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Abstract

We discuss the generalization of the classical Gittins Index for a Markov chain and propose a transparent recursive algorithm
for its calculation. The foundation for this algorithm is a modified version of the Elimination algorithm proposed earlier by the
author to solve the problem of optimal stopping of a Markov chain in discrete time and a finite or countable state space.
c© 2008 Elsevier B.V. All rights reserved.

MSC: primary 60J22; 62L15; secondary 65C40; 90C40

1. Introduction

The goal of this paper is two-fold. First, to explain a natural generalization of the classical Gittins Index (GI). This
new, Generalized Gittins Index (GGI) in a sense clarifies the “true meaning” of the GI. Second, to present a transparent
recursive algorithm to calculate this GGI.

Our algorithm is based on the well-known representation of the GI through a family of stopping problems due
to Whittle (1980) and on earlier work of the author on the recursive algorithm for the optimal stopping of a Markov
chain, the Elimination algorithm (EA), described in Sonin (1999a) (see also Sonin (1995, 1999b, 2006)).

We will use the following notation. A pair M = (X, P), where X is a countable state space, P = {p(x, y)}

is a transition matrix, is called a Markov model. A Markov chain (MC) from a family of MCs defined by a
Markov model is denoted by (Zn). The probabilistic measure for the Markov chain with initial point x and the
corresponding expectation are denoted by Px and Ex , respectively. A tuple M = (X, P, c, g, β), where c(x) is a
one step reward (cost) function, g(x) is a terminal reward function, both defined on X , and β is a discount factor,
0 < β ≤ 1, is called an Optimal Stopping (OS) model. The value function v(x) for an OS model is defined as
v(x) = supτ≥0 Ex [

∑τ−1
i=0 β i c(Zi ) + βτ g(Zτ )], where the sup is taken over all stopping times τ, τ ≤ ∞, and

g(Z∞) = 0. We assume that the model M is such that v(x) < ∞ for all x . It is well known that function v is a minimal
solution of a corresponding Bellman (optimality) equation v = max(g, c + β Pv), where P f (x) =

∑
y p(x, y) f (y)

is the averaging operator, defined by a transition matrix P . Let us denote S = {x : v(x) = g(x)}. If the state space X
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is finite then the random time τ0 = min{n ≥ 0 : Zn ∈ S} is an optimal stopping time. The set S is called the optimal
stopping set. We call an OS model with the terminal reward function g(x) = 0 for all x a reward model.

Given a reward model M = (X, P, c, β), and point x ∈ X the classical Gittins index, γ (x), is defined as the
maximum of the expected discounted total reward during the interval [0, τ ) per unit of expected discounted time for
the Markov chain starting from x , i.e.

γ (x) = sup
τ>0

Ex

τ−1∑
n=0

βnc(Zn)

Ex

τ−1∑
n=0

βn

= (1 − β) sup
τ>0

Ex

τ−1∑
n=0

βnc(Zn)

1 − Exβτ
, (1)

where 0 < β < 1, and τ is a stopping time, τ > 0.

The GI index plays an important role in the theory of Multi-armed bandit (MAB) problems with independent
arms but it also appears naturally in many other problems of stochastic optimization, e.g. in the optimal replacement
problems, where in many cases to find an optimal strategy amounts to the calculation of (1). There are a few algorithms
to calculate this index (see e.g. Varaiya et al. (1985), Katehakis and Veinott (1987), and Bertsimas and Niño-Mora
(1996)), Niño-Mora (2007) and some generalizations of this index (see e.g. Mandelbaum (1987) and El Karoui
and Karatzas (1993)), which do not cover our generalization. New interesting results connecting the GI with other
problems of stochastic optimization can be found in Bank and El Karoui (2004).

