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Summary. We consider the problem which informally can be described as follows.
Initially a finite set of independent trials is available. If a Decision Maker (DM)
chooses to test a specific trial she receives a reward, and with some probability, the
process of testing is terminated or the tested trial becomes unavailable but some
random finite set (possibly empty) of new independent trials is added to the set of
initial trials, and so on. The total number of potential trials is finite. A DM knows
the rewards and transition probabilities depending on the trials. On each step she
can either quit (i.e. stop the process of testing), or continue. Her goal is to select
an order to test trials and an quitting (stopping) time to maximize the expected
total reward. We simplify and generalize some results obtained earlier for similar
problems, we prove that an index can be assigned to each possible trial and an
optimal strategy uses on each step the trial with maximal index between available
ones. We present a recursive procedure with a transparent interpretation to calculate
the index. We discuss the connection between introduced index and Gittins index.
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1 Introduction

The goal of this paper is twofold. First, to generalize the main result and to
simplify the proof of the paper by Denardo et al. [3]. In that paper a model of
R&D projects is considered. Each stage of a project in the model is represented
by an edge of a directed forest. To activate an edge e one needs to pay a certain
amount r(e). Each activated edge can pass or fail. The successful completion of
a path from a root to a leaf brings certain reward and terminates the activity.
In case of failure all edges which follow the failed edge become unavailable. The
goal is to maximize the expected reward. The optimal strategy in the model
is an index strategy. Each time one should use an edge with the highest value
of the index among the available indices. An index for an edge is specified
only by the parameters of the directed tree above this edge. We consider more
general model where an optimal strategy is also an index strategy. The notion
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of the index in both papers is a generalization of the corresponding notion in
the model, which we call below a binary elementary (BE) model, studied in
early sixties in Mitten (1960) [9].

The second goal of our paper is to show that the index described above
is a generalization of the well-known Gittins index (GI). Thus GI, beside the
original papers of Gittins [6] and Gittins and Jones [7], has the second root
of its origin in the mentioned paper by Mitten [9]. It seems that the proper
credit never was given to Mitten and his model.

The strategies of the type, when for selecting an action on each stage it
suffices to solve much simpler problem, for example the one-step optimization
problem, are called myopic or greedy. They are very popular and intensively
studied though in contrast to model above they usually are not optimal. We
call a strategy a Priority Rule (PR) if an index is calculated for each action
and an action with the highest value of index among available is selected.

The myopic strategies form a nucleus of developed later so called Multi-
armed Bandit (MAB) Theory (for independent (!) arms) (see Gittins [6], Whit-
tle [15], and Berry and Fristedt [1]), where the corresponding strategy is called
Gittins index strategy.

The GI index, denoted by G(x), where x is a state of Markov chain, plays
an important role in theory of MAB with independent arms but it also appears
in other problems like the optimal replacement problems. The main result of
this theory states that if there are a finite number of independent MC and a
decision maker at each moment can engage (test) one of these MC while all
other remain frozen then the optimal strategy is to test MC whose state xj

at this moment has the largest value Gj(xj), where Gj(xj) is the value of GI
of MC j at state xj .

Note also that the same term Multi-armed bandit problem is used also
in the classical papers by R. Bellman [2], D. Feldman [4] as well as in the
book of Presman and Sonin [10] and in some sections of the book by Berry
and Fristedt where arms are dependent, i.e. a trial of one arm provides an
information about the parameters of other arms also. In this case a myopic
Gittins index strategy is not optimal in general.

The traditional Gittins index G(x) for a Markov chain (MC) is defined as
the maximal value of a discounted expected reward per expected discounted
length of a cycle starting from x, i.e.

G(x) = sup
τ

Ex

∑τ−1
n=o βnr(Zn)

Ex

∑τ−1
n=o βn

, (1)

where β is a discount factor, 0 < β < 1, τ is a stopping time, τ ≥ 1, r(·) is a
reward function, and Zn is the state of Markov chain at time n.

Note, that as usual in the theory of Markov Decision Processes, one can
consider the discount factor β as a probability of survival of a MC at each
step. Formally one can introduce an absorbing state and to introduce new
probabilities such that the probability of transition to an absorbing state is
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equal to 1−β and all other transition probabilities are multiplied by the factor
β. Then the denominator in formula (1) multiplied by (1− β) is equal to the
probability of absorption during the time interval (0, τ),

Qτ (x) = 1− Exβτ . (2)

In our paper we will consider the specific Markov decision process on a
forest with one absorption state, when probability of absorption q(A) depends
on chosen action A. We introduce notion of index for control actions as follows.
For fixed strategy π with stopping time τ and control process (Ai), with
A0 = e, we consider the reward Rπ(e), and the probability of absorption
Qπ(e). Following the footsteps of Mitten [9], Granot and Zuckerman [8] and
Denardo et al. [3], we define the index

α(e) = sup
Rπ(e)
Qπ(e)

, (3)

where supremum is taken over some set of strategies.
Note that the reward Rπ(e) can be represented in the form

Rπ(e) = Eπ

[
τ−1∑

i=0

r(Ai)

]
= Ẽπ




τ−1∑

i=0

r(Ai)
i−1∏

j=0

(1− q(Aj))


 ,

where Ẽ denote the expectation with respect to corresponding Markov chain
without absorbing state. The probability of absorption Qπ(e) can be repre-
sented in the same way with q(·) instead of r(·). In case q(Ai) = 1 − β for
all i, the denominator in (3) coincides with (2). So, (3) generalizes (1) to the
case of Markov decision process with probability of absorption depending on
the current state.

In the sequel we consider only the case of finite forest but most of the
results can be extended to the case of an infinite forest with some extra con-
ditions.

The plan of our paper is as follows. In Section 2 and 3 we consider cor-
respondingly the BE-model and the model studied in Denardo et al. [3]. In
Section 4 we formulate our model and present the main result. In Section 5
we discuss main ideas of the proofs. In Section 6 we present and prove some
auxiliary results leaving the proof of one Lemma to the Appendix (Section 9).
In Section 6 we give the proof of the main result. In Section 8 we present an
algorithm for calculating the index. In Section 9 we discuss connection with
Gittins index and some open problems.

2 A binary elementary (BE) model of independent trials.

Suppose that there is a finite set of independent Bernoulli trials e1, e2, ..., em,
with two possible outcomes in each trial, “continuation” with probability pi,
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in i-th trial, and “termination”, with probability qi. A decision maker (DM)
can choose an order in which to conduct (test) the trials. Each trial can be
tested only once. The test of i-th trial brings a reward ri, and in the case of
“continuation” she may continue testing or quit. In the case of “termination”
the testing has to be terminated. The goal of DM is to select the optimal order
to maximize the expected total reward. Such formulation is equivalent to a
formulation where DM has to pay an amount ci in advance, obtains ai with
probability pi, and bi with probability qi, and ri = −ci + aipi + biqi.

This problem is a reformulation of a “least cost testing sequencing” prob-
lem solved independently by a few authors in 1960 (see Mitten [9]). We call
it BE-model (Binary Elementary model). A rather simple proof shows that
the optimal strategy has a remarkable simple structure and is based on an
index α calculated for each trial ei, α(ei) equal to expected profit divided by
probability of termination, i.e.

