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 Statistics, Probability and Game Theory
 IMS Lecture Notes - Monograph Series (1996) Volume 30

 THE ASYMPTOTIC BEHAVIOUR OF A GENERAL FINITE

 NONHOMOGENEOUS MARKOV CHAIN

 (THE DECOMPOSITION-SEPARATION THEOREM)1

 Isaac Sonin

 University of North Carolina at Charlotte

 Abstract

 The Decomposition-Separation Theorem generalizing the classical
 Kolmogorov-Doeblin results about the decomposition of finite homo-
 geneous Markov chains to the nonhomogeneous case is presented. The
 ground-breaking result in this direction was given in the work of David
 Blackwell in 1945. The relation of this theorem with other problems in
 probability theory and Markov Decison Processes is discussed.

 Dedicated to David Blackwell in deep respect for his many wonderful
 mathematical achievements.

 1. Introduction. Let M be a finite set, ? = {p(i,j)} be a stochastic
 matrix, i, j ? M, Uo be the family of all (homogeneous) Markov chains (MC)
 X = (Xn),n e ? = {0,1,...}, specified by M and ? and all possible initial
 distributions ?. The classical Kolmogorov-Doeblin results describing the
 asymptotic behavior of MC from Uo can be found in most advanced books
 on probability theory as well as the monographs on MC (see for example
 Kemeny and Snell (1960), Isaacson and Madsen (1976), Shiryayev (1984)).

 According to these results the state space M can be decomposed into the
 set of nonessential states and the classes of essential communicating states.
 Furthermore, the following are true:

 (A) With probability one, each trajectory of a MC X from Uo will reach
 one of these classes and never leave it.

 Each class S can be decomposed into cyclical subclasses. If the number
 of subclasses is equal to one (an aperiodic class), then

 (B) every MC X from Uo has a mixing property inside such a class, i.e.
 there exists a limit distribution p

 \imP(Xn = x\Xn eS) = p(?) >0,x?S, (1)

 which does not depend on the initial distribution ? and such that p is in-
 variant with respect to the matrix P.

 1 Key words: Finite nonhomogeneous Markov chain, submartingale, irreversible process.
 AMS 1991 Subject classification. Primary: 60J10.
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 338 Isaac Sonin

 If the number of cyclic subclasses exceeds one, then the MC is aperiodic
 when considered only at the times of visiting the given subclass, and (1)
 is true for those ? which are comparable modulo the number of cyclical
 subclasses.

 Let us now assume that instead of a stochastic matrix ? we have a

 sequence (Pn) of stochastic matrices, Pn = {pn(hj)} and let U be the
 corresponding family of all nonhomogeneous Markov chains. What can be
 said about the behavior of MC from E/7 At first glance the natural answer
 is "Nothing can be said until some assumptions on the sequence (Pn) are
 made".

 But, though it may seem surprising, there is a theorem describing the
 asymptotic behavior of Markov chains in U without any assumptions on the
 sequence of stochastic matrices Pn. (The situation in fact is similar to the
 homogeneous case where we only assume that ? is a stochastic matrix).

 Briefly, this theorem states that a decomposition with the properties
 similar to (A), (B) does exist but now it is not a decomposition of the state
 space ?, but a decomposition of the space-time representation of M, i.e. of
 the sequence (Mn) = ? ? ?.

 Note that this space-time decomposition and the corresponding formu-
 lation of this theorem is not a notational convenience but is the heart of the

 problem. In the general nonhomogeneous case without any specific assump-
 tions about the structure of (Pn), the label of a state is in a sense meaningless
 without the reference to time. To stress this point and to use more compact
 and unified notations, we will assume that there is no fixed state set M at
 all and that we are given a sequence (Mn) of countable disjoint sets and that
 (Pn) is a sequence of stochastic matrices indexed by the elements of these
 sets, i.e. Pn = {Pn(hj)}>i ? Mn,j G Mn+i,n ? N. Denote by U the family
 of all nonhomogeneous Markov chains, referred to below simply as Markov
 chains, ? = (Zn), Zn E Mn, n ? ?, specified by these two sequences and all
 possible "initial" distributions ? defined on all Af*, fc 6 ? . The assumption
 that M is finite is now replaced by the assumption

 |Mn|<iV<oo,n?N. (2)