2. Classical GI and generalized GI

An important interpretation of the GI, the so-called Retirement Process formulation was provided by Whittle
(1980). Given a reward model M = (X, P, c(x), β), 0 < β < 1, he introduced the family of OS models
M(k) = (X, P, c(x), k, β), where the terminal reward function g(x) = k for all x ∈ X , k is a real number.
Denote v(x, k) the value function for such a model, i.e. v(x, k) = supτ≥0 Ex [

∑τ−1
n=0 βnc(Zn) + βτ k], and denote

w(x) = inf{k : v(x, k) = k}. Since β < 1, for sufficiently large k it is optimal to stop immediately and v(x, k) = k.
Thus w(x) < ∞. The results of Whittle imply that v(x, k) = k for k ≥ w(x), v(x, k) > k for k < w(x), and
γ (x) = (1 − β)w(x).

Another interesting interpretation of the GI, the so-called Restart in State interpretation, was given in Katehakis and
Veinott (1987), though similar ideas of regenerative cycles were used in probability theory a long time ago (see e.g.
references in Sonin (1996)). Let us consider a Markov Decision model Mx = (X, A(y), P, c(y), β), where a point
x ∈ X is fixed and a set of actions A(y) available at y, has two actions—to continue or to return to x and continue
from there. In other words, MC (Zn) starting from a point x after a positive stopping time τ > 0 can be restarted at the
same point x , and so on. Let h(x) denote the supremum over all strategies of the expected total reward on the infinite
time interval in this model, i.e. h(x) = supπ Eπ

x
∑

∞

n=0 βnc(Zn), where Eπ
x is an expectation with respect to a strategy

π. Using the standard results of Markov Decision Processes theory, Kathehakis and Veinot proved that h(x) = w(x)

and function h(x) satisfies the equality

h(x) = sup
τ>0

Ex

[
τ−1∑
n=0

βnc(Zn) + βτ h(x)

]
. (2)

Combined with the results of Whittle this implies that γ (x) = (1−β)h(x) = (1−β)w(x). We will prove the equality
h(x) = w(x) in a more general setting in Theorem 1.

Before introducing the Generalized GI (GGI) let us make the following almost trivial remark. As usual in Markov
Decision Processes theory, the optimizations problems, such as described above, with an explicit discount factor β,
are equivalent to problems where a state space is complemented by an absorbing point x∗ and the new transition
probabilities are defined as follows. The probability of entering an absorbing point x∗ in one step for any state y 6= x∗

(probability of termination) is equal to 1 − β and all other initial transition probabilities are multiplied by β. In other
words, β is the probability of “survival”. The model of latter type with a possible variable probability of survival
β(x) plays a crucial role in our subsequent presentation. Thus, to define the GGI α(x) we consider a reward model
with termination M = (X, P, c(x), β(x)), where we assume from the beginning that the state space X contains an
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absorbing point x∗, the function β(x) is the probability of “survival” at point x , so 1 − β(x) = p(x, x∗). Strictly
speaking the function β(x) is completely specified by a transition matrix P but we include β(x) in the tuple M, to
stress the presence of x∗ and β(x). From now on notation Ex , Px and (Zn) are referred to such model and survival
probabilities β(·) now are automatically included under the signs Px and Ex . We also assume that c(x∗) = 0.

Let us denote the numerator in (1), which now equals to Ex
∑τ−1

n=0 c(Zn), by Rτ (x), and let us denote Qτ (x) =

Px (Zτ = x∗), the probability of termination on [0, τ ).
The Generalized GI (GGI), α(x), for a model with termination is defined as

α(x) = sup
τ>0

Rτ (x)

Qτ (x)
, (3)

i.e. α(x) is the maximum discounted total reward per chance of termination. Note that if β(x) is a constant β then the
denominator in the second equality in (1) coincides with Qτ (x) and therefore in this case γ (x) = (1 − β)α(x).

