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Abstract

There is a well known connection between three problems related to Optimal

Stopping of Markov Chain and the equality of three corresponding indices: the

classical Gittins index in the Ratio Maximization Problem, the Kathehakis-Veinot

index in a Restart Problem, and Whittle index in a family of Retirement Problems.

In [13] these three problems and these three indices were generalized in such a

way that it become possible to use the State Elimination algorithm [11] to calculate

this common Generalized Gittins index α.

The main goal of this note is to demonstrate that the equality of these (gen-

eralized) indices is a special case of a more general relation between three simple

abstract optimization problems.

Key words: Gittins index, Markov chain, Optimal stopping, The State Elimi-

nation Algorithm.
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1 Introduction.

There is a well known connection between three problems related to Optimal Stopping

(OS) of Markov Chain (MC), the ratio (cycle) maximization, the Kathehakis-Veinot

Restart Problem, Whittle family of Retirement Problems, and the equality of three

corresponding indices: the classical Gittins index, the Kathehakis-Veinot (KV) index,

and the Whittle index.

In [13] these three problems and corresponding indices were generalized in such a way

that it become possible to use the so called State Elimination (SE) algorithm developed

earlier by author to solve OS of MC to calculate this common index α. This generalization

also sheds a new light on a meaning of this index, which we call the Generalized Gittins

index (GGI), and relates this index to an index introduced earlier by Mitten in [8] and

thus to such papers as [5], [3] and [9], for which Mitten’s paper was a starting point. In

these papers GGI plays an important in the description of optimal strategy.

The main goal of this note is to demonstrate that the equality of these indices is

a special case of a similar equality for three simple abstract optimization problems.

By an abstract optimization problem we mean a problem with maximization over an

abstract set of indices U without any specifics about this set. There is no doubt that the

relationship between these problems was used in optimization theory before, on different

occasions in specific problems, but we fail to find a general statement of this kind in the

vast literature on optimization.

In the next section 2 we briefly repeat the main statements of [13], in section 3 we

describe three abstract optimization problems and prove our main result - Theorem 3. At

the end of this section we discuss the reduction of OS problems to abstract optimization

problems. In section 4 we discuss the possible generalization of OS problem to more

general - continue, quit, restart (CQR) probability model, which will be treated in

forthcoming paper [14], and present some relevant open problems.

The author would like to thank Robert Andersen, Joseph Quinn and Ernst Presman

who read the first version of this paper and made valuable comments, and two anonymous

referees for helpful suggestions.

2



2 Three Classical Indices and their Generalizations

Let us recall some useful facts related to classical Gittins index (GI) γ(x). A special

case of a general Markov Decision model (see e.g. [4] is a model of OS of MC specified

by a tuple M = (X,P, c(x), g(x), β), where X is a countable state space, P = {p(x, y)}

is stochastic (transition) matrix, c(x) is a one-step reward function, g(x) is a terminal

reward function, both can be positive or negative and β is a discount factor, β =

const, 0 < β ≤ 1. If the reward function g is absent, or equivalently if g = −∞, we call

such model a (Markov) Reward Model.

Given a reward model M and point x ∈ X, the classical Gittins index, γ(x), see [6],

as well as e.g. [15] and [1], is defined as the maximum of the expected discounted total

reward during the interval [0, τ) per unit of expected discounted time for the Markov

chain starting from x, i.e.

γ(x) = sup
τ>0

Ex

∑τ−1
n=0 β

nc(Zn)

Ex

∑τ−1
n=0 β

n
= (1− β) sup

τ>0

Ex

∑τ−1
n=0 β

nc(Zn)

1− Exβτ
, (1)

where 0 < β < 1, τ is a stopping time, τ > 0, and a trivial equality (1−β)
∑k−1

n=0 β
n = 1−

βk is used to obtain the second equality in (1). In other words, a decision maker (DM)

has two actions available at each state - to continue or to stop, and her goal is to

maximize the ratio in (1). Without loss of generality we can consider as stopping times

only the moments of a first visit to sets G ⊂ X, x /∈ G. The GI index plays an important

role in the theory of Multi-armed bandit problems with independent arms but it also

appears naturally in many other problems of stochastic optimization.