 2. The Decomposition-Separation Theorem. Formulation.

 Theorem 1. Let a sequence of disjoint sets (Mn), satisfying condition (2)
 and a sequence of stochastic matrices (Pn) be given. Then there exists a de-
 composition of the sequence (Mn) into disjoint sequences J?,Jl,...,Jc,l <
 c<N,Jk = (Jk),Jk ? J? = 0,fc f s,\Jk Jn = Mn,n e ? such that

 (a) with probability one a trajectory of any Markov chain ? ?U after a
 finite number of steps enters into one of the sequences Jk, fc = 1,..., c and
 stays there forever;
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 Nonhomogeneous Markov Chains 339

 (b) each sequence Jk,k = l,...,c is mixing, i.e. for any two Markov
 chains Zl,Z2 eU such that limn P(Zn G Jk) > O,i = 1,2 and any sequence
 of states in G Jk,n ? ?

 ,. P(zj = ??IA e -ff) ,. m

 (c) ??? expected number of transitions of trajectories for any Markov
 chain ? ? U between any sequence Jk and its complement is finite on the
 infinite time interval, i.e.

 S[?(?? ? Jk,Zn+1 i J*+1) + P(Zn i Jk,Zn+X E j?+1)] < oo; (4)
 n=0

 and

 (d) this decomposition is unique up to sequences (Jn) such that for any
 Markov chain ? eU the relation limn P(Zn G Jn) = 0 holds and the expected
 number of transitions of ? between (Jn) and (Mn\Jn) is finite.

 Property (c) combined with limnP(Zn G j?) = 0 implies (a), but we
 prefer to formulate (a) and (c) separately.

 We call this theorem the Decomposition-Separation (DS) theorem, refer-
 ring to the points (a), (b) as the decomposition part and (c) as the separation
 part.

 It can be proved, that in the homogeneous case when all stochastic ma-
 trices Pn,n G ?, are copies of the same matrix P, the above decomposition
 is nothing else than the space-time representation of the decomposition of M
 into ergodic classes and cyclic subclasses, where each subclass is represented
 by a sequence Jk,k f 0. Thus the DS Theorem is a direct generalization of
 the Kolmogorov-Doeblin results.

 3. Brief History. The formulation and the proof of the DS theorem
 are associated with the names of A. Kolmogorov, D. Blackwell, H. Cohn and
 the author of this paper.

 The starting point for the whole topic was a small paper of Kolmogorov
 (1936), who asked and answered the following question. When, given a set
 M and a sequence (Pn)5 defined for all ? = ..., ?1,0,1,..., is there a unique
 corresponding MC specified for all such n? The answer is that this is true if
 and only if the limits

 m-l

 lim P(Zm = j\Zn = i) = ( ? Pk)(i,j)
 k=n

 exist for all m and j and does not depend on i.
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 340 Isaac Sonin

 The ground-breaking step was made in 1945 by David Blackwell who
 proved that for any sequence (Pn) there is a decomposition of (Mn) into
 sequences (T^),(T^),... ,(T?) with properties (a) and (b) of Theorem 1.
 The decisive point of his proof was the use of a then relatively new result of
 Doob about the existence of the limit for almost all trajectories of bounded
 (sub)martingales and an elaborate construction of (Tk),k = 0,1,...,c to
 eliminate the states where the limits in (3) do not exist. As Kolmogorov
 did, Blackwell considered MC in reverse time.

 The next step was made in the works of Harry Cohn (1970), (1976) and
 other of his papers, (see his expository paper, Cohn (1989)), who considered
 the forward time, proved that the tail s-algebra of any nonhomogeneous MC
 consists of a finite number c < ? of atomic (indecomposable) sets, each of
 them related with an element Tk of the decomposition, fc = 1,..., c. He also
 simplified Blackwell's proof, though it was still very complicated. Note also
 that the papers of Cohn contain many other results for the finite and count-
 able cases when some additional assumptions about the structure of (Pn) are
 made. Briefly, the Blackwell-Cohn results can be described as the DS theo-
 rem without property (c), i.e. the decomposition part. Such decomposition
 lacks a transparent physical interpretation and this probably is one of the
 reasons why the work of Blackwell (1945) and its generalization by Cohn are
 not referenced in monographs on stochastic processes or probability theory
 despite its general character.