The crucial point however is that, if β(x) is not a constant then the latter equality generally is not true anymore,
even if the definition of γ (x) is correspondingly modified, i.e. βn is replaced by

∏n−1
i=0 β(Zn). Thus, in the general

case, the proportionality of the two indices γ (x) and α(x) as functions of x completely disappears. At the same time,
for a reward model with termination we can define in an absolutely similar way as before a (generalized) index h(x),
as the value function in a restart in x problem, and a (generalized) index w(x), as w(x) = inf{k : v(x, k) = k}, where
v(x, k) is a value function in the (generalized) Whittle OS model M(k) = (X, P, c(x), β(x), k). In this model we
assume that c(x∗) = g(x∗) = 0, g(x) = k for x 6= x∗. As Theorem 1 shows below, the equality α(x) = w(x) = h(x)

is preserved! This means that the “true meaning” of the Gittins index is given by the expression in (3) and not in (1) !
Now a few words about the origin of definition (3) and some comments. The first publications on GI appeared

in the 70s (see Gittins (1979) and the references therein). But as early as in 1960 the following simple model was
analyzed by a few authors simultaneously (see Mitten (1960)). We present it here in a modified form. Suppose that
there is a finite set of independent Bernoulli trials e1, e2, . . . , em , with probability of success pi , and correspondingly
with probability of failure qi , in i th trial. A decision maker (DM) can choose an order in which to conduct (test) the
trials. Each trial can be tested only once. The test of the i th trial brings a reward ri , and in the case of success she
may quit or continue testing. In the case of failure the testing has to be terminated. The goal of the DM is to select
the optimal order to maximize the expected total reward. A rather elementary proof shows that the optimal strategy
has a remarkably simple structure and is based on an index α calculated for each trial ei , α(ei ) = ri/qi , i.e. reward /
probability of termination. The optimal strategy has the following form: test the trials with positive index in decreasing
order. If all trials must be tested then they should all be tested in the above order. Each trial may be considered as a
simple MC with three states, an initial state, success and failure. This problem contains in a nutshell both the simplest
form of an index (3) and the main result of Gittins theory, the optimality of an index-based strategy. This model was
generalized in the papers of Granot and Zuckerman (1991), Denardo et al. (2004), and Presman and Sonin (2006). All
of them are using an index of type (3) though only in the last paper, where new trials may appear in a random fashion,
the variable probability of termination is fully considered. These models represent the most general setting in which
Gittins theorem remains valid.

Note also that contrary to popular belief the renown Gittins theorem mentioned above holds true for the case of
variable β(x) and there is no contradiction with a well-known result of Berry and Fristedt (1985) which states that
geometric discounting is not only sufficient but is also necessary in the class of discounting sequences (β1, β2, . . .). It
means that what really matters for the validity of Gittins theorem is stationarity with respect to time but not space.

Theorem 1. The three indices defined for a reward model with termination M = (X, P, c(x), β(x)) coincide, i.e.
α(x) = h(x) = w(x).

Proof. First, let us prove that in a such model the relations v(x, k) = k for all k ≥ w(x), v(x, k) > k for all
k < w(x) in the original Whittle’s model remains valid. Using our notation Rτ (x) and Qτ (x), we can represent
the value function v(x, k) = supτ≥0 Ex [

∑τ−1
n=0 c(Zn) + I (Zτ 6= x∗)k] = supτ≥0[Rτ (x) + (1 − Qτ (x))k], where

I (A) is a characteristic function of a set A. If v(x, k) > k then there is a stopping time τ > 0 such that
Rτ (x) + (1 − Qτ (x))k > k. Therefore, Rτ (x)/Qτ (x) > k and if m < k then Rτ (x) + (1 − Qτ (x))m > m
and v(x, m) > m. Then, using the definition of w(x), we obtain that v(x, k) > k for all k < w(x) and v(x, k) = k
for all k > w(x). The equality v(x, w(x)) = w(x) follows from the continuity of function v(x, k) in k. One also



I.M. Sonin / Statistics and Probability Letters 78 (2008) 1526–1533 1529

may conclude that if k < w(x) then α(x) > k. Since this is true for any k < w(x), we obtain that α(x) ≥ w(x). If
k > w(x), then, as we proved, v(x, k) = k, and therefore by the definition of v(x, k), k ≥ Rτ (x) + (1 − Qτ (x))k for
any τ > 0. This implies that k ≥ Rτ (x)/Qτ (x) and hence α(x) ≤ k for any k > w(x). Therefore α(x) ≤ w(x). The
equality α(x) = w(x) is proved.

