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Summary. This paper  describes the relationship between the model's growth rate, 
the set of vectors of equilibrium growth and the set of internal rates of return of the 
investment matrix. This matrix specifies the renewable and reproducible scale- 
neutral investment possibilities. An explicit description of quasioptimal strategies 
and turnpikes is given. 

1. Introduction. Main results 

The main aim of this paper is to look from a new angle at the relations between 
three important  characteristics of the investment models: the 9rowth rate of the 
system described by the model, the set of the internal rates of return of the projects 
defining the investment possibilities in the model, and the set of vectors ensuring 
balanced (stationary) development of the system - turnpikes. 

Thus the content of this paper lies on the boundary of two powerful streams in 
theoretical economics: the theory of economic growth, with such key words as 
resources, von N e u m a n n - G a l e  model, balanced growth equilibrium, the turnpikes 
theorems and the theory of optimal (sequential) investments with key words: 
investment programme (project), capital, profit, internal rates of return, the 
equilibrium rate of interest, and selection criteria, We consider a rather specific 
model with rigid assumptions about  the possibility to reproduce every project at 
any scale and infinitely many times, and do not make any attempts to trace in depth 
the history of the problem or to embed derived relations into more general economic 
context. We hope that the economists with broader perspectives and better 
knowledge of economic literature can use the results of this paper  for more far 
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paper. I am grateful for Northwestern University's sponsoring of the scientific exchange between Central 
Economics Mathematics Institute (Moscow) and NU, which gave me and other scientists from Russia 
the possibility to discuss topics of common interest with American colleges. I am grateful also to the 
anonymous referee for his thorough and valuable remarks. 



384 I.M. Sonin 

reaching conclusions. We also refer the reader to the important papers of Cantor 
and Lippman (1983) and Atsumi (1991), (see also the interesting comments of 
McKenzie following Atsumi's paper), where very similar models with detailed 
explication and justification of assumptions were considered. 

The starting point for our analysis is the work of Cantor and Lippman (CL 
(1983)), where the following model of economic dynamics with a unique resource, 
money, is considered. Time is discrete and runs through 0, 1 . . . . .  n. Later n tends to 
infinity. The investor's initial money capital is given and his goal is to maximize the 
terminal wealth, i.e. total cash on hand, by date n. The investment possibilities are 
specified by the project a = (ao, al , . . . ,  at), where r is the duration of the project, ao 
is the initial investment, and ai represents the cash received from the project in the 
ith period after investing. The main case is when ao < 0 and then, without loss of 
generality, ao = - 1, where the other ai may have any sign. A negative number is 
an input (a cash outlay from the investor) and a positive number is an output. Three 
basic assumptions are made in their model: (A) (Stationarity). The project a is 
available for investment in each period of the planning horizon. (B) (Divisibility). 
'The project a can be implemented at any scale. (C) (Imperfect capital market). The 
investors decisions are constrained so that a nonnegative cash position must be 
maintained at all points in time. 

In addition to the basic project a, the auxiliary project a ~ = ( - 1 , 1 ) ,  the 
"keeping" of capital, is available. It has the same properties as a. 

Since the aim of the investor is to maximize total cash at terminal moment n 
and he must be free of obligations at n, all the undertaken projects must be 
completed by this moment and this implies that there is no investment in the project 
during the last r periods of the planning horizon. Denote by V, the optimal n-period 
return (the value function). The well-known concept of the investment polynomial 
J(2) of the project a, J(L) = ~,~= o ai2 -~ = ~ ai/(1 + p)i, plays a key role in the analysis 
of the asymptotic behaviour of V,. The value of p = 2 - 1 is called the rate of return, 
1/2 is the discount factor, so J(2) is equal to the net present value of the project with 
discount 1/2. The project a is productive if J(1) = ~ a i  > 0. If ao < 0, then J(2) < 0 
for large 2 and hence in this case the equation J(2) = 0 has at least one real root 
greater than one. If J(1) = 0, the project a is called cashtransfer, if J(1) < 0, the project 
a is called nonproductive. The values of the roots of J(2) minus one are called internal 
rates of return of the project a. 

The main aim of Cantor and Lippman was to find the relationship between the 
model's growth rate g = lim, V~,/" and the roots of J(2). First, by means of the so called 
fundamental equation (see Section 4a), they found that 

V, _< C2,, (1.1) 

where 2. is the minimal real root of J(2) greater than 1, C is the initial capital, in the 
sequel C =  1. Second, Cantor and Lippman proved that if 2. < oe and has 
multiplicity m + 1, then there exist positive constants bl and b2 such that 

b12,/n m <_ V, < bz2./n". (1.2) 

These statements seem to be inconsistent with the works of other authors, where in 
very similar conditions, the model growth rate is equal to maximal real root of 
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investment polynomial. For  instance in Dorfman (1981), an abstract states that "It 
has long been recognized that a firm will grow asymptotically at a rate equal to the 
largest real positive root of an individual project's rate of return equation if the net 
cash flows are continually reinvested in the proje6ts of the same type." Atsumi (1991) 
comes to the same conclusion about the maximal root under the condition of 
non-positive discounted profit for an equilibrium interest factor. Cantor and 
Lippman noted this divergence, but don't  give an explanation of it. Their proofs 
are based on nontrivial results from polynomial theory, and are rather complicated. 

In this work we consider the case of a (finite) set of projects of both types, 
investments (ao < 0) and loans (ao > 0), explain the above "inconsistency", and give 
an explicit description of quasioptimal strategies, i.e. the strategies ensuring the 
maximal growth rate. Briefly our methods and results may be described as follows. 

The basis for our analysis is the representation of the investment model as the 
yon Neumann type model. As a state of the system we consider the vector 
z = (Zo, z l , . . . ,  zr- 1 ) ~Rr, where Zo is cash at hand, and zi is the money received (paid) 
/-periods after the present moment if no additional investment will be made. The 
analogues of(A)-(C) and assumption of independence of the projects are assumed. 

At state z with k basic projects and an auxiliary one, the investor may choose 
any distribution of"investments" (activity levels) u -- (u ~ u 1 . . . . .  uk), U j >_ O, compat- 
ible with financial position z. The goal of the investor is to maximize the zero 
coordinate of final state z, under the condition that other coordinates are equal 
zero (nonnegative). The described model is very similar to the model of von 
Neumann. But in contrast to von Neumann's model the vectors z may have negative 
coordinates. Moreover, in the important case without loans there are admissible 
states z such that the subsequent motion is possible only for a finite number of steps. 
We refer to such states as deadends. Finally the considered terminal functional 
h(z) -- Zo if z i _> 0, i = 0, 1 . . . . .  r - 1, z = (Zo, z l , . . . ,  z~_ 1), h(z) = 0 otherwise, is linear 
only on a subset of state space and is neither linear nor continuous on the whole 
space. This property is specified by "free of obligation at final moment" constraint. 
So we failed to use any facts from the vast theory related to the Neumann-Gale  
models, though the key idea to consider the vectors of balanced growth is adopted 
from this theory. 

We say that a vector e is a turnpike vector (the vector of balanced growth) or 
briefly a t-vector with rate 2 > 0, if under an admissible investment the vector e can 
be reproduced at scale 2 with may be some nonnegative cash. The turnpike {c} is 
the set of all vectors proportional to e. Denote by J~(2) the investment polynomial 
for the j th  project, J(2) = maxSJ(2), V = {2 >_ 1: J(2)_> 0}, C(2) is the set of all 
t-vectors with fixed rate of growth 2, and 2.  = m i n ( 2 >  1, J (2)=0) .  In the 
Cantor -Lippman case (one basic project) 2.  coincides with the minimal root of the 
investment polynomial. 