 The last step in the proof of the DS theorem was made by the author
 in a series of papers Sonin (1987, 1988, 1991a, 1991b), where it was proved
 that among the Blackwell-Cohn decompositions there are decompositions
 into sequences having the additional property (c). These sequences for a
 particular Markov chain were called traps and for the family of Markov
 chains correspondingly universal traps. The property (c) and the existence
 of universal traps were not obvious and they were not noted or mentioned
 before. The list of problems that have led the author to the formulation of
 point (c) is as follows: the problem of sufficiency of Markov strategies for the
 Dubins-Savage functional; the equivalent random sequences and Feinberg
 inequality; the deterministic model of the family of MC (colored flows);
 and Doob's upcrossing lemma and its strengthening to the case of bounded
 (sub)martingales which take on only a bounded number of values. The last
 result, published in Sonin (1987) plays a crucial role in the proof of point
 (c), and we discuss it in the next section.

 Note also that there exists a substantial body of literature on nonho-
 mogeneous Markov chains with some special assumptions on the transition
 matrices (Pn). (See the works of R. Dobrushin, D. Griffeath, J. Hainal, D.
 Isaacson, M. Iosifescu, J. Kingman, R. Madsen, V. Maksimov, A. Mukher-
 jea, E. Seneta and others who have contributed in this area). The study of
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 Nonhomogeneous Markov Chains 341

 backwards limits in the context of nonhomogeneous regenerative processes
 was continued by H. Thorisson (see Thorisson (1988) and his other works).

 4. Doob's Lemma and Its Modification. One of the most remark-

 able and widely used results in the theory of stochastic processes is the
 theorem of Doob about the existence of the limits of trajectories of bounded
 (sub)martingale when time tends to infinity. In particular Doob's theorem
 played an important role in Blackwell's paper. This theorem is based on
 Doob's upcrossing lemma.

 Doob's Lemma. If X = (Xn) is a bounded (sub)martingale then the ex-
 pected number of intersections of every fixed interval (a, b) by the trajectories
 of X is finite on the infinite time interval.

 The width of the interval (6 ? a) is in the denominator of the correspond-
 ing estimate so Doob's lemma does not imply for example that inside the
 interval there exists a level such that the expected number of intersections
 of this level is finite. (Sonin (1994) gave an example to show that this is not
 true in countable case).

 If (Xn) takes values in (Mn) and condition (2) holds, then Doob's lemma
 can be substantially strengthened. Let us call a nonrandom sequence (dn)
 a barrier for the random sequence X = (Xn) if the expected number of
 intersections of (dn) by the trajectories of X is finite, i.e.

 oo

 S\?(?? < dn,Xn+l > <*n+l) + P(Xn > dn,Xn+X < dn+1)] < 00.
 n=0

 Theorem 3 in Sonin (1987) about the existence of barriers for processes
 with finite variation and which take only a bounded number of values implies
 the following:

 Theorem 2. Let (Xn) be a bounded (sub)martingale with values in (Mn)
 and assume that condition (2) holds. Then inside of each interval (a, b) there
 exists a barrier (dn), (dn E (a,b),n ? ?).

 Now we will describe the path that leads to the formulation and proof
 of Theorem 2 and point (c) of DS theorem.

 5. Markov Decision Processes and Sufficiency of Markov Strate-
 gies. One of the classical problem in the general theory of Markov Decision
 Processes is: when do Markov (or any other specific) strategies ensure the
 same payoff as general strategies depending on the whole past? Probably
 the most difficult functional in this regard is the Dubins-Savage functional
 El lim sup /(xn). The simplest example of such a functional is when / is the
 characteristic function of a subset G of a state set. In this case we have a
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 342 Isaac Sonin

 problem of maximizing the probability of visiting the set G infinitely often.
 It is enough to mention that the sufficiency of Markov strategies for this
 functional is still an open problem though the statement seems obvious and
 very few doubt that it is true. The proof of this statement even for a finite
 state set (for a slightly more general functional) was given in Hill (1979)
 and requires a more than fifteen pages. A simple proof of Hill's theorem
 given in Sonin (1991a) follows easily from the Feinberg's inequality, which is
 presented in the next section.

 6. The Equivalent Random Sequences. Let us call the random
 sequences X = (Xn) and Y = (Yn) with values in discrete disjoint sets (Mn)
 equivalent (X ~ Y) if for all A C Mn, ? C ??+?, ? ? ?