To prove α(x) = h(x), note that in a reward model with termination the equality (2) remains true, but now,
when β(x) is not a discount factor but a “survival” probability, takes the form h(x) = supτ>0 Ex [

∑τ−1
n=0 c(Zn) +

I (Zτ 6= x∗>)h(x)]. This follows from the fact that the proof of (2) uses only the general properties of Markov
Decision Processes equally true for both reward and general reward models. This equality can be rewritten as
h(x) = supτ>0[Rτ (x) + (1 − Qτ (x))h(x)]. Assuming, as in a classical Gittins case, that β(x) < 1, and hence
Qτ (x) ≥ 1 − β(x) > 0, it is easy to see that this is equivalent to the equality h(x) = supτ>0 Rτ (x)/Qτ (x),
i.e. h(x) = α(x). �

3. The elimination algorithm for the problem of optimal stopping of a Markov chain

We present here just the bare facts necessary for the subsequent discussion and refer the reader to Sonin (1999a,b,
2006). Let M1 = (X1, P1) be a Markov model, and D ⊂ X1. If (Zn) is a MC specified by this model, and (Yn) be a
random sequence obtained by observing (Zn) during its visits to the set X2 = X1 \ D, then (Yn) is a MC in X2 with
the following transition probabilities P2. If matrix P1 is decomposed as

P1 =

[
Q1 T1
R1 P ′

1

]
, (4)

where substochastic matrix Q1 describes the transitions inside of D, P ′

1 describes the transitions inside of X2 and so
on, then

P2 = P ′

1 + R1U1 = P ′

1 + R1 N1T1. (5)

In this formula U1 = {u1(x, y), x ∈ D, y ∈ X2} is a matrix for the distribution of a MC at the moment of first
exit from D (exit probabilities matrix), and N1 = {n1(x, y), x, y ∈ D} is a fundamental matrix for the substochastic
matrix Q1, i.e. N1 =

∑
∞

n=0 Qn
1 = (I − Q1)

−1, and n1(x, y) is the expected number of visits to y before the moment
of first exit from D starting at x . Given set D, matrices N1 and U1 are related by formula U1 = N1T1. An important
case is when the set D consists of one nonabsorbing point z. In this case formula (5) obviously takes the form

p2(x, ·) = p1(x, ·) + p1(x, z)n1(z)p1(z, ·), (6)

where n1(z) = 1/(1 − p1(z, z)).
According to this formula, each row-vector of the new stochastic matrix P2 is a linear combination of two rows of

P1 (with the z-column deleted). For a given row of P2, these two rows are the corresponding rows of P1 and the zth
row of P1. This transformation corresponds formally to one step of the Gaussian elimination method.

Let M1 = (X1, P1, c1(x), g(x), β1(x)) be an OS model with termination, v1(x) be the value function for this
model, and S = {x : g(x) = v1(x)} be the corresponding optimal stopping set. Let us now introduce a transformation
of the cost function c1(x) (or any function f (x)) defined on X1 into the cost function c2(x) defined on X2, under
the transition from model M1 to model M2. Given set D, D ⊂ X1, let τ be the moment of the first return to X2,
i.e. τ = min(n ≥ 1, Zn ∈ X2). Then given function c1(x) defined for x ∈ X1, function c2(x) is defined on x ∈ X2 as

c2(x) = Ex

τ−1∑
n=0

c1(Zn) = c1(x) +

∑
z∈D

p1(x, z)
∑
w∈D

n1(z, w)c1(w). (7)

In other words the new function c2(x) represents the expected cost (reward) gained by a MC starting from point
x ∈ X2 up to the moment of first return to X2. For a function f (x) defined on a set X1 and a set G ⊂ X1 denote fG a
column-vector function reduced to a set G. Then formula (7) can be written in matrix form as c2 = c1,X2 + R1 N1c1,D.