It will be proved that 1) for a fixed 2 the set C(2) is noncmpty if and only if 
2~{J(2)>0},  2) the transition from initial state z ( 0 ) = e = ( 1 , 0  . . . .  ,0) to every 
turnpike {e(2)}, 2EV is possible in no more than (r - 1) steps. The statements 1), 2) 
and the definition of the turnpike vector immediately imply that it is possible to 
reach the turnpike corresponding to the maximal root of J(2) = 0 and to move along 
it with this rate. At first glance, this fact, in accordance with usual notions of von 
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Neumann-Gale models, imply that V, also will grow at this rate. This however 
contradicts (1.1) and (1.2). The explanation of this contradiction is the following. 
For all 2 > 2,  there is no way to leave the turnpike {c(2)} and to reach a final set 

= {z = (z o, 0 . . . .  ,0), Zo > 0}. On such a turnpike the investor is doomed to stay on 
it forever (or to pass to the turnpike with bigger 2 if it exists) because the financial 
obligations connected with previous investments can be met only on such turnpikes. 
In the case without loans, getting off the turnpike will lead to the deadends. 

Of course in the similar model with other functionals the growth rate of the value 
function may be different, though, under reasonable assumptions, bounded from 
above by the maximal root of J(2). In any case the noted effect casts a shadow on 
any functional without "tail" term, for instance additive consumption, and stresses 
a necessity of the classification of the possible states. 

The states from which the gradual transition to the final set is possible are called 
liquid and the set of all such states is denoted by L. It will be proved that all the 
turnpikes {e(2)} for 2 < 2, belong to L. The turnpike {e(2,)} may belong or not 
belong to L depending on the form of the corresponding project a. This fact specifies 
two different patterns of the final behaviour of the quasioptimal trajectory: sharp 
pass or smooth slipping off the turnpike. In the Appendix a sufficient condition for 
e(2,)~L is presented. In particular it holds when the investment project a is simple, 
i.e. the sequence ao, a l , . . . ,  ar has exactly one sign change. It will be shown also that 
C ( 2 , ) n L =  ~ if 2,  has multiplicity more than one, and that C ( 2 ) n L =  ~ for 
2 > 2,. Since the set of turnpikes U C(2) r ~ in the case of multiple internal rates 

of return, we get that besides liquid states and deadends there are states from which 
it is not possible to reach liquid and hence final states, but the infinite motion is 
possible. We call such states flying by states. 

In Section 4b we describe the quasioptimal strategies. An interesting phenomenon 
is that it is possible and not exceptional that the nonproductive projects are 
implemented most of the time. Their use may be optimal. It is important only that 
together with these projects there are other projects that ensure transition from 
nonproductive turnpike to the final state. The using of productive projects may be 
necessary only in the last interval of time. This phenomenon without referring to 
the turnpikes and quasioptimal strategies was noted in the last section of CL (1983), 
where the combinations of nonproductive project with the auxiliary project 
( - 1 ,  1 + p), p > 0, was considered and the effect of possible "cooperation" of 
projects was stressed. So in this relation we elaborate the idea of Cantor and 
Lippman. 

Our final remark in this introductory Section is the following. If the presented 
model captures at least some features of investment policies then it suggests that 
the growth of an enterprise or economy is not necessarily the best indicator of good 
policy because high growth rates can be associated with non-liquid turnpikes. Why 
is this bad, particularly when high growth can sustain high consumption? Nothing, 
provided there are unlimited investment possibilities. But if there are unexpected 
demands for cash or events change investment prospects, bankruptcy is a possible 
outcome. We are reminded of the old saying about the 1929 crash, "All was started 
when someone on Wall Street requested one dollar in cash." 
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The terminology in this paper slightly deviates from the usual in two points. 
First we call a turnpike any ray which specifies the proportional development, not 
necessarily with maximal rate. Second, Cantor and Lippman and some other 
authors refer to g = lira, V~/" as the project's growth rate. It seems more appropriate 
to refer to g as model's or system's growth rate because g depends not only on the 
project's parameters but also on the assumptions and the form of the functional. 

The content of the other Sections is as follows. Section 2a contains the rigorous 
presentation of the model. In Section 2b the classification of the states is presented. 
In Section 2c all turnpikes are described and the investment polynomials naturally 
emerge for the first time. In Section 3 the formulation of the main theorem and the 
scheme of its proof are presented. In Section 4a the fundamental equation is treated 
and the upper bounds for the growth rate are proved. Here again the investment 
polynomials appear independently of Section 2c. Section 4b contains the description 
of quasioptimal strategies. In Section 5 we make some conclusive remarks and 
present some open problems. Some proofs are presented in the Appendix. The 
numeration inside every Section and every part of the Appendix is independent. 
The formula (2.1) means the first formula of the Section 2 and so on. The vectors 
are presented by bold face except vector ~ from the k-dimensional simplex, 
27 = {c~ = (ct ~ ~ , . . . ,  ~k), :d > 0, ~Jcd = 1}, and all vectors are considered as column- 
vectors under matrix multiplication. The time is denoted as a rule with low indices 
and the numbers of projects with high indices. The notation f ,  -~ g, means that 
l im , f , / g ,  = 1, [z[ = Xglz~l. As a rule we will denote by the same letter b all positive 
constants. Let e denote the vector (1,0 . . . . .  0), where its dimension is clear from 
context. 

2a. The decision model with many projects 

We describe the model as a standard Markov decision model defined by the tuple 
(Z, U(z), T(u), H , ( ) ) ,  where Z is the state space, U(z) is the set o f  actions admissible 
at the state z, T(u) are the transitions operators specifying the next state of the system 
if at present state z the admissible action u is chosen, and H,( ) is the functional 
defined on the trajectories of the system, terminal in this model. 

The state space is defined as Z =  {z : z=(zo ,  z 1 . . . .  ,z,-1), z i sR} .  The invest- 
ment possibilities are specified by the investment matrix A = {a~}, i =  O, 1 . . . . .  r, 
j = 0, 1 . . . .  , k, where r is the maximal duration of the projects, k is the number of 
basic projects. The j th  project is described by the vector-column a s = (a~, a~ . . . . .  a~), 
a~ =~ 0, j  = 0, 1 . . . . .  k. The projects with a~ < 0, 0 _<j _ m, 0 < m _< k, are interpreted 
as investment projects and the projects with a~ > 0 as loans. Without loss of 
generality a~ = - 1 for 0 _<j_< m, a~ = + 1 for m + 1 <j_< k. For  the auxiliary 
project "keeping money" a ~ we have a~ = 1, a ~ = 0, i _> 2. For  other, basic projects 
a~ for i _> 1 may have any sign. In particular the investment matrix may contain the 
projects of the form ( -  1, 1 + Po, 0 . . . . .  0), Po > 0, i.e. keeping money with percent Po. 

At state z, the investor may choose any distribution of "investments" (activity 
levels) u = (u ~ u i , . . . ,  uk), u s > 0, compatible with financial position z, i.e. ~o  _< s -< ,, u s = 
Zo + ~,~+l_<s<k uj or the same ~o<_i<kaJouS+ zo = O. We write this condition as 
u~U(z). (This is the analogue of assumption (C) for our model). In fact, u s for 
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0 _<j _< m is an investment  into the j th  project, and u ~ for m + 1 _<j _< k is the intensity 
of the j th loan, but  we will refer to u J as to investments  in both  cases. Formal ly ,  the 
transit ions of the system for the investments  u = (u ~ u l , . . . ,  uk), ue  U(z) are specified 
by the opera tors  T(u) 

T(u)z = S(z + Au), (2.1) 

where a) S is shift operator:  R r+ 1__. R',  Sv = (v l , . . . ,  v,) for v = (Vo, vl . . . . .  v,)), b) A 
is the investment  matr ix  and c) z is given by z = (Zo, Zl . . . . .  zr_l ,0).  No te  that  the 
opera tors  T(u) are defined for all h e r  k+ 1, not  only for ueU(z) .  