α(ei) =
ri

qi
. (4)

The optimal strategy has the following form: test the trials with positive
index in the order of decreasing. If all trials must be tested then all they should
be tested in the above order. Mitten analyzed the model when ci < 0, ai = 0,
and bi > 0 but this makes no difference for the analysis of the problem.

3 Independent trials on a forest. Binary forest (BF)
model.

A model described above was generalized by Granot and Zuckerman [8] in
the context of multi-stage R&D models. That paper has many interesting
developments but contrary to their claim the Theorem 1 in their paper can
be obtained from the Mitten result by transforming semimarkov discounting
into absorption probabilities.

This model in turn was recently generalized in a paper by Denardo et al.
[3]. The latter model can be described briefly as follows.

At initial moment a set of independent trials with two possible outcomes
are available. For some of trials the nature of two outcomes is the same as
in BE model - “continuation” and “termination”. For other trials for both
of outcomes one can continue but differently. to pone of outcomes leads to
a possibility to continue the process of testing. In the case of one outcome a
“continuation” is the same as above, but the second of outcomes adds to the
set of available trial a set of new trials, some of them with a similar feature and
so on, and so on. Each trial e of the second kind and all trials that “follow” e
in one or more steps can be represented by edges of a directed tree T (e). A tree
corresponding to the trial of the first kind consists of one edge. The total set
of potentially available trials is finite and is represented by a union of directed
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trees, i.e. by a directed forest F0. The trials of the first kind correspond to
the leaves of this forest, i.e. to the edges such that no edges follows. All other
edges are called stems. The initially available edges are called the roots of F0.

If edge e is tested (used) it can pass with some probability or fail with
complimentary probability. These events are independent of similar events for
other edges. If an edge e “fails” than e and all edges that follow e are not
available any more, but other available edges can be tested. If a stem e passed
then it becomes unavailable but all edges that immediately follow e are added
to the set of available edges. If a leaf e passed then the testing has to be
terminated. An edge e′ can be tested only once and only if all edges on the
path from one of the roots of F0 to e′ “passed” before. The reward on stems
(costs) are negative, positive rewards (prizes) are available only on leaves,
i.e. on edges such that no edge follows. The testing can be conducted till the
termination, when a prize is obtained, i.e. a leaf is reached and “passed”, or
till the moment when DM decides to quit, i.e. to stop testing. The goal of a
DM is to maximize the expected value of either linear or exponential function
of the profit (total reward) over all possible strategies to test edges. We call
this model BF-model (Binary Forest model) since the result of each trial has
two outcomes.

The main result of paper [3] is that the optimal strategy is based again

on an index generalizing (4). This index α(e) is defined as α(e) = sup
π

Rπ(e)
Qπ(e)

,

where Rπ(e) and Qπ(e) are correspondingly the expected total reward and
the probability of termination (to obtain a prize) in the linear case and cor-
responding function in exponential case. The supremum is taken over some
class of strategies, which authors call “candidates”. The authors also noted
that their problem can be described in terms of so called MAB processes and
their index is similar to the Gittins index.

We gratefully acknowledge the possibility to read the manuscript of [3]
before its publication.

The proof of the main theorem in [3] is complicated and long. Responding
to their hope “that someone will devise a simpler proof than theirs” we ob-
tained in the linear case a different, shorter and more transparent inductive
proof of this important and interesting result. We found also that our proof
covers also more general situation when:

1) a binary result of testing of an edge (a trial) can be replaced by a
finite number of outcomes in the spirit of general theory of Markov Decision
Processes (MDP);

2) two separate functions, the prize function b(e) > 0 for leaves and the
cost function c(e) < 0 for all other edges are replaced by a general reward
function r(e), which can take any finite values (positive, negative or zero) for
any edge;

3) the termination when a prize is obtained, is replaced by a possibility of
termination with probability depending on the trial tested at any stage.
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The last possibility implies also that the discounting with coefficient β, 0 <
β < 1 can be considered as a special case of our model since it is equivalent
to a termination with a fixed probability 1− β.

We will consider only the linear function of the profit.
Note also that the optimal strategy in BF-model takes the form of a series

of “depth first” searches of paths to leaves. In our model this property is not
true generally due to generalization 2.

In the MAB literature the term arm is usually understood as a stochastic
process which can be engaged again and again. In the BE, BF models and
the model presented below each edge can be used only once so we prefer not
to use the term arm at all.

4 Multiple Forest (MF) Model. Formulation and results.

We present our model in a standard frame of Markov Decision Processes
(MDP). A MDP model is given (see e.g. Feinberg and Schwartz [5]) by a
tuple M = (S, A(x), p(y|x, a), L), where S is a state space, x ∈ S represents
a state of a system under consideration, A(x) is a set of actions a available
at state x, p(y|x, a) is a probability that the next state is y if at state x an
action a was chosen (transition operator), and L is a functional defined on
the trajectories of a system.

By hn = (x0, a0, x1, . . . , xn−1, an−1, xn) we denote a trajectory of length
n, n ≤ ∞, h∞ = h. A general (randomized) strategy π in MDP is a se-
quence πn(·|hn), n = 0, 1, 2, ... of distributions on action set A(xn) possibly
depending on the whole past history. An initial state x and a strategy π de-
fine a measure Pπ

x in the space of infinite trajectories, i.e. the distribution of
the state-action process (Xn, An), Xn(h) = xn, An(h) = an, n = 0, 1, . . .. We
denote by Eπ

x the corresponding expectation. If a distribution πn(·|hn) is a
function π(xn) with values in A(xn), a strategy π is a stationary (nonran-
domized) strategy. A stationary strategy π defines the transition probabilities
p(y|x, π(x)) for the (homogeneous) Markov chain (Xn) describing the evo-
lution of the system. The goal of the DM is to maximize the expected total
reward Rπ(x) = Eπ

x L = Eπ
x

∑∞
i=0 r(Xi, Ai). From the general theory of MDP

it follows that for such a functional it suffices to consider only the station-
ary strategies. The value function R(x) = supπ Rπ(x) satisfies the Bellman

(optimality) equation R(x) = sup
a∈A(x)

[
r(x, a) +

∑
y

p(y|x, a)R(y)

]
.

Let some initial forest F0 be given. We say that edge e′ follows e, if e is
on a unique path from a root of a tree to e′. Denote by N(e) the edges from
T (e) that immediately follow e. Leaves are edges such that no edge follows.
Other edges are stems.

The state space S = {x} in MF-model consists of absorbing state x∗,
empty set ∅, and all subsets of edges of F0 which do not contain any two
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edges such that one follows other, i.e. if e, e′ ∈ x for some x and e 6= e′ then
T (e)

⋂
T (e′) = ∅.

The action set A(x) = x ∪ {e∗} for x 6= x∗, A(x∗) = e∗, where e∗ is a quit
action, i.e. at each stage a DM can test any of edges in x or select an action
e∗ which at the next moment moves a system to x∗.