If the set D = {z} then the function c1(x) is transformed as follows

c2(x) = c1(x) + p1(x, z)n1(z)c1(z), x ∈ X2. (8)

The latter formula was obtained earlier in Sheskin (1999) in the context of Markov Decision Processes.
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The Elimination algorithm for the OSP of a MC is based on the following three facts.

1. Though in an OSP it may be difficult to find the states where it is optimal to stop, it is easy to find a state (states)
where it is optimal not to stop. It is optimal not to stop at z if g(z) < c(z) + Pg(z), i.e. the expected reward of
doing one more step is larger than the reward from stopping. Generally, it is optimal not to stop at any state where
the expected reward of doing some, perhaps random number of steps, is larger than the reward from stopping.

2. After we have found states (state) which are not in the optimal stopping set, we can eliminate them and recalculate
the transition matrix using (6) or (5), and recalculate the cost function using (8) or (7). After that in the reduced
model we can repeat the first step and so on.

3. Finally, though if g(z) ≥ c(z) + Pg(z) at a particular point z, we can not make a conclusion about whether this
point belongs to the stopping set or not, but if this inequality is true for all points in the state space then we have
the following simple and well-known statement

Proposition 1. Let M be an optimal stopping problem, and g(x) ≥ c(x) + Pg(x) for all x ∈ X. Then X is the
optimal stopping set in the problem M, and v(x) = g(x) for all x ∈ X.

The following theorem provides the formal justification for the EA. It was formulated in a slightly different form
in Sonin (1995) and proved in Sonin (1999a) for the case when c(x) = 0 for all x . (The proof for general c(x) can be
found in Sonin (2006)).

Theorem 2 (Elimination Theorem). Let M1 = (X1, P1, c1, g) be an OS model, D ⊆ C1 = {z ∈ X1 : g(z) <

c1(z) + P1g(z)}. Consider an OS model M2 = (X2, P2, c2, g) with X2 = X1 \ D, p2(x, y) defined by (5), and c2
is defined by (7). Let S be the optimal stopping set in M2. Then (a) S is the optimal stopping set in M1 also, (b)
v1(x) = v2(x) ≡ v(x) for all x ∈ X2, and for all z ∈ D

vD = N1[c1,D + T1vX2 ]. (9)

If the set D = {z} then formula (9) can be written as

v1(z) = n1(z)

[
c1(z) +

∑
y∈X2

p1(z, y)v(y)

]
. (10)

For the sake of brevity we call two such OS models M1 and M2 equivalent.
The EA consists of two stages: reduction and backward stages. The first stage can be described as a sequence of

steps where subsets of states that do not belong to the stopping set are eliminated till the stopping set is achieved.
The selection of these steps in the countable case is dictated by the structure of the problem and the convenience of
calculation of matrices U = N T . The algorithm has an especially simple structure if the state space is finite, and only
one state is eliminated at each step.

Finally, on the backward stage, by reversing the steps of the reduction stage, we can calculate recursively the
values of v(x) for all x ∈ X1, using sequentially formula (9) or (10), starting from the equalities v(x) = g(x) for
x ∈ S = Xk , where k is the number of iteration where the reduction stage of the algorithm stops.

4. The Gittins Index Elimination (GIE) algorithm

To apply the EA algorithm to calculate α(x) we need the following statement. Given a reward model with
termination M = (X, P, c(x), β(x)), with β(x) = 1−p(x, x∗) < 1, let us define the function d(x) = c(x)/(1−β(x)),
number d = maxx∈X d(x), and the set D = {x : d(x) = d}.

Theorem 3. Let M be a reward model with termination, |X | < ∞, number d and set D defined as above. Then
α(x) = d for x ∈ D and α(x) < d for all x ∈ X \ D.