We will use also the nota t ion  T ", where e = ( ~ o ,  e l , . . . , e k )  is a point  of 
k-dimensional  simplex Z, for the opera tors  T(u) for the normal ized investments  
u = ~ and T ~, j = 0, 1 . . . . .  k, for the case when all normal ized investments  are made  
into project  j, i.e. when ~ coincides with a vertex of simplex Z, 

TJz = S(z + a J), T~z = S(z + Ac 0 -= ~ = o  cdT~z. (2.2) 

Let us present some useful formulae related to the opera tors  T(u). It  is easy to verify 
that  

T(u)z=_dT'(z /d)  fo ru6U(z) ,  u = d ~ ,  c~627, d > 0 ,  (2.3) 

T(u)(zl + z2) = T(u)zl + Sz2, T(bu)bz = bT(u)z, b > 0. (2.4) 

Fo rmula  (2.1) implies also the independence of the projects 

T(ul + U2)(Z 1 "~ Z2) = T(ul)zl  + T(uz)zz. (2.5) 

The tuple of actions ul . . . . .  us is denoted briefly as u], the product  of the 
opera tors  T(us)... T(ul)  as T(u]). The sequence (tuple) of actions u l, u 2 . . . .  is called 
admissible or a strategy for the state z if n~sU(z)  and u~+teU(T(ui~)z) for every 
i =  1,2 . . . .  Hereafter,  speaking of infinite (finite) trajectories z~,z 2 . . . .  we always 
mean  that  they are derived by means  of some admissible sequence (tuple) of actions. 

F r o m  the definition of the opera tors  T(u) and (2.4), (2.5) it follows obviously 

Proposition 2.1. Let u~ . . . .  , u~ and v~ . . . . .  v s be two tuples of  actions admissible for  z 
and z'. Then a) ul + vl . . . . .  Us+V~ is a tuple of  actions admissible for  z + z' and 
T(o + v)](z + z') = T(u])z + T(v])z', b) for any b > 0 the tuple actions bul . . . . .  bu s is 
admissible for bz and T(bu] )(bz) = bT(u~)z. 

To  complete  the description of the model  it is necessary to define the functional 
H ,  on all trajectories. In accordance with Section 1 this functional has the form 

z , )=hn (z , )=J 'Z , , o  if z , , ~ = ( > ) 0  for i = 0 , 1  . . . .  , r - 1  
H,(z l  

0 otherwise. 

The  value of a functional for a given strategy (the payoff)  is denoted as W,, so 
the value function II, = sup W,, where sup is taken over  all strategies for a given 
initial point. 

2b. The classification of states in the model 

It  is easy to see that  in the case when m < k, i.e. when there are loans, U(z) :~ ~ for 
any z e Z .  In the case when there is no loans (m = k) it is possible that  U(z) = ~ (if 
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z0 < 0) or U(z) # ~ but U (T(u)z) = ~ for any u~ U(z). The existence of such states 
and the considered functional motivates the following classification. We define the 
set of  f ina l  states qb = {z = (Zo, 0 , . . . ,  0), Zo > 0}; the set of deadend states D = {zeZ, 
there does not exists infinite trajectory starting in z}; the set of  liquid s tates  L = {z~Z, 
there exist a finite trajectory starting in z and reaching (I)}; the set ofseI f l iquid states 
Lo = {z~L, where it is possible to stop investment into the basic projects and using 
only auxiliary project ( - 1, 1) come through admissible states to the final set (I)}; the 
set of f ly in  9 by  states F = Z \ ( D  u L), i.e. states which are not deadend but from which 
it is not possible to reach liquid and hence final states. 

So every trajectory starting in a deadend after a finite number of steps comes to 
a state such that the subsequent motion is impossible. The deadends exist only in the 

_ . $ case without loans. Its easy to see that L o - {z. ~ i = o  Z i -> O, s = O, 1 . . . . .  r - 1} and 
no more than (r - 1) steps is needed to reach @ from L o. 

In Section 4 we prove that in the case of multiple internal rates of return the 
t-vectors e(2) for 2 > 2. ,  are flying by states and the t-vectors e(2) for 2 < 2. ,  are 
liquid states. 

Let us define the ordering of R" by Lo, i.e. z' > z iffz' = z + y, ysLo. The definition 
of Izl = ~e lz l l  and the ordering >- immediately imply that if the vectors satisfy 
[a -h i  < e  then a + e e > b .  

2c. The description of turnpikes. The investment polynomials 

In this section we describe all solutions c of the equation 

T ~ c = 2 e + 6 e ,  ~EX, ~ U ( e ) ,  2 > 0 , 3 > 0 .  (2.6) 

(The solutions of similar equation for T(u) are proportional to the solutions of (2.6) 
by (2.3)). These solutions exist only for some special values of 2 and ~, and, as well 
as proportional ones, are called turnpike vectors or t-vectors with given rate 2. In 
the von Neumann-Gale  theory the vectors c from (2.6) with 6 = 0 are referred to 
often as the vectors of equilibrium growth. 

At first we find the solution of (2.6) for the particular case T ~ =- T j and for 3 of 
any sign, 

Tie = 2c + 6e, c~Z, 2 > 0, (2.7) 

where the operators T j, j = O, 1 . . . . .  k have the form TJz = S(z + a j) (see (2.2)). 
From the definition of U(z) it follows that c~ = - a ~  and hence c{ = + 1 for 

0 < j  < m, c~ = - 1 for m < j  < k. Rewriting the relation (2.7) in coordinates for fixed 
2, we get 

c ~ + a  t = 2 c j o + 6 ,  c~2+aJz=2c~ , . . . , c J ,_ l  + a i r - l = 2 c / - z ,  ar=2J c J,-l" (2.8) 

Substituting successively the equality for c{, i = r -  1 . . . . .  2 into the foregoing 
equality we get the relation for 6 

6 = 6J(2) = 2~r=o a/2 -i _= 2 J  J(2) (2.9) 

and the explicit form for the vector e J(2) 

c J ( 2 ) = P ( A ) a J - J J ( 2 ) e ,  (2.10) 
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where ith row of the matr ix  P(2), i =  0, 1 , . . . , r -  1, has the form (0 . . . . .  0 ,2  -1  . . . . .  

2 -r+i) with (i + 1) zeros. 
For  the solutions of (2.6) for 6 of  any sign and 2 > 0, using (2.5) and (2.4), we get 

that  at least one solution exists for any 2 and any e e l ;  and has the form 

_ _  k e'(~ V) - ~ j = o  cdeJ()o), 6 = 2J ' (2 )  - ) ~ = o  ~JJJ(2). (2.11) 

If b is ano ther  solution of (2.6), i.e." T %  = 2b + 6'e, then using the first of formulae 
(2.4), we have, writing e'(2) simply as e, T ' b  = T'(e  + b - e) = 2c + 3e + S(b - e) = 
2e + 2(b - e) + 6'e and hence S(b - e) = )~(b - e) + (3 - 3')e. The definition of S 
implies that  (b - e) = 0. 

The  function JJ (2)=~=0e{ ,~o  - i  is called the investment polynomial of the 
j t h  project,  j = 0, 1 . . . .  , k. Denote  by J(2) = maxjJ~(2), 2 .  = min (2 > 1 : J(2) = 0), 
V = {2 >_ 1 :J(2) >__ 0}, R(2) = {c~22: J~(2) >_ 0}, C(2) = {e~(2): ~eR()~), 2 >_ 1} - the set 
of solutions of  (2.6) (t-vectors) with given rate 2. The multiplicity of the roo t  2 ,  is 
defined now as the minimal  value of multiplicities for those polynomials  JJ(2) for 
which 2 ,  is a root  and J J(2 - e) > 0 for all positive e. 