The following parameters are defined for every edge e: 1) a number
q(e), 0 ≤ q(e) ≤ 1, 2) for each subset D of the set N(e) (including empty
set and the full set N(e)) a number pD(e) ≥ 0 such that

∑
D⊂N(e) pD(e) =

1− q(e), 3) a reward r(e) such that r(e∗) = 0.
The meaning of these parameters is as follows. Edges correspond to trials.

If edge e is tested, it becomes unavailable, and with probability q(e) the system
moves to the absorbing state x∗, and with probability pD(e) all edges from
the set D are added to the set of edges available for testing.

Formally, the transitional probabilities have the following form: p(x∗|x, e∗)
= 1; if e 6= e∗ then p(y|x, e) = pD(e) for y = {x \ e}∪D and p(x∗|x, e) = q(e).
Note that the independence of arms (edges e) is manifested by the property
that p(y|x, e) depends only on e ∈ x, and does not depend on other e′ from x,
and that the “coordinates” of a new state y for edges e′ 6= e remain the same.

Given an initial state x and strategy π, the goal is to maximize the expected

total reward, Rπ(x) = Eπ
x

∞∑

i=0

r(Ai), where Ai is the edge tested at moment i.

Main Problem A: Given an initial state x, maximize Rπ(x) over all
strategies.

Main Problem B: Given an initial state x, maximize Rπ(x) over all
strategies such that a quit action e∗ is available only if x = ∅, or x = x∗.

As we mentioned, the general theory of MDP implies that for these prob-
lem the stationary nonrandomized strategies form a sufficient class. Still,
stationary strategies may have rather complicated structure. For example,
a strategy can test edge e if edges e, e′, and e′′ are available and test edge e′

if only edges e, and e′ are available. We can expect that the optimal strategy
will be among stationary strategies having the following simpler structure.

Consider an ordered list of different edges π = (e1, ..., ek). We say that ei

is senior than ej for π if ei is listed earlier i.e. if i < j. We denote {π} =
{e1, ..., ek}, i.e. the set of elements of π. List π defines a (nonrandomized)
stationary strategy, which we denote also π, as follows: if there is no available
edges, i.e. if x ∩ {π} = ∅, then π(x) = e∗, otherwise π(x) equals to the most
senior element in x ∩ {π}. Such strategy is called a priority rule (PR).

Note that if ei is senior than ej , it does not imply that edge ei for a
particular history will be used earlier then ej . It may happens because ei may
be not available when ej is already available. More than that, it is possible
that two different lists define the same PR because the same states have
positive probabilities and both lists define the same order for each state that
has positive probability.
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Example. Consider the forest given on Fig.1.

 
         α10= -2 
 
        9      10          11            12        13                                                14        15 
    α9 =8                  α11=11 
                                    α12= -4            α13=1                                             α14=3          α15= -3 
 
 
 
                           α4=6                                                                                     α7=2 
 
                         3      4          5                                                          6      7          8 
                α3 =6.4                   α5= -1                                                         α6 =9                 α8=10 
 
 
 
 
                       α1≈5.05                                                                                     α2=4 
 
                                 1                                                                             2 
 
 
 

Fig. 1. Example of a forest with γ(i) = αi.

Edges 1 - 3, 5, 7 are stems, N(1) = {3, 4, 5}, N(2) = {6, 7, 8}, N(3) =
{9, 10, 11}, N(5) = {12, 13}, N(7) = {14, 55}. Edges 4, 6, 8 - 15 are leafs, so
that N(j) = ∅ for j = 4, 6, 8 − 15. p{3,4}(1) > 0, p{5}(1) > 0, p{6,7}(2) > 0,
p{8}(2) > 0, p{9,10}(3) > 0, p{11}(3) > 0, p{12,13}(5) > 0, p{14}(7) > 0,
p{15}(7) > 0, p∅(j) > 0 for all j = 1, . . . , 15, pD(j) = 0 for all other subsets
of N(j), j = 1, 2, 3, 5, 7. Let π0 = (11, 8, 6, 9, 3, 4, 1, 2, 14, 7, 13, 5, 10, 15, 12).
Although 11, 8, 6, 3, 9 are senior then 1 for π0, DM will use 1 earlier than
these edges because at the initial state {1, 2} edge 1 is senior among available.
All trajectories of maximal length corresponding to π0 and having positive
probabilities are given on Fig.2. In each state an exit action e∗ is also available
so there are also shortened trajectories. In Fig. 2 edges in states are listed in
the order of seniority in π0.

It follows from Fig. 2 that a list π1 = (6, 8, 9, 3, 11, 4, 1, 7, 2, 14, 10, 5, 13, 15,
12) defines the same PR as π0.

Each PR can also be specified as follows. Let γ = γ(e) be a function
defined on edges from F0. Then by definition an edge e is senior than e′ if
γ(e) > γ(e′). For simplicity we assume that if e, e′ ∈ x for some state x and
e 6= e′ then γ(e) 6= γ(e′). In opposite case we assume that from the very
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                                                                                          {14,5}                {5}         

 
                                          {6,7,5}               {7,5}             {5,15}          {13,15,12}         {13,15,12}  
 
                    {2,5}                                                                {5}               {13,12}              {15,12}           {15,12}  
 
                                            {8,5}                 {5}              {13,12}              {12}                  {12}                 {12}         {12}   
 
                                             {5}                {13,12}            {12}                              
 
                      {2}               {6,7}                  {7}                {14}               ∅                       ∅                       ∅                ∅            ∅   
 
                                             {8}                                        {15}                  {7}                    {15}       
 
 {1,2}                                ∅                       ∅                   ∅                       {8}                    {14}                 {15}   
 
                                                                                            {8}                  {6,7}                   {7}                  {14}         {10}  
  
                                            {4,2}                 {2}               {6,7}                 {10}                   {10}              {14,10}      {15}   
 
                   {3,4,2}          {11,4,2}              {4,2}               {2}                {8,10}                {7,10}             {10,15}   
 
                                        {9,4,2,10}         {4,2,10}           {2,10}            {6,7,10}    
 

   x0            x1               x2                x3               x4                x5                 x6                x7           x8        x9   

Fig. 2. Possible trajectories of maximal length corresponding to π0

beginning all edges are numbered and for the edges with equal values of γ(·)
a senior is with greater initial number. We call a strategy π a (γ, c)-PR if
{π} = {e : γ(e) ≥ c}. In other words π assigns to use each time the edge with
highest value of γ(e) among all available with values greater or equal to c,
and use e∗ if there is no available edges with γ(e) ≥ c. The value c is called a
cutoff value.

Below in Section 8 we consider concrete values of p, q and r for all edges
in the Example. We show that the PR π0 is an optimal strategy in problem
B and it corresponds in particular to γ(i) = αi, where αi are given in Fig 1,
α11 = 11, α8 = 10, α6 = 9, α9 = 8, α3 = 6.4, α4 = 6, α1 ≈ 5, 09, α2 = 4,
α14 = 3 , α7 = 2, α13 = 1, α5 = −1, α10 = −2, α15 = −3, α12 = −4.