Proof. Let us consider the OS model M(k) and let S(k) be the optimal stopping set. If k ≥ d then the definition of d
implies that for this OS model g(x)− (c(x)+ Pg(x)) = k − (c(x)+β(x)k) = (1−β(x))(k −d(x)) ≥ 0 for all x ∈ X
and hence by Proposition 1, S(k) = X and v(x, k) = k for all x ∈ X . If x 6∈ D and d(x) < k < d then similarly
v(x, k) = k and hence by the definition of w(x), and equality α(x) = w(x) we obtain α(x) < d. If x ∈ D and k < d



I.M. Sonin / Statistics and Probability Letters 78 (2008) 1526–1533 1531

then g(x) − (c(x) + Pg(x)) < 0 for x ∈ D and therefore x 6∈ S(k) and v(x, k) > k. By the definition of w(x), and
equality α(x) = w(x) this implies that α(x) ≥ d and therefore α(x) = d for x ∈ D. The theorem is proved. �

Now we can describe the GIE algorithm and prove that it really calculates the GGI.

Step 1. Given a reward model with termination M1 = (X1, P1, c1(x), β1(x)), calculate defined above the function
d1(x), the number d1, and the set D1. By Theorem 3, α(x) = d1 on the set D1. Without loss of generality we can
assume that D1 = {z}.

Step 2. Define model M2 = (X2, P2, c2(x), β2(x)), where X2 = X2 \ D1, stochastic matrix P2 is obtained by (5) for
D = D1, function c2(x) is obtained by (7), β2(x) = 1 − p2(x, x∗). Calculate d2(x) = c2(x)/(1 − β2(x)) on X2,
number d2 = maxx∈X2 , and set D2 = {x : d2(x) = d2}.

To prove that α(x) = d2 on a set D2, let us consider Whittle OS model M1(k) = (X1, P1, c1(x), β1(x), k) with
k < d1. Let S1(k) be an optimal stopping set for this model. Theorem 3 implies that for all such k we have D1∩S1(k) =

∅ and hence by Theorem 2 this model is equivalent to a new OS model M2(k) = (X2, P2, c2(x), β2(x), k),
where X2, P2, β2(x), d2(x), d2, and D2 are described above. It can be checked using formulas (5) and (7) that
d2(x) = [k(x)d1(x) + k′(x, z)d1(z)]/(k + k′), where k, k′ > 0. Hence d2(x) < d1(x) and d2 < d1. Theorem 3
implies that α(x) = d2 on a set D2. And so on. If |X1| is finite, in no more than |X1| steps α(x) will be calculated for
all points. Note also that the elimination of a set D1 can be performed state by state using (6) and (8) or at once using
formulas (5) and (7).

Example 1. Let our reward model has X1 = {1, 2, 3, x∗}, with c1(1) = 3, c1(2) = 2, c1(3) = 1, and β(x) = .9 for
all x 6= x∗ and the corresponding transition matrix P = P1 is

P1 =

.3 .3 .3 .1

.45 .3 .15 .1

.1 .5 .3 .1
0 0 0 1

, P2 =

.4929 .3429 .1642

.5429 .3429 .1142
0 0 1

, P3 =
.7099 .2901
0 1

.

Then d1 = c1(1)/(1 − β) = 30, D1 = {1}, and by Theorem 3 α(1) = 30. Therefore, we eliminate the state 1
on a first step and, applying formulas (6) and (8), we obtain new transition matrix P2 and function c2(x) for a state
space X2 = {2, 3, x∗}; c2(2) = 3.9286, c2(3) = 1.4286. Therefore d2 = c2(2)/(1 − β2(2)) = 23.9130 = α(2),

D2 = {2} and on the second step state 2 is eliminated, and we obtain matrix P3, and c3(3) = 5.6338. Therefore
α(3) = c3(3)/(1 − β3(3)) = 19.4175. (All calculations were rounded up four digits after decimal point.)

Note that though we started in this example from a constant survival function β(x), after the first step we deal with
variable βi (x) for i > 1. The classical GI for this model γ (x) = (1 − β)α(x) = .1α(x).

5. The optimal stopping times and the representation identity

For the case when X is finite, we can also describe two optimal stopping times where the value of GGI α(x) is
achieved. We omit the proof of both lemmas.