I t  is easy to see that  a) C(2) -r ~ if and only if 2~V, b) J J(2) > 0 for some j if 
2 < 2 , ,  and c) 2 ,  < oc if all projects are investment  projects, i.e. if m = k. 

Fo r  e~C()0 we denote by c~(e) and 5(e) the corresponding values of e and 6 f rom 
(2.6). In s u m m a r y  we have 

Proposition 2.2. a) The solution of(2.7) exists if and only if 5 = 2JJ(~)  and e - e~(2) 
has the form (2.I0), 
b) the solutions of(2.6) do exist if and only/ f  2~V, ~6R(2), 3 = 2J~(2) and e - c~(2) 
have the form (2.11). 
c) for any 2 < 2 ,  there exists a vector c6C(2) with 6(c) > 0. 

N o w  we formulate  four auxiliary Proposi t ions  which will be used in Section 4b 
in descript ion of the "slipping off" the turnpikes.  The  relation (2.6) and the formulae 
(2.3), (2.4) immediate ly  imply 

Proposit ion 2.3. Let (e,~,2,~i) be a solution of (2.6). Then the tuple of actions 
u~,ua . . . .  of the form U 1 :(Z,  Uk:AU k_ 1 +Oe=-)~k- lUl +~k e, Ok=O( 1 q_)l  + ... + ~k-2), 
k_> 2, is admissible for c, and the corresponding trajectory has the form Cl = c, 
Ck : ,~Ck_ 1 + ~e ~ ,~k- lc  -b t~k e, k > 2 .  

Hereaf ter  we refer to this t rajectory as to the motion along the turnpike {c} with 
rate 2, though in the case 6 > 0 only nonzero coordinates  of the vectors Ck are 
growing with the rate 2, and zero coordinate  is growing with the rate (2 k + t~k+ 1)/ 
(2 k- x + 3k) which tends to 2 from above.  

In the Appendix we present a sufficient condi t ion when the t-vector for the root  
of an investment  po lynomia l  JJ()c) is a selfliquid state. It  is possible obviously only 
when j _< m, i.e. when j t h  project  is of  investment  type. In part icular  it is true when 
the sequence ao, a~ . . . . .  ar has only one sign change, the so-called simple project case. 

Proposit ion 2.4. There exists a positive constant b such that for j = O, 1,.. . ,  k 

leJ(3~)-eJ(2) l<bl l /A-1/21,  1_<~, 2 < ) ~ , < o e .  

The proofs follows immediate ly  f rom the formula  (2.10). 
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Proposition 2.5. a ) f o r  any 2 < 2 ,  and c e C ( 2 ) , 6 ( e ) > 0  there exists continuous 
function ~(s)E R(s) and constants A = A(2, c) > 0, B = B(2, c) > 0 such that for 1 <. s <~ 2 

j,(s) >_ AJ(s)  > O, (2.12) 

the functions e(s) and c(s) -= e'(S)(s) satisfy the condition 

let(s) - u(s')J < BI 1Is - Us'l, le(s) - e(s')[ _< B] 1/s - 1/s' l, (2.13) 

and the initial condition c(2) = c, 
b) there exist continuous function a(s)eR(s), and constants A > O, B > 0 such that the 
functions e(s) and e(s) _= c~(S)(s) satisfy the inequalities (2.12), (2.13)for 1 _< s < 2 .  < oo. 

The proof  is in the Appendix. Note  also that  for the case k = 1 (one basic project) 
the statement is trivial since ~(2) - 1 and (2.13) follows from (2.10). 

Proposition 2.6. Let  c~C(1) and 6(c) > 0. Then c~L.  

Proof: Denote  c~(c) = ~, 6(e) = 6. The equali ty T ' c  = e + 6e implies that  the sequence 
of actions Uk, Uk = Ct + 6(k -- 1)e, k = i, 2 . . . .  is admissible for c and the corresponding 
trajectory has a form ek = e + 6 ( k -  1)e, k = 1, 2 . . . . .  5 > 0. Obviously,  ekeLo for 
sufficiently large k. F rom here and from the definition of the set L we get the 
statement. 

3. Formulation of the main theorem and the scheme of the proof 

First let us introduce the class of strategies the quasioptimal  strategies may  be 
chosen from. Let c be a t-vector i.e. ceC(2) for some 2~A, let s, be some moment  
of time, 0 < s, < n. The strategy Uo, u l , . . . ,  u,, defined on the time interval (0, n), is 
called the (e, s,) (turnpike) strategy if it is specified by the three following stages: at 
the first stage, the actions no . . . . .  nk, which ensure to get on the turnpike {e}, are used; 
at the second stage, after reaching the turnpike, the actions which ensure the mot ion  
along the turnpike are used and at the third stage, at the moment  s., the system 
slips off the turnpike and transits to the final set @. The description of possible 
situations is given by 

Theorem 3.1. 1) I f  the root 2.  has multiplicity one then there exist positive constants 
bl and b 2 such that 

b~.~, _< Vn --< b22,.  (3.1) 

and a)/J" e e C ( 2 , ) c ~ L ~  ~ ,  then the (c,s~) turnpike strategy may be taken as the 
quasioptimal strategy on the interval (0, n), where s~ = n - 1 and t depends only on the 
t-vector c and does not depend on n, 

b) /f C ( 2 , ) c ~ L = ~ ,  then the (c,s~) turnpike strategy may be taken as the 
quasioptimal strategy on the interval (0, n) with e e C(2 (")) c~ L, 2 ,  - 2 (~) _~ 1/n, n - s, ~- 
bln n. 
2) I f  the root 2,  has multiplicity m + 1 >_ 2, then C(2,)c~L = .~ and 

bx2.(1-o,,(,))< V, < b22. /n  m, (3.2) 
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where g,,(n)~-bn-1/m and the strategies ensurin9 the lower bound in (3.2) have the 
same form as in b) with 2, - 2 t") ~- n -  i/m, n - s, ~_ bon, bo < 1. 
3) I f 2 ,  = oo then there exists a finite n for  which V, = oo. 

The general scheme of the proof of theorem 3.1 follows the classical pattern of 
the proof of the final-state turnpike theorems (see Radner ( 1961), McKenzie ( 1971 )): 
to obtain an upper bound (evaluation ceiling) for the value function, using the 
general properties of the model and a lower bound (comparison floor) constructing 
corresponding strategies. Our upper bound is the direct generalization of the 
Cantor-Lippman estimate (1.2). The proof is based on an explicit formula relating 
the discounted sum of investment, assets, and the investment polynomials. This 
formula for the case of one basic project was called in CL (1983) the fundamental 
equation. To get the lower bound we use the (c, s,) turnpike strategies and estimates 
for the growth rate. 

The Proposition 2.3 implies that unlimited motion along the turnpike with 
growth rate 2 of state vector is possible and the second stage is always realizable. 
As it will be shown below in Proposition 4.2, any turnpike is reachable from the 
initial state e = (1,0 . . . . .  0) in no more than ( r -  1) steps and thus the first stage is 
also always realizable. The growth rate of state vector on this stage does not 
influence the order of growth in the whole since the number of steps is limited for 
all n. To realize the conclusive stage, it is necessary that the system be in the liquid 
state at moment s, and the transition from this state to final set (/) be possible in the 
remaining time n - s,. To estimate the growth rate of the state vector on the third 
stage, it is convenient to represent the payoff W, for the (c, s,) strategies (e~C(2)) in 
the following form. Let x S = I zs +11/I zs[. Since z, ~ q), then W, = Z,o = [z, [ and taking 
into account that [Zo/= 1 we have 

, -  1 ~ . -  1 ( 3 . 3 )  x v [ " - l x  
S J_ I S = S n  8" 

For the turnpike strategy Xs = 2 + 5(c)/[ z~ [ - 2 for all r _< s < s,. Now let us represent 
x~ for s, _< s _< n - 1 as )~exp(ln (x J2)). Then 

I41, -~ b2" exp L,, b > 0, (3.4) 

where 

n- -1  L, = ~ . . . .  In (x j 2 )  (3.5) 

is the logarithmic loss for given strategy on the third stage. 