Denote the class of all PRs by Π.
For any x ∈ S, x 6= ∅ or x∗ let us define F (x) =

⋃
e∈x T (e). Given x ∈ S

and π ∈ Π let us define

Fπ(x) =
{

e : Pπ
x {An = e} > 0 for some n ≥ 0

}
. (5)

Note that Fπ(x) is also a forest, but some of its leaves can be stems for the
initial forest F0. If x = {e} then Fπ(e) is a tree and we will denote it Tπ(e).
Here and in what follows we use the same notation for a forest F and for the
set of edges of F. We say that π ∈ Π(x) if {π} = Fπ(x). Given x ∈ S and
π ∈ Π we always can assume that π ∈ Π(x) eliminating “inaccessible” edges,
i.e. such e ∈ {π} that Pπ

x {An = e} = 0 for all n. If x = {e}, i.e. x consists
only of one edge, we use notation e instead of {e}, for example we write
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Π(e), Rπ(e), Pπ
e and so on. Thus if π is a (γ, c)-PR and π ∈ Π(e) it means

that {π} contains only those edges e′ with γ(e′) ≥ c which are accessible from
e.

For example, PR π2 = (1, 3, 10) in Fig. 1 defines the same PR as π3 =
(1, 3, 10, 12) but only π2 ∈ Π(x) for x = (1, 2).

On a set of trajectories h = (x0, e0, x1, . . . , ) let us define a stopping time
τ∗ = τ∗(h) = min(n : An = e∗ or Xn = x∗). Since forest F0 is finite and
any PR uses quit action e∗ if there is no available actions, we always have
Pπ

x {Aτ∗ = e∗ or Xτ∗ = x∗} = 1, for any x ∈ S and π ∈ Π(x). Thus τ∗ can
be described as a random time when either the system runs out of edges in
Fπ(x), and therefore at this moment an action e∗ was chosen (a quit moment),
or at a previous moment some edge e 6= e∗ from Fπ(x) was chosen and
the transition to x∗ has occurred now (at a termination moment). For the
sake of brevity we call τ∗ an exit time. Since r(e∗) = 0, we have obviously
Rπ(x) = Eπ

x

∑τ∗−1
i=0 r(Ai). For any initial state x and PR π let us define

Qπ(x) = Pπ
x {Xτ∗ = x∗}, απ(x) =

Rπ(x)
Qπ(x)

, (6)

where απ(x) = −∞ if Qπ(x) = 0.
Note that the probability of final absorption, i.e. limn Pπ

x (Xn = x∗) equals
to 1 for any PR π. The value Qπ(x) is the probability of termination, i.e.
probability of transition to x∗ without using a quit action e∗. Thus Qπ(x) ≥ 0
and −∞ ≤ απ(x) ≤ ∞.

Now we define index α(e) for all e. As it was done in [3], we could define
it α(e) = supπ Rπ(e)/Qπ(e) over all π ∈ Π(e), but it is more convenient to
specify α(e) recursively as follows. For any leaf e we set α(e) = r(e)/q(e) if
q(e) > 0. If q(e) = r(e) = 0 then we set α(e) = 0. If q(e) = 0, r(e) > 0 or
r(e) < 0 we set α(e) = +∞ (or −∞ correspondingly. For stems we define
α(e) as follows. If α(·) is not defined for e but is defined for all other elements
of T (e) we set α(e) = supc απc , where πc ≡ πc(e) is a PR which first tests e
and after that uses (α, c) -PR from Π(N(e)). Let us denote by π∗(e) the PR
where α(e) is attained. We also will call such PR α -optimizer.

Auxiliary Problem C(e): For an edge e to find π∗(e) and α(e).

Later we present an algorithm to calculate α(e). It requires no more than
n2 operations.

To slightly simplify our proofs sometimes we will assume
A uniqueness assumptions U: α(e) 6= 0 for all e, and if e 6= e′ then

α(e) 6= α(e′).

Theorem 1. (a) An (α, 0)-PR is an optimal strategy in the Main Problem
A;

(b) an (α,−∞)-PR is an optimal strategy in the Main Problem B ;
(c) an (α, α(e))-PR π, π ∈ Π(e) is an optimal strategy in the Auxiliary

Problem C (e).
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Under the assumption U the optimal strategies in (a), (b), and (c) are
unique.

If assumption U is not true we can modify the notion of α-PR so that
statements (a)-(c) of Theorem 1 will still hold.

5 One simple idea and three elementary situations.

In this section we describe heuristically the key elements of the proof. There
are different proofs of Gittins result (see an interesting paper [14]) but it seems
none of them can be immediately applied to our case. At the same time our
solution is based on a simple key idea, though its implementation in the case
of a random forest is technically cumbersome, and will be presented in the
next section. We describe this idea using as illustrations three elementary sit-
uations, which can be described as three elementary forests. For the simplicity
we will assume that all rewards are positive so a quit action is not at all.

The first situation (a) describes in fact the simplest case of Mitten ele-
mentary model when there are two interchangeable actions a1 and a2. If used,
an action ai brings a reward ri and after that with probability qi the other
action becomes unavailable (the process is terminated), with complimentary
probability decision process may continue. This situation can be described
by a forest consisting of two trees {e1} and {e2}. We must compare two PR
πij , i, j = 1, 2, i 6= j with corresponding expected rewards Rij . In this case
it is optimal to use first an action with highest index αi = ri/qi. This state-
ment can be checked easily algebraically, but we prefer to demonstrate this as
follows.

First, note that the corresponding probability of termination is the same
for the both orderings, i.e. we have

Q12 = q1 + (1− q1)q2 = q2 + (1− q2)q1 = Q21. (7)

This important property in a general situation is proved in Lemma 1 in Section
6. This property implies that to maximize Rij is the same as to maximize
αij = Rij/Qij . Let us consider

α12 =
r1 + (1− q1)r2

q1 + (1− q1)q2
=

α1q1 + α2(1− q1)q2

q1 + (1− q1)q2
. (8)

It is easy to see that this is a formula for a center of gravity of two
masses q1 and (1 − q1)q2 located on a horizontal axis with coordinates α1

and α2. The formula for α21 corresponds to a center of gravity for masses
(1 − q2)q1 and q2 with the same coordinates α1 and α2. Since the sum of
masses is the same for both cases, the center of gravity will have higher value
when larger mass will be placed into higher position, i.e.
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α12 > α21 iff α1 > α2. (9)

We described situation (a) for two actions but this case implies also that
the similar statement is true for any m interchangeable actions, i.e. for BE
model. This property for a general situation corresponds to Corollary 2, pre-
sented at Section 6.

It is important to observe that the reasoning above does not depend on
whether each actions ai is really one time action or consists of a series of
actions. In the latter case we must calculate corresponding quantities R and
Q for the whole series.

Let us explain heuristically how the index α(e) should be calculated for
the situation (b), when some action is followed by a set of actions, i.e. when a
forest consists of a tree T1 = {e0, e1, e2, ..., em}, where N(e0) = {e1, e2, ..., em},
N(ei) = ∅, i = 1, ..., m, and p0 := pN(e0)(e0) = 1− q(e0)− p∅(e0). The indices
for the leaves of this tree, αi := α(ei), i = 1, 2, .., m are known, α(ei) = ri/qi,
where ri := r(ei), qi := q(ei). Without loss of generality we assume that edges
are numbered in such a way that α1 > α2 > ... > αm.

