 for s € [v — dv,v).
Accordingly, statement (a) of the theorem can be clarified as follows.
If at time v — dv a device can be found with index j such that its
investment up to moment v — dv differs from zero and on the interval
[v — dv,v) investment in it is unprofitable (i.e. we can find a device
with index j' such that with investment of all resources in it on the
interval [v — dv,v) the probability of a jump on this device is greater
than that on the device with index j with full investment in it) then
the control is nonoptimal on the interval (0,v — dv). |

Remark 7.5 In the Poisson case, i.e. for Ri(q) = exp{-Ag}, the
functions p’(¢,q) have the form Y ; &A] and therefore do not depend
on q. The possibility in the Poisson case of constructing an optimal
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control in the form of a synthesis on the space t,&, where ¢ is the time
remaining (see, for example, §6.5), is connected with this fact. |

Proof. For the characterization of optimal controls we use the Kuhn-
Tucker theorem in differential form (see Pshenichni 1969, Theorem
2.6). According to this theorem, for § = (7', ... ,G™) to be the solution
of the minimization problem (7.18) and (7.16) it is necessary that there
exist constants a, 6°, b',... ™, not all zero, such that the following
relations hold:

. dri
agg,. exp{—Ri(q} (da}(ﬁ’)) +8°— b =0,

Wl i : (7-24)
¢ =0, ¥>0, j=1,...,m, a>0.

If @ > 0, then these relations are sufficient. (We mention that the
ir‘lequality in Theorem 2.6 of Pshenichni (1969) is replaced by equality,
since the set X coincides in the case considered with the whole space..)

We show that if § is a solution of problem (7.16), (7.18) (which
always exists by the existence of a (v,€)-optimal control noted above),
then in equalities (7.24) a > 0, §° > 0. Indeed, suppose a = 0. For
at least one 7, §" # 0 and therefore " = 0. From (7.24) for j = »
it follows that 6° = 0 and & = 0 for all j = 1,...,m. This is a
z;)ntrg,diction. Similarly, from the condition dr/dg > 0 we obtain that

> U.

Dividing (7.24) by @ Y & exp{—Ry(§)}, calling the definition of the
map ®,,q and denoting ¢ := &, 3¢ and b := bi /a3 & exp{—Rxq)},
J=0,1,...,m, we rewrite the relations (7.24) as

pj(‘ffagj) =" - bj,: 3 ="Lsuv: y; bjrgj = 0. (7.25)

) Now it is easy to see that the pair (¢, g) is admissible. Indeed, since
b’, >0 qnd for at least one r > 0 we have b = 0, then max; p*(€',q) =
b I pi(¢,q) < b”,ie. j & I(¢',g), then &' > 0 and therefore 7 =0.

If some pair (¢',7), § € Q,,, is admissible, then for this pair relations
(7.25) hold (it is sufficient to set 5 := max, pH(E,T), ¥ = Y —
P’(¢,¢’). By introducing ¢ := ¢, .q(¢') and multiplying (7.25) by
the required multiplier we obtain that the equations of (7.24) hold
and therefore by the second part of the Kuhn-Tucker theorem gisa
(v,€)-optimal control. So, statement (a) of the theorem is proved.