The simplest case is la) where t-vector e - e ( 2 , )  is liquid and hence the 
corresponding turnpike strategy can be used. So in (3.4) 2 coinsides with 2,  and L,  
has no more than l terms for all n. In cases lb) and 2) the situation is more 
complicated since the t-vectors with rate 2,  are not liquid and hence can't be used. 
So most of the time on interval (0, n), the system (investor) must stay on a liquid 
turnpike with a rate 2 (") near ).,, 2 (") --* 2,  as n ~ co. The proof that all c(2) for 2 < 2,  
are liquid, the process of smooth "slipping off" such turnpike and the estimates for 
L, are presented in Section 4b (Proposition 4.6). In fact, if at any time the system is 
on a turnpike {e(2)}, 2 < 2,,  then in a bounded number of steps it may transit to 
the turnpike {e(2')} with 2 ' <  2, [)~- )~'1-~ b J(2), b > 0. So the transition from a 
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turnpike  {c(2)} to the selfliquid turnpike  {e(1)} is possible if d(s) > 0 on 1 < s  < 2 
and in the process of such slipping it is necessary to use subsequently all the projects 
f rom a tuple of  projects  B such that  max  J J ( s ) >  0 for all 1 _< s _< 2. At the initial 

jEB 

period of slipping, such transi t ion is slow because j()tm) ~ J(2.) = 0 and the speed 
of such transi t ion is specified by the multiplicity of the root  2 . ,  This explains the 
relation between multiplicity of  2 .  and the model ' s  g rowth  rate. 

In the case of  multiplicity more  than one, our  strategies do not  ensure the lower 
bound  b12,/n', which can be expected by an ana logy with one project  model,  so 
the more  careful investigation of the behaviour  of the trajectories near  turnpikes  is 
necessary to cover  this situation. The  s ta tement  of point  3) is similar to Can to r  and 
L i p p m a n  but our  p roof  is different. We prove  that  in a fixed number  of  steps, the 
transi t ion f rom any turnpike {e(2)}, 1 < 2 < ~ ,  to final set is possible. 

4. Proof of  theorem 3.1. 

4a. The fundamental equation. The upper bound for growth rate 

Let ul ,u2 . . . .  , u ,_  1 be any admissible strategy for initial state z o, Zo, Z 1 . . . . .  z n 
cor responding  trajectory,  Z~(2) = ~ 7 - o  ~ z,12-i _ the discounted assets at the momen t  

- " -  1 - the discounted sum of investments  into t h e j t h  project  s,U j,,_ 1(2)_ Z~= 1 us #-s+t .  
up to m o m e n t  n - 1, U,_ 1(2)= ~ =  o U, ~- 1(2) - t h e  discounted sum of investments  
into all projects  up to m o m e n t  n - 1. In other  words, Zs(2 ), U,_~(J 2), U,_1(2) are 

J the investment  polynomials  for the vectors z~=(Zs0 . . . . .  Zs,r-1), (U{,. .- ,U,-1),  
V u J V u~ 1). 
/ , j  l ' ' ' ' ' / , j  n -  

First we get the relation between investment  polynomials  Y(2) and Z(2) for 
two vectors y, z such that  T ( u ) z = y ,  u~U(z). The definitions of admissible 

k " ' action and ope ra to r  T(u)z (2.1) imply z o + ~ j = o  a~ uj = 0, z,+ 1 + ~ = o  a/'+l u j = Yi, 
i = 0, 1 . . . . .  r - 1. Mult iplying these equalities by 2 - ' ,  i = 0, 1 . . . . .  r - 1 and summing  
up, we have 

Z(~) @ 2k= o JJ(A) uj = / ~  -1  y()o). (4.1) 

Then, writing this relat ion subsequently for the equalities 

T(us)z,_ 1 = z,, s = 1 . . . . .  n - l, we get the fundamental equation 

Zo(2) + ~ = o J J ( 2 ) U ~ _  1(2) = 2-"Z,(2) ,  (4.2) 

having the natura l  in terpre ta t ion in terms of discounted assets, investments  and net 
values. 

If (Ul,U 2 . . . .  ,u ,_~)  is a final s t rategy i . e .u ._~+  1 . . . .  u , _ ~ = O ,  then z , =  
(Z,o, 0 . . . . .  O) and Z,(2) = Z,o 2-" and hence for the opt imal  strategy and z o = (1,0 . . . . .  0), 

1 + ~:oJ~(2)UJ,_l(2)= 2-"V, .  (4.3) 

Since (u 1, u2 . . . .  ) is an admissible strategy then u~ _> 0, s = 0, 1 . . . . .  j = 0, 1 . . . . .  k 
and hence J U,_ 1(2) > 0. For  2 ,  we have J J(2,) < 0 for a l l j  and we get f rom (4.3) the 
upper  bound 

V, < 2,. (4.4) 
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To get the more  precise es t imate  

V. < b).,/n m, (4.5) 

it is necessary to consider  the decompos i t ion  of the left side of(4.3) into Tay lo r  series 
to (m + 1)th term at the po in t  2 , .  The p roo f  of (4.5) is in the Appendix .  

4b. The lower bound for the growth rate. The description ofquasioptimal strategies. 

At first we prove  a useful auxi l iary  

Proposition 4.1. Let  Z l e Z  and vl . . . . .  v~ be a tuple of actions admissible for z~. Let 
i - 1  Yl )> zl and ~ = ~k=o(Yik- -Zlk) '  i= 1,2 . . . . .  Then the tuple of actions ul . . . . .  us, 

u~ = vi + 6ie, i = t , . . . ,  s, is admissible for Yi and for Yi+ 1 - T(ffi)Yi, zi+ 1 = T(vii)zl, 
1 <_ i < s, we have 

Yi+ 1 = zi+ i + 6 #  + Si(yl - zi) ,  1 _< i < s, 

Yi+ 1 ~ z/+ 1, (4.6) 

y r = z , + ~ r e ,  6r>_O, (if s>_r--1). 

Proof: The re la t ion Yl > z ~  is equivalent  to 3i-> 0, i =  1, . . .  ,r. I t  is easy to check 

that  the tuple  of act ions  h ie  . . . .  ,6se is admiss ible  for (Yi - zi)  and  T(6ile)(yi - z i )  = 
6ie + Si(y~ - z ~ ) > 0 ,  i = 1, . . .  ,s. Since Srz = 0 for all z, 6~_~e + S t -  ~(yl - z~) = 3,e 
and  ~i = ~ for i >_ r, we have also that  if s >_ r - 1 then 6ie + Si(yx - z l )  - 6~e for 
r - I < i _< s. Hence by P ropos i t i on  2.1 y~ + i = T(uli)Y ~ = T(v/1)zl + T(61~ e)(y i - z 1 ) = 
z~+ ~ + 6ie + Sf(y~ - z l ) >  z~+ l, i = t . . . . .  s - 1 and we get all three formulae  (4.6). 

Proposition 4.2. Let eeC(2), 2~A. Then there exists an admissible tuple of actions 
u l , . . . ,  ur- 1 such that 

T (u~ - l ) e=bc+de ,  b > 0 ,  d_>0.  