According to definition, to find α(e0) we have to choose k∗, possibly equal
to zero, that maximizes αk = Rk/Qk, where Rk and Qk are the reward and
termination probability for a PR πk = (e0, e1, e2, ..., ek). Using notation β0 =
r0/q0, we obtain

αk =
r0 + r1p0 + r2p0p1 + . . . + rk

∏k−1
i=0 pi

q0 + q1p0 + q2p0p1 + . . . + qk

∏k−1
i=0 pi

=
β0m0 + α1m1 + . . . + αkmk

m0 + m1 + . . . + mk
,

(10)
where m0 = q0, mi = (p0 · · · pi−1)qi, i = 1, ..., k. Thus expression αk also
represents a position of a center of gravity for a system of masses and to
find the value k which brings the maximum value to (10) we can use the
following

Proposition 1. Suppose that mi are the masses and αi the positions of
these masses on the real line, i = 0, 1, 2, ..., N, and α1 > α2 > ... > αN .
Suppose that our goal is to select a subset Jmax of a set {0, 1, ..., N} which
contains a subset J0 = {0} and has the largest possible center of gravity.
Then

a) Jmax can be obtained by adding sequentially masses m1,m2, · · · , to a
set J0 = {0} till the center of gravity of a system Jk = {0, 1, ..., k} will stop
to increase;

b) Jmax = {0} ∪ {i : α∗ < αi}, where α∗ is the center of gravity of Jmax.
If there are αi = α∗ then Jmax is not unique in an obvious way.
Note that both points of Proposition 1 describe the optimal set: b) de-

scribes it in inexplicit form, since α∗ is not known yet, and a) describes it
algorithmically and allows one to calculate α(e0) in situation b) sequentially
step by step.

The proof of Proposition 1 follows from the elementary properties of pro-
portions. (A similar statement was used in a paper by Sonin [11]).



A Gittins Type Index Theorem for Randomly Evolving Graphs 13

The simplest version of situation b) for m = 1 gives

α1 > β0 iff α1 > β0. (11)

The proof of Theorem 1 in Section 7 is based on the induction with respect
to the number of edges, and on Lemma 1, which corresponds to (7), Corollary
1, which corresponds to (9), and Corollary 2, which corresponds to (11). These
statements are more general than (7), (9), (11) because each action in Lemma
and corollaries consists of some series of actions and after application some
action (which corresponds to some PR) the system transits to a random set
and the choice of the next action depends on this set.

To illustrate this fact and an algorithm of calculation of α(e) consider the
more complicated situation c), when in situation b) one of leaves e1, e2, ..., em,
let say an edge e3, is replaced by a tree T (e3). Then the first two steps of our
procedure of maximization of center of gravity will be the same. Suppose that
the value of α(e3) is achieved on some PR π = (e3, v1, ..., vk) and α(e3) =
R3/Q3. Then in formula (10) the value r3 should be replaced by R3 = α(e3)Q3

and correspondingly the mass m3 will be also modified. After that the set
N(e3) will be added to the set of available edges, where N(e3) is the set
of elements of T (e3) which does not belong to π, but follows immediately
elements of π. By the property of α optimizer, all elements of N(e3) have the
values of index less then α(e3), and on the next step we will choose an edge
with maximal value of α in enlarged set of available edges.

6 Auxiliary results

To prove Theorem 1 we introduce some new notations and prove some auxil-
iary statements.

Let π1 and π2 are PR and π1 ∈ Π(x). Let us define a new PR from Π(x) -
we denote it π = (π1, π2) - which uses first all available edges from π1 and after
that switches to π2, i.e. all edges in the list π1 are defined now as senior than
all edges in π2. The list π can be obtained as follows. First, list all elements
of π1 in their order and after that list those elements of π2 - in their order -
which does not belong to π1 and which are accessible from x. We call PR π2

a continuation of π1. The similar meaning has notation π = (π1, π2, π3) and
so on.

Remark 1. Let π be a (γ, c)-PR and π1 be a (γ, c1)-PR, where c1 > c.
Then obviously π can be represented as π = (π1, π2), where π2 is a (γ, c)-PR.

For a PR π = (π1, π2) let us define a random time σ = min(n : Xn = x∗
or An ∈ {π2}), i.e. a time of termination or first usage of edges from π2. For
the sake of brevity we call time σ a time of switching from π1 to π2.

Remark 2. Note that for any trajectory σ ≤ τ∗, but at the same time
Pπ1

x {Xτ∗ = y} = Pπ
x {Xσ = y} for any y. Equivalently, a moment of termi-

nation for π1 is a moment of switching from π1 to π2 in π.
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Using strong Markov property and the total probabilities formula it is easy
to obtain for a π = (π1, π2)

Rπ(x) = Eπ1
x

[
σ−1∑

i=0

ri + Rπ2(Xσ)

]
= Rπ1(x) +

∑
y

Pπ1
x (Xσ = y)Rπ2(y). (12)

Lemma 1. If π1, π2 ∈ Π(x) and {π1} = {π2}, then

Pπ1
x {Xτ∗ = y} = Pπ2

x {Xτ∗ = y} (13)

for all y ∈ S, and, in particular, for y = x∗, i.e. Qπ1(x) = Qπ2(x).

This lemma is an analog of the simple statement that for a set of inde-
pendent trials the probability of at least one success does not depend on the
order in which these trials are tested. We prove this lemma in an Appendix.

Let us call PRs π1 and π2 disjoint if π1 ∈ Π(x1), π2 ∈ Π(x2), and F (x1)∩
F (x2) = ∅.

Let π1 ∈ Π(x1) and π2 ∈ Π(x2) are disjoint and π ∈ Π. Then for any x,
x1∪x2 ⊂ x we can define PRs π12 = (π1, π2, π) and π21 = (π2, π1, π) such that
both belong to Π(x). Where no confusion is possible we will use shorthand
notations Rπi(x) = Ri, Qπi(x) = Qi, α

πi(x) = αi and so on.
Lemma 2. Consider two PRs πij = (πi, πj , π) ∈ Π(x), i, j = 1, 2, i 6= j,

where π1, π2 are disjoint, and πi ∈ Π(xi). Then for any x, x1 ∪ x2 ⊂ x

Rij = Ri + diRj + R, (14)

where di = 1−Qi, and the term R is the same for both π12 and π21.

Proof. Given PR πij = (πi, πj , π) let us define σi as the switching moment
from (πi, πj) to π. Since π1 and π2 are disjoint we have {(π1, π2)} = {(π2, π1)}
and therefore by Lemma 1 the distributions P

πij
x {Xσi = y} coincide. Hence,

according to (12) the term R is the same for both π12 and π21. The equality in
Lemma 3 follows from formula (12) applied to moments τi of switching from
πi to (πj , π) and the fact that for disjoint PRs the second factor of each term
in the sum

∑
y Pπi

x (Xτi = y)Rπ(y) is the same for all y such that y 6= x∗ and
Pπi

x (Xτi = y) 6= 0.
Note that any equality for R always implies similar equality for Q because

Qπ = Rπ if all rewards r(e) are put equal r(e) = q(e). Indeed, let us consider a
reward function r′(e, x) defined by r′(ei, xi+1) = 1 if ei 6= e∗, xi+1 = x∗, and
r′(ei, xi+1) = 0 otherwise. Then for such function we have Qπ(x) = Rπ(x). It
remains to note that averaging of such r′ gives r(ei) = q(ei).