 P(Xn G A, Xn+1 G ?) = P(Yn G A, yn+! G B). (5)

 It is obvious that every class of equivalent random sequences contains a
 nonhomogeneous Markov chain and, vice versa, every Markov chain defines
 some class of equivalent random sequences. Let X = (Xn) be a random
 sequence with values in (Mn), D = (Dn) be a sequence of sets, Dn ? Mn, n G
 ?. Denote by

 P(Xn G Dn ult.) = P(liminf(Xn G Dn)) = P(Uk ??>* (Xn G Dn))

 the probability that X does not leave (Dn) after some random time. The
 following theorem was stated in Sonin (1987) and a proof was given in Sonin
 (1991a).

 Theorem 3. (E.A. Feinberg's inequality). Let ? = (Zn) be a Markov chain
 with values in (Mn), (Mn) satisfies the condition (2) and (Dn) be a sequence
 of sets, Dn ? Mn,n G ?. Then for every random sequence X = (Xn)
 equivalent to Z.

 P(Zn e Dn ult.) < P(Xn G Dn ult.) (6)

 E. Feinberg first conjectured inequality (6) and suggested how it could be
 used in Markov Decision Models, so we labeled (6) with his name. Note that
 an example in Sonin (1994) shows the Feinberg's inequality is not true in the
 countable case but this fact does not contradict the sufficiency of Markov
 strategies for the Dubins-Savage functional.

 7. The Simple Model of Irreversible Process. A simple phys-
 ical model and physical interpretation of the DS Theorem for a particular
 Markov chain was also introduced in Sonin (1987). For each moment of time
 let Mn represent a set of "vessels" containing a "solution" of a given concen-
 tration of some substance. Then a vessel i G Mn can be characterized by a
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 Nonhomogeneous Markov Chains 343

 volume of solution mn(i) and its concentration an(i),0 < a < 1. The matrix
 Pn describes the redistribution of the solution from the vessels Mn to the
 (initially empty) vessels Mn+i at the time of the nth transition. In other
 words the sequence (mn(i),an(i)),i G Mn,n G ?, for the sake of brevity
 called colored (discrete) flow, satisfies the relations

 mn+i(j) = ^mn(i)pn(t,i),an+i(j) = S^Wfti(*>jW"^+i(?)> (7)
 t i

 where j G Mn+i and the sum is taken over Mn.
 The initial conditions mjfe(?), <**(*),* G M* for some fc G ? are assumed
 given and the sequence mn(i),an(i),i G Mn evolve in time according to (7)
 for ? > fc.

 We will also consider slightly more general colored flows, allowing for
 a sequence of vessels (On),OnCMn,n G ?, called an "ocean", where by
 definition an(i) = 0,t G On, for all n G ?, (instead of being defined by
 the second of formulas (7)). If all an(i) in a colored flow are constant, it
 is called a flow. It is obvious that every Markov chain ? specifies a flow
 mn(i) = P(Zn = i),i G Mn,n G ? and vice versa. The colored flows also
 have a simple interpretation. Let Z G U be a Markov chain and let (Dn) be
 a sequence of sets, Dn ? Mn,n > fc. Let us denote

 ,,? J P(Zs?D3,s = k,...,n\Zn = i) ifP(Zn = i)>0,n>k, (.
 0 otherwise.

 It is easy to check that the sequence (mn(i),an(i)),n > fc specifies a col-
 ored flow with an ocean (On),On = Afn\.Dn,n G ? and initial values for
 ak(i) = 1 for i E Dfc,a*(i) = 0 otherwise. Vice versa, for every colored flow
 (mn(i),an(i)) with initial data of concentrations equal to zero or one, there
 is a pair ((Zn),(AJ),(Zn) ?U,Dn ? Mn,n G ? , such that a?(?) given by
 (8) coincide with an(i).
 It is also easy to check that for each such pair, or equivalently for a

 colored flow, that a random sequence (Yn) specified by

 Yn = (*n(Zn),neN, (9)

 where an(i) s' are given by (8), is a submartingale in reverse time. This
 simple fact is the bridge between DS theorem and Theorem 2.