Lemma 1. Let M be a reward model with termination, and let the sets Di and the numbers di , i = 1, 2, . . . be those
which occur in the calculation of α(x). Then, if x ∈ Di , τ1 = min{n > 0 : Zn 6∈ (D1 ∪ · · · ∪ Di−1)} ≡ min{n > 0 :

α(Zn) ≤ α(x) = di } and τ 0
1 = min{n > 0 : Zn 6∈ (D1 ∪ · · · ∪ Di )} ≡ min{n > 0 : α(Zn) < α(x) = di } are the

optimal stopping times.

Lemma 2. Let M be a general reward model. Then the following formula (Representation Identity) holds

v(x) ≡ Ex

∞∑
n=0

c(Zn) = Ex

∞∑
n=0

[
min

0≤i≤n
α(Zi )

]
I (Bn+1), (11)

where α(x) is a GGI for this model, and Bn = {T = n} ≡ {Zn−1 6= x∗, Zn = x∗}.

Note also that using this equality and the sequence of models Mn described in the algorithm, it is possible also to
calculate v(x) recursively. This remark can be also extended to the general setting of Gittins theorem.
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6. A brief comparison with other algorithms

The assumption that discount rate is constant is mainly a technical convenience in applied probability models and
is not natural in many economic or financial applications. As we described above, our algorithm deals with the more
general case of a variable discount rate depending on a state of a MC. It belongs to a wide class of algorithms based
on the idea of states elimination. This idea was first applied in 1985 in two independent papers of T. Sheskin, and
Grassman, Taksar and Heyman concerned with the calculation of invariant distribution of MC. We refer the reader
to our paper Sonin (1999b) where this approach is discussed. Our algorithm has the same computational complexity
O(n3) as the algorithm of Varaya et al. or similar algorithm of Bertsimas and Niño-Mora (1996) and Niño-Mora
(2007). It has simple and transparent probabilistic interpretation and lends itself naturally to the extension to the case
of countable MC. A simple example of such a situation is a random walk on a line {x∗, 0, ±1, ±2, . . .} with general
transition probabilities p(i, i + 1) = pi , p(i, i − 1) = qi , p(i, i) = ri , p(i, x∗) = si , pi + qi + ri + si = 1, and
function c(i) ≥ 0, c(i) → 0 as i → ±∞. It is easy to check that in this case for any i , the index α(i) is calculated in a
finite number of steps. More than that, the computations in this example as in some other examples can be performed
in parallel. Finally note that the algorithm based on the idea of using state elimination to calculate Gittins index was
briefly, in a few lines described in Tsitsiklis (1994), but the assertion there that for the case of a discrete MC such an
algorithm will coincide with the algorithm of Varaya et al. and that it is also a special case of the algorithm in Weiss
(1988) is not true. Even the calculations for our simple Example 1 will be quite different. This line of study was
continued in Katta and Sethuraman (2004) who presented an algorithm similar to our but without rigorous proofs and
without a reference to optimal stopping problem. The comparison of computational properties of existing algorithms
(for constant β), including our algorithm described in a technical report, is presented in Niño-Mora (2007).

7. Possible generalizations and open problems

We described our algorithm to calculate the GGI for the case when β(x) < 1. In a very similar way it can be used
for the undiscounted case, β = 1, assuming that the corresponding GI in (1), γ (x), is finite. It can be proved that
in this case limβ→1 αβ(x)(1 − β) = γ (x). For example in Example 1, the corresponding values for γ are: γ (1) =

3, γ (2) = 17/7 = 2.428, γ (3) = 232/112 = 2.071. The algorithm described above can be modified to accommodate
also the case when the expression Rτ (x) in the definition of GGI has a form Rτ (x) = Ex [

∑τ−1
n=o c(Zn) + g(Zτ )],

where the function g(x) is a terminal reward at the end of a cycle [0, τ ), but this modification is not quite trivial. We
described our algorithm for the case when the state space X is finite. The sequential calculation of α(x) is possible
also for the countable case if at each stage the sets Di are not empty and ∪

∞

i=1 Di = X. The general description of
such situations is an open problem. The other open problems are the analogs of the described algorithm for continuous
time and/or space.
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