Therefore, we have an equality similar to (14) for Q, and hence

αij =
αiQi + αjdiQj + R

Qi + diQj + Q
. (15)

Corollary 1. If under assumptions of Lemma 2 α1 > α2 then α12 > α21

(and therefore R12 > R21).
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Proof. This follows from (14) and (15), using equality Q1 + (1−Q1)Q2 =
Q2 + (1−Q2)Q1.

The next lemma shows how the “isolated tail” of a PR π contributes to
the value of Rπ. If π ∈ Π(x) we will omit sometimes the dependence on x of
R, Q and α.

Lemma 3. Let π1 ∈ Π(x), π2 ∈ Π(e), e /∈ {π1}, π = (π1, π2). Then

Rπ(x) = Rπ1(x) + d1R
π2(e), (16)

where d1 = Pπ1
x {e ∈ Xσ}.

Proof follows directly from the second equality in (12) and because
Rπ2(y) = Rπ2(e) for e ∈ y, and Rπ2(y) = 0 if Xσ = y and e /∈ y. Note
that the assumption π2 ∈ Π(e) is crucial for validity of (16).

According to our remark after Lemma 2, Lemma 3 implies that the formula
similar to (12) (with replacement R by Q) holds for Qπ, and hence we have

απ =
R1 + d1R2

Q1 + d1Q2
=

α1Q1 + α2d1Q2

Q1 + d1Q2
. (17)

Formula (17) and elementary properties of proportions imply
Corollary 2. Under the assumptions of Lemma 3 either απ1 = απ2 = απ

or
min{απ1 , απ2} < απ < max{απ1 , απ2}. (18)

7 Proof of Theorem 1

We prove theorem 1 by induction on the number k of edges in the forest F (x)
of an initial state x. We denote by |C| the number of elements in a finite set C.
For k = 1 the theorem is trivial. Suppose it is proved for all x with |F (x)| ≤ k,
and suppose an initial state is x with |F (x)| = k + 1. We consider separately
two cases: (A) when |x| > 1, and (B) when |x| = 1. In both cases we will use a
well-known Bellman Optimality Principle, a corollary of a Bellman equation
for the expected total reward: i f π is an optimal strategy (for the problem A
or B) for an initial state x, then after the first step it remains optimal for all
states that follow x. We prove theorem under the Uniqueness assumption U.
The proof for the general case is similar.

Case (A). In this case point (c) of the theorem is trivial since each |T (e)| ≤
k for each e ∈ F (x) so, it remains to prove (a) and (b). For any e ∈ x
let π0 be an α-PR (with cutoff value c = 0 in Problem A and cutoff value
c = −∞ in Problem B). According to the induction assumption it is an
optimal PR for any state in F (x)\e. So, if π is optimal on F (x), and applies
e on the first step, by Optimality Principle, PR (e, π0) is also optimal. Let
α1 = α(e1) = maxe∈x α(e). Let us show that π = (e, π0) is not optimal if
α = α(e) < α1.



16 Ernst Presman and Isaac Sonin

Using the description of π0 by point (a) of Theorem 1 and Remark 1 we
have π = (e, ν1, π1, ν), where ν1 is an α-PR defined on a set T (e)\e with cutoff
value c1 = mine′∈T (e)\e {e′ : α(e′) > α1} > α1; PR π1 is an α-PR with cutoff
value c = α1, and ν is a continuation of α-PR (with cutoff value c(ν) = 0 in
Problem A and cutoff value c = −∞ in Problem B). Note that it is possible
that ν1 = ∅. According to the definitions of α-PR and the value c1, all edges
used by π1 belong to T (e1).

Note that PRs π1 and π2 = (e, ν1) are disjoint because they are defined on
different trees T (e1) and T (e), and that απ2(e) ≤ α = α(e) because PR (e, ν1)
can be different than πe which gives a solution to the Auxiliary Problem. Let
us show that PR ϕ = (π1, π2, ν) is better than π = (e, ν1, π1, ν) = (π2, π1, ν).
According to the induction assumption απ1(e1) = α1, so απ1(e1) = α1 > α ≥
απ2(e). Applying Corollary 1 to π1 and π2 we obtain that Rϕ > Rπ, i.e. π is
not an optimal strategy. It means that an optimal strategy either coincides
with (e1, π0) or appoints to quit from the very beginning.

Case (B). In this case x consists only of one edge and we denote it e0. The
first step for any policy is defined uniquely and the resulting state has a forest
with no more than k edges, so by the Optimality Principle the points (a) and
(b) of the Theorem are trivial but point (c) is trivial for all edges except e0.

Let πe0 = (e0, ν), where πe0 be a solution of an Auxiliary Problem for e0,
α-PR ν ∈ Π(N(e0)) and c is a corresponding cutoff value. Let us show that

1) if e ∈ F ν(e0), then α(e) ≥ α(e0),
2) if e /∈ F ν(e0) and e ∈ N(e′) for some e′ which is a leaf of F ν(e0) then

α(e) < α(e0).
This will prove that c can be taken equal to α(e0), i.e. satisfying point (c).
Suppose that 1) is not true and e ∈ F ν(e0) is such that α(e) < α(e′)

for all e′ ∈ F ν(e0), and α(e) < α(e0.) By the definition of (α, α(e))-PR all
edges that can be used in ν after e belong to T (e). So, PR (e0, ν) can be
represented in a form π = (π1, π2) where π2 ∈ Π(e) is an α-PR. Consequently
απ2(e) ≤ α(e) < α(e0) = α(e0,ν). But Lemma 3 and Corollary 2 applied to PR
(e0, ν) = (π1, π2) imply that α(e0,ν) < απ1 . This contradicts to the definition
of π(e0).

Suppose that 2) is not true and we select e ∈ N(e′) such that e′ is a leaf of
F ν(e0), α(e) > α(e0) and e is the smallest among such e. Let π2 is (α, α(e))
-PR, π2 ∈ Π(e). Consider PR π = (π1, π2), where π1 = (e0, ν). Then π is a
PR with c = α(e). Applying Lemma 1 and Corollary 2 to PR π and using that
απ1(e0) = α(e0) < α(e) = απ2(e) we obtain that α(π) > απ1 . This contradicts
to the definition of π1.