 The DS theorem for Markov chains can be reformulated as a theorem

 about the asymptotic behavior of colored flows. It is intuitively clear that
 the colored flow described above is probably the simplest example of an ir-
 reversible process, i.e. a process whose sequence of states in reversed time
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 344 Isaac Sonin

 is not an admissible sequence in a forward time. It is obviously true for all
 colored flows except the trivial cases when the initial concentration is con-
 stant or there is no mixing at all. Thus the DS theorem can be presented
 as a statement about the decomposition of irreversible processes. The irre-
 versibility is strongly related to the notion of ordering or ordered structures.
 The idea of using stochastic and especially doubly stochastic matrices for
 the description of ordering in the space of finite-dimensional vectors is the
 key idea of the so-called theory of majorization. We refer the reader to the
 monograph Marshall and Olkin (1972) for the theory of majorization and to
 Sonin (1988), where the relation between the DS theorem and majorization
 theory is briefly described.

 8. Countable Case. The main result of the unpublished paper Sonin
 (1994) is the following:

 Theorem 4. There exist a sequence of finite sets (Mn), \Mn\ ?? oo, a
 sequence of stochastic matrices (Pn) indexed by (Mn), a Markov chain (Zn),
 and a sequence of sets (Dn),Dn ? Mn,n G ? such that
 a) the submartingale (in reverse time) (Yn) specified by (8) and (9) has
 no barriers inside of some interval (a, b),
 b) there exists a random sequence (Xn) with values in (Mn) equivalent
 to (Zn) and such that Feinberg's inequality (6) is violated.

 Note that while the above statement shows that the DS theorem is not

 true in the form presented in Section 2, it is none the less possible that its
 analog may exists in the countable case if the expected number of intersec-
 tions is replaced by other characteristics of the transitions between elements
 ( Jk) of the decomposition.

 9. "0-1" Law for Nonhomogeneous Markov Chains. This result
 was presented in different variants and proved in Sonin (1991a). The state-
 ments and proof are very simple, so they were referred to as "may be known
 but we know of no reference."

 Let us remind the reader of Kolmogorov's "0-1" law for a sequence of in-
 dependent random variables. Let (??) be a sequence of independent random
 variables, and let F be the "tail" s-algebra, i.e. F = O^LjFnoo, where Fnoo
 is the s-algebra generated by (??, ??+?> ? ? ?)> p G N. Then if ? ? F, we have
 that P(A) = 0 or P(A) = 1.

 The heuristic formulation of the "0-1" Law for nonhomogeneous Markov
 chain is the following: let ? = (Zn) be a nonhomogeneous Markov chain
 with values in discrete spaces (Mn) (not necessarily with a bounded number
 of elements), F be the corresponding "tail" s-algebra, and A G F. Then for
 large ? with probability near one the trajectories of Zn are in states i, where
 P(A\Zn = i) is near 0 or near 1.
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 Nonhomogeneous Markov Chains 345

 The precise formulation is the following. Denote by P(A\i) = P(A\Zn =
 i), i G Mn,n G N,Mn(p,q) = {i G Mn : p < P(A\i) < q},Bn(p,q) = {Zn G
 Mn(p,q)},0<p<q<l.

 Lemma 1. ("0-1" Law for nonhomogeneous Markov chains). Let ? = (Z)n
 be a nonhomogeneous Markov chain with values in (Mn) and A G F . Then
 for any 0 < ? < q < 1

 a) limn P(Bn(p, 1)) = lim* P(ABn(p, 1)) = P(A),
 b)\imnP(Bn(0,p)) = l-P(A),
 c) limn P(Bn(p,q)) = 0.

 10. The DS Theorem in Backward Time. Let the sequences
 (Mn) and (Pn) be defined for n G N_ = {...,-1,0} or n G Noo =
 {...,-1,0,1,...} and let us assume that condition (2) is satisfied. Denote
 by U-,(Uoo) the corresponding family of nonhomogeneous Markov chains
 ? = (Zn) (in forward time). Note that in contrast with the family U, a
 priori it is not clear that such Markov chains exist at all. It can be proved
 that the full analog of the DS in forward time is valid but these results are
 not published yet.

 11. The DS Theorem and Simulated Annealing. Another inter-
 esting and important field of application of the DS theorem is the study of
 the simulated annealing algorithms, where the asymptotic behavior of non-
 homogeneous Markov chains plays a crucial role. A successful attempt in
 this direction was undertaken in Cohn (1995).
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