Proof: The definit ion of vector  c and  P ropos i t i on  2.3 implies the existence of the 
tuple  of ac t ions  q~ . . . . .  q~- 1 such that  T(q~- X)c = ) f -  Zc + 3e, 6 > 0. Since e >- ec for 
any vector  e and  e = 1/ max  ] ~ = o c i l ,  we may  apply  P ropos i t i on  4.1 for Yl = e ,  

O<<.s<_r-1 

z~ = e c  and tuple  of ac t ions  eqi . . . . .  ~q~_~. The th i rd  formula  (4.6) implies that  
T(u~- l)e = e)~'- i c + 3'e, 6' > 0, where u 1 , . . . ,  u r -  ~ are given in P ropos i t i on  4.1. 

Thus  the first stage of  any (c, s,) t u rnp ike  s t ra tegy is a lways real izable and does  
not  influence the order  of growth.  N o w  we consider  the simplest  s i tuat ion,  when 
number  of terms in (3.5) is b o u n d e d  for all n. 

Proposition4.3. Let C()~)c~L:#~, ceC(2)c~L and l(e) be the number of steps 
necessary to reach final set @from c~ Then there exists a (c, n - l(c)) strategy ensuring 
the payoff 

W, -~ b2". (4.7) 

Proof: Let e e C(2)c~ L. By the definit ion of the set of l iquid states L and  l (e) there 
exists an admissible  tuple  of act ions  u~ , . . . ,  u~ such tha t  T(ff~)ce ~b. Then  it is easy 
to see that  for all n, the (c()0, n - l(c)) s trategy,  using at  the th i rd  stage the act ions  
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p ropor t iona l  to u 1 . . . . .  o I is the admissible strategy with the same tuple of values x s 
for n - l < s < n and hence the function L,  - b(e) > - oo. F r o m  here and (3.4), (3.5) 
we get (4.7). 

Below up to the p roo f  of  point  3) of Theorem 3.1 we consider the case 2 ,  < oo. 
The  Propos i t ion  4.3 and the bound  (4.4) imply also that  if C(2 , )c~L ~ ~ and 

c6 C(2,)c~ L then for any n there exists quas iopt imal  (c, n - l(c)) strategy, i.e. 

~. < n (4.8) W n " b a z , < _  V n _ 2  , .  

Formu la  (4.8) and the bound (4.5) imply immediate ly  also 

Proposition 4.4. Let  C(2,)c~ L # (2~. Then the root 2 ,  has multiplicity one. 

The Propos i t ions  4.3, 4.4 and (4.8) imply the point  la) of Theorem 3,1. It  is an 
open p rob lem whether  inverse to Propos i t ion  4.4 is true, i.e. if the root  2 ,  has 
multiplicity one then C(2,)  c~ L -# ~ ' .  

Propos i t ion  4.3 and the bound  (4.4) immediate ly  simply also 

Proposition 4.5. For all 2 > 2, ,  2EA we have C(2)c~L = ~ and hence the t-vectors 
eE C(2) for  these 2 are f lying by states. 

To prove  that  the turnpikes  for 2 < 2 ,  are liquid and to deal with the case 
C(2,)  c~ L = ~ ,  we prove  the impor tan t  Propos i t ion  4.6. Its p roof  describes explicitly 
how the transi t ion f rom a t runpike c~C(2), 2 < 2 ,  to the final set may  be realized. 

Proposition 4.6. Let  1 ~< 2 < 2 . ,  e~C(2), 6(c) > O. Then c ~ L  and there exists the (e, s,) 
turnpike strategy such that s,, = n - N(r - 1) - b, 

N 
L,(2) "-~ b ~ =~ In (2ff2), (4.9) 

where all constants b depend only on 2 and e, and 2 i and N = N(2, e) are defined as 

2 o = 2 ,  2 i + ~ = 2 i - b J ( 2 ~ ) ,  i = 1  . . . . .  N - I ,  N = m i n ( i : 2 ~ < l ) .  (4.10) 

Proof: Let e~C(2), 8(e) > 0, :r and e(s) are the functions, A and B are the constants  
from the point  a) Propos i t ion  2.5. Then  e(2) = e and 

T~(~)e(s) = se(s) + b(s)e, b(s) - 6(c(s)) = sd~(S)(s) >_ Asd(s) > 0, 1 _< s _< 2 (4.11) 

and in part icular  

T(u)c(2) = 2c(2) + be, b > A2J(2), u = ~(2). (4.12) 

Deno te  z o = 2c(2) + be. To  prove  Propos i t ion  we will construct  the sequence of 
states z i = ki(e(2i) + die), and the tuples of actions u]-  1(0 = (ul(i) . . . . .  u,_ ~(i)) admis-  
sible for zi, such that  z~+ a - T(u]-  l(i))z~, i = 0, 1 . . . . .  N - 1 and zu = ke(1) + ee, k > 0, 
e > 0, e(1)~C(1), 6(e(1)) > 0. By Propos i t ion  2.6 the state e(1) is liquid. Hence zu and 
z o are also liquid and by (4.12) e(2) -- c is also liquid. To  construct  z~ we need the 
following lemma.  

Lemma.  For any s < 4, any vector z = c(s) + de, d > AJ(s), and any s' <_ 4, such that 
]c(s) -- c(s')l _< A J  (s), there exists a tupte o f  actions ul . . . . .  u~_ 1 such that 

z ' ~  T(u]-~)z = s"-~(e(s  ') + d'e), d'>_ AJ(s'). (4.13) 
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Proof: Let l e ( s ' ) -  c(s)l _< AJ(s) .  Then by remark  in the end of the Section 2b we 
have e ( s )+  A J ( s ) e ; ~ c ( s ' )  and hence z ~ c ( s ' ) .  Fo rmu la  (4.11) for s' and Proposi-  
t ion 2,3 imply the existence of actions vl . . . . .  vr-1 such that  T(v~-~)c(s ' )= 
2 ' r -  l(c(s') + oe), e > AJ(s ') .  By Propos i t ion  4.1 applied to vectors Yl ~- z, z~ = e(s') 
and the tuple of actions vl . . . . .  v,_ 1 there exists a tuple of actions u l , . . - ,  ur-~ such 
that  the third formula  (4.6)) is valid and hence (4.13) holds. 

Consider  now the sequence ,~vi, i = 0, 1, 2 . . . . .  2 0 = 2, 2i+ 1 = 2i - bJ(2i), b = A/B .  
By (2.13) e(s) satisfies Lipschitz condit ion with coefficient B and hence we have 
[e(2i+ 1 ) -  C(21) I ~ AJ(2i) .  N o w  we may  apply  repeatedly the l emma to z o, z l , . . . .  
Tak ing  into account  point  b) of Propos i t ion  2.1 we get the sequences zi and tuples 
of actions u]-  1(i) such that  zi+ 1 - T(u]-  l(i))z i, z i = ki(e(2i) + die), i = O, 1 . . . . .  N - 1, 
where N - N(2, e) = min (i: h i < 1), ()~s = 1), di >_ AJ(2 i )  and 

k~ = Iq~s= 1(2,)'-~. (4.14) 

Since J(s)  >__ p > 0 for all 1 ~ s ~< 4, the size of every step 2i - 2~+ ~ _> q > 0 and 
hence in a finite number  of steps N(2,c)  the transit ion to the turnpike {e(1)} (the 
state d(e(1)+ ee), ~>  A J ( 1 ) >  0) is possible. The  real t rajectory of transit ion f rom 
{e(2)} to {c(1) } is described by the states of the form Zs+ 1,~ = T(u~(i))z~, s = 1, . . . ,  r - 1, 
zi+l ---z,,i, i = 0 ,  1 , . . . , N -  t. 