8 A recursive algorithm to calculate α(e) and π∗(e).

To formulate the algorithm we first consider the structure of (α, c)-PR πc ∈
Π(x) for an initial state x. Recall that for any PR π and initial state x we
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can consider Rπ(x), Qπ(x), Fπ(x) (or Tπ(e) if x consists of one edge e) (see
(5)). We will consider also Nπ(x) = N(Fπ(x)), where N(F ) for any subforest
of initial forest F0 denotes the set of all edges that follow immediately “leafs”
of F , i.e. the set of all edges that do not belong to F , but follow immediately
elements of F . For any D ⊂ Nπ(x) (including empty set) we will consider also
the probability pπ

D(x) = Pπ
x {Xτ∗ = D}, i.e. the probability that our decision

to quit was taken at the state D.
Proposition 2. For any x ∈ S there exist a natural number k(x), non-

increasing (decreasing in case of Assumption U) numbers ck = ck(x), with
c0 = +∞, and edges gk = gk(x) ∈ F (x), k = 0, 1, · · · , k(x), such that for
(α, c)-PR πc ∈ Π(x)

πc = πck for ck+1 < c ≤ ck, ck+1 = α(gk),

πck+1 = (πck , π∗(gk)), for 0 ≤ k < k(x); πc = πck(x) for c ≤ ck(x),
(19)

where π∗(gk) is α-optimizer of gk. Using indices “k” and “*” instead of index
π for π = πck and π = π∗ correspondingly we get: π0(x) = (∅), R0(x) = 0,
Q0(x) = 0, F 0(x) = (∅), N0(x) = x, p0

x(x) = 1 and if Nk(x) 6= ∅ then

F k+1(x) = F k(x)
⋃

T∗(gk), (20)

Nk+1(x) =
(
Nk(x) \ gk

)⋃
N∗(gk), (21)

Rk+1(x) = Rk(x) + R∗(gk)
∑

D: gk∈D⊂Nk(x),

pk
D(x), (22)

Qk+1(x) = Qk(x) + Q∗(gk)
∑

D: gk∈D⊂Nk(x)

pk
D(x). (23)

If D ⊂ Nk+1(x) then there exist unique D1 ⊂ Nk(x)\{gk} and D2 ⊂ N∗(gk)
such that D = D1

⋃
D2, and

if D1 = ∅, D2 6= ∅, then pk+1
D (x) = pk

{gk}(x)p∗D2
(gk), (24)

if D2 = ∅, then pk+1
D (x) = pk

D1
(x) + pk

{gk}
⋃

D1
(x)p∗∅(gk), (25)

if D1 6= ∅, D2 6= ∅, then pk+1
D (x) = pk

{gk}
⋃

D1
(x)p∗D2

(gk). (26)

Proof. For the sake of simplicity we will prove Proposition 2 under As-
sumption U. The changes for the general case is straightforward. Let for some
k ≥ 0 we know ck, πck , Rk(x), Qk(x), F k(x), Nk(x), and pk

D(x) for any
D ⊂ Nk(x). The set Nk(x) corresponds to all potentially available edges af-
ter application of πck . If Nk(x) = ∅ then k = k(x) and evidently we obtain
the last equality in (19). If Nk(x) = ∅ then according to the definition of
(α, c)-PR, all elements of Nk(x) have the value of α less or equal to ck. Con-
sider the edge in Nk(x) with maximal value of α and denote it gk. Denote
ck+1 = α(gk). Since there is no edges in Nk(x) with ck+1 < α(e) < ck we have
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proved the first equality in (19). According to Remark 1 πck+1(x) = (πck , π2),
where π2 ∈ Π(gk) is (α, α(gk))-PR. according to statement c) of Theorem 1
this PR coincides with π∗(gk). It proves third equality in (19) and equalities
(20), (21. Equalities (22)-(26) are the results of application of total probability
formula. It completes the proof of Proposition 2.

Note that if α(e) is known for all e ∈ F (x) then Proposition 2 gives the
algorithm for calculation of optimal value of functional in Main Problems A
and B. In case of Problem B it coincides with Rk(x)(x), and in case of Problem
A it coincides with Rk0(x), where k0 = inf{k : α(gk−1) > 0}.

Now we can formulate algorithm for finding α(e). Recall that we defined
α(e) as r(e)/q(e) for leaves, and if α(e′) is defined for all e′ ∈ T (e)\e then as a
maximum of Rπc(e)/Qπc(e) over c, where πc ≡ πc(e) is a PR which first tests
e and after that uses (α, c) -PR from Π(N(e)). It is evident that Proposition 2
is valid also for πc(e) with initial values c0 = +∞, π0(e) = (e), R0(e) = r(e),
Q0(e) = q(e), α0(e) = R0(e)/Q0(e), T 0(e) = {e}, N0(e) = N(e), p0

D(e) =
pD(e) for all D ⊂ N0(e). Define αk(e) = Rk(e)/Qk(e). According to Corollary
2 (see also Proposition 1 and (11)) there exists k∗ = k∗(e) such that αk(e)
increases for k < k∗ and decreases for k > k∗ and k∗ = inf{k : α(gk) ≤
αk}. It means that for finding α(e) we need to conduct calculations (22)-(26)
sequentially from k = 0 till the time when α(gk) < αk and set α(e) = αk∗ .

Note that if e ∈ π∗(e′) for some e′, then we do not need to remember all
data for e. We need remember only the data for e′.

Consider now example 1 with
q(1) = 0.2, p∅(1) = 0.1 p{3,4}(1) = 0.4, p{5}(1) = 0.3, r(1) = 0.8;
q(2) = 0.08, p∅(2) = 0.17, p{6,7}(2) = 0.5, p{8}(2) = 0.25, r(2) = 0.1;
q(3) = 0.1, p∅(3) = 0.24, p3,{9,10}(3) = 0.5, p{11}(3) = 0.16, r3 = 0.2;
q(4) = 0.3, p∅(4) = 0.7, r(4) = 1.8; q(6) = 0.04, p∅(6) = 0.96, r(6) =

0.36;
q(5) = 0.24, p∅(5) = 0.71, p{12,13}(5) = 0.05, r(5) = −0.3;
q(7) = 0.05, p∅(7) = 0.45, p{14}(7) = 0.5, p{15}(7) = 0.3, r(7) = 0.05;
q(8) = 0.08, p∅(8) = 0.92, r(8) = 0.8; q(9) = 0.09, p∅(9) = 0.91,

r(9) = 0, 72;
q(10) = 0.7, p∅(10) = 0.3, r(10) = −1.4; q(11) = 0.5, p∅(11) = 0.5,

r(11) = 5.5;
q(12) = 0.2, p∅(12) = 0.8, r(12) = −0.8; q(13) = 0.6, p∅(13) = 0.4,

r(13) = 0.6;
q(14) = 0.01, p∅(14) = 0.99, r(14) = 0.3; q(15) = 0.4, p∅(15) = 0.6,

r(15) = −1.2.

For leaves we have:

α(4) =
r(4)
q(4)

= 6, α(6) =
r(6)
q(6)

= 9, α(8) =
r(8)
q(8)

= 10, α(9) =
r(9)
q(9)

= 8,

α(10) =
r(10)
q(10)

= −2, α(11) =
r(11)
q(11)

= 11, α(12) =
r(12)
q(12)

= −4,
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α(13) =
r(13)
q(13)

= 1, α(14) =
r(14)
q(14)

= 3, α(15) =
r(15)
q(15)

= −3.

To calculate values of α for stems we use the algorithm.