The  n u m b e r  of  momen t s  of  t ime necessary for the transit ion from c(2) ~ e to the 
final set q~ is obviously equal to N ( 2 , e ) ( r -  1 )+  N' ,  where N'  does not  depend on 
2 and depend only on e(1). Since N'  does not  influence the asymptot ics  when n ~ oe 
we omit  it below. The initial point  2 will further depend on n, 2 = 2~o ") and we will 
study the assymptot ics  N(2~o")). 

We will refer further to the (e, s,) s trategy with transit ion from turnpike e~C(2), 
2 < 4 ,  to the final set of the form described above as to (e, s,) slipping strategy.  

To complete  the p roof  of Theo rem 3.1 let us assume now that  ~(s) and e(s)e C(s), 
s < 2 , ,  be the functions f rom point  b) of Propos i t ion  2.5. The p roof  of  Proposi-  
tion 4.6 applied to the vector  e(s) as to the initial vector e immediate ly  imply that  the 
formula  (4.9), (4.10) are valid, but  now the constants  b are the same for all 2 < 4, .  
Let 2~o ") be a sequence, 2~o") ~ 2 ,  as n ~  ~ ,  2 , ,  L,,  s, are defined in (4.9), (4.10) for the 
sequence of constructed above (e(2~o"),s,) slipping strategies (constants b do not  
depend on n). It  is easy to see that  the asymptot ics  of L, and s, depend only on 
behaviour  of the function J(2) near  4, .  If  m = 0 then J(2) = a(2 - 4 , )  + O(4 - 4 , )  2, 
a < 0, and for fixed n the sequence 2~ in Proposi t ion  4.6 may  be taken to have the 
form .-i "~")+ 1 = hi~") - b ( 2 , -  2~"~), i =  0, 1 . . . .  , N(2~o ~)) - -1 .  Let  us take 2~o")= 4 , -  1/n. 
Then  21 ") = 4 ,  - (1 + b)~/n and hence N(2~o ")) ~ blnn,  i.e. s, ~ n - blnn.  Putt ing the 
values of 2~o ") and N(2~o ")) into (4.9), it is easy to check that  L, _> - b for all n. N o w  
put t ing 2 = 2 ,  - 1/n into (3.4) and taking into account  that  lim (4,  - 1/n)"/2,  = b > O, 
we get that  for the described (e(2~o "1, s,) slipping strategies 14:, ..~ b2 ,  and hence the 
point  lb) of Theorem 3.1 is proved. For  m>_ 1 we have J ( 2 ) = a ( 2 - 2 , ) m + ~  + 
0(2 - ),),,+z~ and we may  consider the sequence 41 "1 of the form 2 ~")~+I = 2~"~ - 
b()., - z i~("l)~ + 1, i = 0, 1 , . . . ,  N(2~o ")) - 1. To  get the asymptot ics  of s, and L,  we can 
use the approx ima t ion  of this difference scheme by the differential equat ion 
d2(t)/dt = - b ( 2 , -  4) "+ 1, 4 (0 )=  2~o "). By s tandard  analytical technique, it can be 
shown that  X(2~o "~) ~ bz()o~o")), where r(2~o "') = min (s:2(s)= 1)and L,(2~0 ")) ~ b ~o In (2(0 / 
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2(o"))dt. Direct solution of differential equat ion implies that z(2(o ")) ~ b ( 2 , -  2(O")) -m 
for all m > 1 and L,  = - b l n ( 2 ,  - 2(O ")) for rn = 1, L,  ~ - b ( 2 ,  - 2(0")) - "+1  for rn > 1. 
Let  us take (2~o ")) = 2 ,  - (bon)-  ~/". Then N(2(O ")) ~ bobn and hence s, = n - bobn > 0 
for sufficiently small bo. Since (2(o"))" = (2, - (bon)-  1/,.), ~_ 2,(1 -b,- '/ '-) and L, 
- b ( I n n )  for m = 1 and L ,  ~- - b n  ("-1) /"  for m > 2 we get the statement of point  3) 
of Theorem 3.1. 

Point  3). The  case 2 ,  --- co is possible only when there are loans and hence 
l i m J ( 2 ) =  +1 as 2 ~ c o  and J ( 2 ) > d > 0  for all 2. Let ~(2), c(2) be the functions 
specified by point  b) of  Proposi t ion  2.5 for this case. We will prove that  there exists 
no such that for any 2o, t _< 2o < oo the transit ion from the turnpike (e(2o)} to the 
final set is possible in no more  than no steps. Then  the (C(2o), s,) strategy on the time 
interval (0, r + no), with the second stage consisting of one step will ensure payoff 
at least b)~o, where b does not  depend on 20, and hence V, = co for n > r + n o + 1. 
In Proposi t ion 4.6 we constructed the sequence zz ensuring the transition from the 
turnpike {c(2)} to the final set. In this construct ion we used the sequence 2~, 
i = 0, 1 , . . . ,  N(2o, e(20)) with the properties 

Ic(;~,+ 1)- c(;.31 < bJ(;o,), i = 0,  1 , . . . ,  N - 1, ;ou = 1. ( 4 . 1 5 )  

Now, aiming to minimize N ( ) ,  c), its more  appropr ia te  to use for big values of 2, 
the inequality le(s') - c(s)[ < BI 1/s - 1/s'l rather  than Lipschitz condition. By (2.13) 
we have 1 c ( 2 ' ) - c ( 2 ) 1 < B I 1 / 2 ' - 1 / 2 ] .  Since J()~)>_d>O for all 2, there exists 
no =-no(b, B, d) such that  for any 20, 1 < 20, < co, there exists a tuple of numbers  
2o, )-1 . . . .  ,2,0 = 1 satisfying (4.15) (21 = 1/c, 2~+ 1 = 2~/(c2~ + 1), c = bd/B,  i > 1), and 
the whole construct ion of Proposi t ion  4.6 may be repeated. Thus N(c(2), 2o) < no 
for all ;t o _> 1. 

5.  C o n c l u s i o n  

Many  interesting problems remain uninvestigated. One of the most  intriguing, 
perhaps, is the description of liquid, flying by and deadend states in terms of the 
investment matrix. One of the related questions is the following. Denote  by 
co(z) = (y :y  = T(u)z, u~U(z)}, Z = Z ~ Z k = { z ~ Z k - l , c o ( z ) c ~ Z  k-a  ~ ~ )  -- the set 
of all states from which at least k admissible steps are possible, k =  1,2 . . . . .  
Obviously Z _  Z 1 _ . . .  and c~ Z k = L w F, where L is the set of liquid and F is the 
set of flying by states. How can we describe Z k and is it true that Z i = Z i + 1 for all 
i greater than some s? I f z  is a liquid state and/(z)  is a number  of steps to reach final 
set, how do we get the estimates for this function? For  the deadends there is another  
question: how long does the agony last? That  is, what is the maximal number  of 
steps before reaching a point  where we can not  move? 

We didn't  consider separately the case with and without loans, though the 
presence of  loans implies essential difference, for instance the possibility of 2 ,  = co. 

We don ' t  pay at tent ion to the meaning of  complex roots  of investment 
polynomials.  Some interesting remarks may be found in Atsumi (1991). We didn't  
consider the relation be tween the flying turnpikes with the rate 2 > 2, .  It may  be 
shown that from any such turnpike, the turnpikes with bigger rates may be reached 



398 [. M. Sonin 

but not vice versa. Note  that  considerat ion of the turnpikes with the rate 2 < 1 
makes  sense if we are concerned with the opt imizat ion of slowing down a system. 

There are many  possible generalizations of the model  considered. It is interesting 
to study the related model  with consumpt ion .  Probably ,  in this case not only the 
structure of the set of roots  but also the values of the investment  polynomials  will 
play an impor tan t  role. Still more  interesting would be the study of the stochastic 
analog of this model. M a n y  significant effects can be anticipated, for instance the 
instability of some turnpikes.  Note  also that  in this case it makes  sense to consider 
the projects a t with a~ = O. 

6. Appendix 

6a. Some sufficient conditions for the liquidity of turnpikes. Let a J = (aJo, a {  . . . .  , a / )  
i j be any product ive or cash-transfer project, i.e. ~ ,  =oa~ >_ 0. Denote  by A{ = ~k=Oak, 

i = O , l , . . . , r .  

Proposition 6.1. I f  the sequence AJo, A { , . . . , A /  for the investment project # has 
exactly one sign change then d ~(2) = 0 implies eJ(2)~Lo . 

Proof: By the definition of the set Lo, c = (Co, c l , . . . ,  cr-1)ELo iff the opera to r  T o 
(keeping money) is applicable to the states S~c for i = 0, 1 , . . . ,  r - 1, where S i is ith 
power  of the opera to r  S or equivalently ~ = o C k  _> 0, i = 0, 1 . . . . .  r - 1. Rewrite this 
condit ion for c = ct(2), using the equality (2.10) ((2.8)) in coordinates.  The  index j is 
omit ted below. Denot ing  by Ci = ~=oCk,  we get 

C o = c o = l ,  C ~ , I = 2 C ~ - A ~ +  1, s = 0 , 1  . . . . .  r - 2 ,  C r _ l = 2 C r _ l - A r  . (6.1) 

We have Ao = a o  = - 1 .  L e t A k < O , A ~ > O , i > - k +  1. By(6 .1)and  2 > 1,we have 1 = 
Co < C~ < ... < Ck. Let us suppose that  C~ < 0 for some i > k. Then (6.1) implies that  
C~ > C;+ ~ > ... > C,_ ~. Since a J is a product ive or cash-transfer project then A, > 0 
and C,_ 1 = A J(2 - 1) > 0, and we get the contradict ion.  

The project a S =  (ao, a~ . . . . .  a,) is called simple if the sequence ao, a~ . . . . .  ar 
has only one sign change. Obviously  for the simple projects the sequence Az, 
i = 0, 1 . . . . .  r - 1 also has only one sign change and hence the propos i t ion  6.1 implies 
immediately  

Proposition 6.2. Let a s be a simple investment project, J J(2) = 0. Then cJ(2)~Lo . 

6b. Proof of Proposition 2.5. We consider only the p roof  of the point  a). The point  
b) may  be proven  similarly. Consider  at first the case when c = et(2), JS(2) > 0 for 
somej.  Let U(d) be the neighbourhood of the point 2 with radius d, such that Jr(s) > 0 
for s~U(d). Let h(s) be the smooth  function defined on the segment [ 1 , 2 , ]  and 
0 <_ h(s)< 1, h(s)= 0 for seU(d/2), h(s)= 1 for seU(d). N o w  consider the function 
~(s) = (~0, al  . . . . .  ~k) of the form at(s) = b(s)h(s)J + (s), i # j ,  at(s) = b(s)JS+ (s), where 
f +  = max  (f,  0), b(s) is positive and specified by the condit ion ~ t  ~S(s)= 1. Tak ing  
into account  Proposi t ion 2.4 it is easy to show that  a(s) and c(s) = c'~)(s) satisfy all 
the condit ions of the Proposit ion.  Consider  now the case of any e~C(2). Let 

. ~ )  and le t j  be one of the indexes such that  Jr(2) > 0. It  exists ~o -- ~(c) = t~ ~ ~o . . . .  

because of 6(c) > 0 and (2.11). Let U(d) be the same as defined above and te t f (s)  be 
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the l inear function, f (2)  = 0, df/ds = 1/d. N o w  define the function co(s) = (cr ~ a 1,..., ., a,) 
on U(d) by the relations c(i(s) = c~(1 + f(s))b(s), i :/:j, cd(s) = cr -f(s))b(s), where 
b(s) is again a norming  function. It is easy to check that  c~(2)= ao, that  for d 
sufficiently small c((s)aR(s) for s t  [2 - d, 2] and ~:(s) = c'(S)(s) satisfy the condit ion of 
Propos i t ion  on this segment. Since a J(2 - d) = 1, on the segment  [1, 2 - d] we have 
the case considered above. 

6e. P roof  of  the Est imates  (4.5). Let us put  to the right side of (4.3) all terms of the 
sum in (4.3) with J J(2,) < 0 and with J J(2,) = 0, J J(2 - e) < 0 for small posit ive e. 
Hence  by the definition of 2 ,  we leave in the left side only the terms with J J(2,) = 0 
and multiplicities no less than m + 1. T o  simplify differentiation in the sequel, we 
make  the change of variables z = I/2, leaving the same notat ions  for functions. We 
have 

o j j 1 + 2 j  J (z)U,_ 1(z) = z"V, - ~ JJ(z)U{_ 1(z). (6.2) 

Since in the left side of (6.2) all terms of the sum have the multiplicity of the root  
z ,  = 1/2, equal  at least to m + I then this sum and its first m derivatives vanish 
when z = z , .  Deno te  by Pi, q{, v{ the value of ith derivatives of the functions z", JJ(z) 
and U~_ 1(z) at the point  z , .  Then at that  point  the k-th derivative of the right hand 
side of (6.2) for k = 0, I . . . . .  m is equal to 

Dk = p k  V .  - 27 o vl gL_i, (6, 3) 

where C ~--k! / i ! (k- i ) ! ,  D k=O for k = l , . . . , j ;  D k = l  for k = 0 ,  ( v ~ - U ~ ( 2 , ) ) ,  
9~ - J J(2,)). No te  that  nonnegat iv i ty  of investments  imply 

v{ >_ 0 for all i,j, (6.4) 

and that  9~ < 0 for all j in the sum (6.3). For  sake of brevity we consider the case 
9~ < 0 for all j. N o w  mult iply the equalities (6.3) for k = 0, 1 . . . .  ,m by positive 
constants  do, d~ . . . . .  d,,, which will be specified later and Sum to obtain 

do = V, 2~"= 0 Pkdk + Z~ '=0dk( - -Z?  Z~=oC~v/g~_~). (6.5) 

Changing  the order  of  summat ion  we may  rewrite the second sum as 

27=0 2'f,=idk(--~'..j - C~vlg~-~) ==- 2m=0 ~'~=~dkMk, = 27'-oN,. (6.6) 

Let us show by induction on i, i=m,  m - 1  . . . . .  0, that  posi t ive cons tan ts  
din, din-1 . . . .  , d  i may  be chosen to ensure N . . . . . .  N~ >_ 0. Note  that  by (6.4) and 
remark  after this formula  M u = - ~ . ~  vJg ~ i  o -  > 0 and i fM~ = 0 then v] = 0 for a l l j  in 
the sum o n j  and hence Mki = 0 for all k = i . . . .  , m and N~ = 0 for all d . . . . . .  d~. Since 
M,,,, _> 0, then N,, =- d,,M,,,, > 0 for any d~ > 0. Let positive constants  d,, . . . . .  di+ 
be chosen so that  N,,, N,,_ 1 . . . . .  N~+ ~ _> 0. If M ,  --- 0, then N~ = 0 for any d i >  0. If 
M ,  > 0, we may  take di > 0 such that  Ni = d iM,  + ~'~=i+ldkMkl >_ O. Let positive 
do, d ~ , . . . , d  m be such that  N~_>'0, i = 0 ,  1 , . . . ,m.  The formulae (6.5), (6.6) and 
positiveness of  Po, P~ . . . . .  p,, imply 

V, pmd,,< V ,~LoPkd  k < V,2'~,=opkd k + 27'=o u ,  = d o. (6.7) 

Since p,, = z , -"n(n  - 1)-..(n - m + 1) > bz,  n m, b > 0, then (6.7) implies (4.5) 
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