α0(3) =
r(3)
q(3)

= 2. Since N(3) = {9, 10, 11} and α(11) = 11 > α(9) = 8 >

α0(3) > α(10) = −2, we set g0(3) = 11. Since N(11) = ∅ we have from (21)-
(23): N1(3) = {9, 10}, R1(3) = r(3) + p{11}(3)r(11) = 0.2 + 0.16 ∗ 5.5 = 1.08,
Q1

3 = q3 + p3,{11}q11 = 0.1+0.16 ∗ 0.5 = 0.18. Using (25) we get: p1
{9,10}(3) =

p{9,10}(3) = 0.5, p1
∅(3) = p∅(3) + p{g}(3)p∗∅(11) = 0.24 + 0.16 ∗ 0.5 = 0.32,

α1(3) =
R1(3)
Q1(3)

=
1.08
0.18

= 6.

Since N1(3) = {9, 10} and α(9) = 8 > α1(3) > α(10) = −2, we set g1 = 9.
Since N(9) = ∅ we have from (21)-(23): N2(3) = {10}, R2(3) = R1(3) +
p1
{9,10}(3)r(9) = 1.08 + 0.5 ∗ 0.72 = 1.44, Q2(3) = Q1(3) + p1

{9,10}(3)q(9) =
0.18 + 0.5 ∗ 0.09 = 0.225. Using (25) we get: p2

{10}(3) = p1
{9,10}(3)p∅(9) =

0.5 ∗ 0.91 = 0.455, p2
∅(3) = p1

∅(3) = 0.32, α2(3) =
R2(3)
Q2(3)

=
1.44
0.225

= 6.4.

Since N2(3) = {10} and α(10) = −2 < α2(3) = 6.4 we have: π∗(3) =
π8(3) = (3, 11, 9), N∗(3) = N2(3) = {10}, R∗(3) = R2(3) = 1, 44, Q∗(3) =
Q2(3) = 0.225, p∗{10}(3) = p2

{10}(3) = 0.455, p∗∅(3) = p2
∅(3) = 0.32, α(3) =

α2(3) = 6.4.
Calculations for the edges 5,7,1, and 2 are absolutely analogous and we

omit them. This calculations give:
π∗(5) = π1(5) = (5, 13), N∗(5) = {12}, R∗(5) = −0.27, Q∗(5) = 0.27,

p∗{12}(5) = 0.02, p∗∅(5) = 0.71, α(5) = −1;
π∗(7) = π3(7) = (7, 14), N∗(7) = {15}, R∗(7) = 0.2, Q∗(7) = 0.1,

p∗{15}(7) = 0.3, p∗∅(7) = 0.6, α(7) = 2;
π∗(1) = π6.4(1) = (1, 3, 11, 9, 4), N∗(1) = {5, 10}, R∗(1) = 1, 934, Q∗(1) =

0.383, p∗{10}(1) = 0.1274, p∗{5}(1) = 0.3, p∗∅(1) = 0.1896, α(1) =≈ 5.05;
π∗(2) = π9(2) = (2, 8, 6), N∗(2) = {7}, R∗(2) = 0, 48, Q∗(2) = 0.12,

p∗{7}(2) = 0.48, p∗∅(2) = 0.4, α(2) = 4.

9 Connection with Gittins index and Concluding
Remarks.

Now we outline how to obtain the proof of the celebrated Gittins result from
Theorem 1. Suppose that there is a fixed number m of finite Markov chains
with transition probabilities pk(i, j), j = 1, 2, ...,m and a discount factor β, 0 <
β < 1. Each time a DM can engage one of these MC and a reward rk(i) is
obtained if k-th MC was engaged at state i. Without loss of generality these
MCs have common state space S = {1, 2, ..., N} and we can describe the
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possible transitions of these MCs using infinite forest F0 which consists of
m trees T1, ..., Tm. The set N(e) = {e1, ..., eN} and partitions of N(e) =
{e1} ∪ {e2} ∪ ...{eN} are the same for each e ∈ F0. The probability p(Nj) for
an edge ei ∈ Tk is equal to βpk(i, j), and q(e) = (1−β), i.e. we use a standard
way to replace a discount by a transition to an absorbing state. The reward
r(e) = rk(i) if e = ei ∈ Tk. We can prove that for any given ε > 0 we can
specify n sufficiently large so that the value function for an initial problem
and a problem with finite forest Fn will be different less than in ε. For such
finite forest we can apply Theorem 1 where the optimality of PR based on
indices all αn(e) was established. It can be proved also that if if e = ei ∈ Tk

then limn→∞ αn(e) = αk(i), where αk(i) is the value of the classical Gittins
index (GI) for the k-th MC at state i. This proves the optimality of PR based
on GI.

Note also that the value of GI will be obtained as a limit. At the same
time there are algorithms that calculate GI for finite case in a finite number
of steps, e.g in [13]. A new recursive algorithm to calculate GI even in a more
general model is proposed in [12].

Not also that the idea of an infinite forest can be applied to the case of
a countable state space under assumption e.g. that the ratio r(e)/q(e), e ∈ F
is bounded by a constant c. Note that this assumption holds for the classical
Gittins case if Markov chain is finite or r(e) is bounded if it is countable.

10 Appendix.

Proof of Lemma 1. We prove lemma 1 by induction on n = |{π}|. For n = 1
lemma is trivial. For n = 2 we have {πi} = {e1, e2}. If x contains only one
of these edges then both PRs use this edge on the first step and the other
one on the second, so they coincide. Let ei ∈ x for i = 1, 2, then there are
two possible PRs, π1 = (e1, e2), and π2 = (e1, e2). From the definition of
transition probabilities Pπi

x {Xτ∗ = y} > 0 only if either y = x∗, or y has a
form ykQ = ((x \ (e1, e2)) ∪Nk(e1) ∪NQ(e1)) for some 0 ≤ k ≤ j(e1), 0 ≤
Q ≤ j(e2), and Pπi

x {xτ∗ = yiQ} = pi(e1)pQ(e2) for i = 1, 2. For y = x∗ we
have Pπi

x {xτ∗ = x∗} = 1 −∑
y 6=e∗ Pπ1

x {xτ∗ = y} for i = 1, 2. This completes
the proof of Lemma 1 for the case |{π}| = 2.

Suppose now that (13) is proved for n = k, k ≥ 2, and |{πi}| = k + 1.
Given x ∈ S, denote ei the senior edge among edges in x for a PR πi. Then
each πi can be represented as πi = (ei, νi), where νi is a continuation of πi and
|{ν1}| = k. Note that if e1 = e2 then {ν1} = {ν2} and lemma 1 holds because
the first step for both PRs will be the same and after the first step we can
apply an induction assumption to PRs νi. Suppose that e1 6= e2. Then let us
introduce two new PRs π′1 = (e1, e2, ν) and π′2 = (e2, e1, ν), where ν is a PR
with {ν} = {π} \ {e1, e2}. For two pairs of PRs; π1 and π′1, and for π2 and π′2
lemma 1 holds because each pair has the same first edge and we discussed this
case earlier. Thus we have to show that Lemma 1 holds for a pair of PRs π′1
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and π′2. This pair of PRs is different only for the first two steps but according
to our proof for the case of n = 2 the distributions of X2 coincide. After that
we can apply an induction assumption. This completes the proof of Lemma
1.
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