An interesting interpretation of the GI, the so called Restart in State interpretation,

was given by Kathehakis and Veinot in [7]. Given a reward model M, let us consider a

family of Markov decision models indexed by a fixed initial point s ∈ X, where a DM

has two following actions available at each state x, - to continue or to return (restart)

to state s and continue from there. In other words, MC (Zn) starting from a point s

after a positive stopping time τ > 0 can be restarted at the same point s, and so on.

It is convenient to assume that a new ”cycle” starts instantly at the moment of restart.

It means that though a decision to restart is made at stopping time τ at some point
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x, different from point s, but a position y at moment τ + 1 is defined by transition

probabilities p(s, y) as if at moment τ the decision to continue from s also has been

made.

Let h(x|s) denote the supremum over all strategies of the expected total discounted

reward on the infinite time interval in this model with an initial point x, and restart

point s. Using the standard results of Markov Decision Processes theory, Kathehakis

and Veinot proved that function h(x|s) satisfies the equality

h(x|s) = sup
τ>0

Ex[
τ−1∑
n=0

βnc(Zn) + βτh(s)], (2)

and γ(s) = (1 − β)h(s), where by definition h(s) = h(s|s). We call index h(s) a KV

index. This index can be defined for any point x ∈ X, so we use also notation h(x).

Another important interpretation of the GI, the so called Retirement Process for-

mulation was provided by Whittle in [16]. Given a reward model M, he introduced

the parametric family of OS models M(k) = (X,P, c(x), k, β), where parameter k is a

real number and the terminal reward function g(x) = k for all x ∈ X. Denote v(x, k)

the value function for such a model, i.e. v(x, k) = supτ≥0Ex[
∑τ−1

n=0 β
nc(Zn) + βτk], and

denote Whittle index w(x) = inf{k : v(x, k) = k}. Since β < 1, for sufficiently large k it

is optimal to stop immediately and v(x, k) = k. Thus w(x) < ∞. The results of Whittle

imply that v(x, k) = k for k ≥ w(x), v(x, k) > k for k < w(x), and w(x) = h(x). Thus

the following theorem holds

Theorem 1. The three indices defined for a reward model M = (X,P, c(x), β), 0 <

β < 1, coincide, i.e. h(x) = w(x) = γ(x)/(1− β), x ∈ X.

The main goal of [13] was to present a simple and transparent algorithm to calculate

this common index. This algorithm is based on a general so called State Elimination (SE)

algorithm developed by author for the problem of OS of MC and described in [10] and

[11], see also [12]. To apply this algorithm it is necessary to replace a constant discount

factor β by a variable ”survival” probability β(x) because after the first recursive step

a discount factor is not a constant anymore. So by necessity a more general model was

considered and the classical GI γ(x) was replaced by a generalized Gittins Index (GGI)

α(x) as follows.
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It is well-known that the optimizations problems, such as described above, with

an explicit discount factor β, are equivalent to problems where a state space is comple-

mented by an absorbing point e and the initial transition probabilities are modified. The

probability of entering an absorbing point e in one step for any state x ̸= e (probability of

termination) is equal to 1−β and all other initial transition probabilities are multiplied

by β. In other words, β is the probability of ”survival”, i.e. nontermination. In the sequel

we consider a reward model with termination M = (X,P, c(x), β(x)), where we assume

from the beginning that the state space X contains an absorbing point e, p(e, e) = 1,

the function β(x) is the probability of ”survival” at point x, so 1− β(x) = p(x, e) is the

probability of termination. Function β(x) can be a constant or variable. To simplify

presentation we will assume that β(x) < 1 though this assumption can be weakened.

Strictly speaking the function β(x) is completely specified by a new transition matrix

P but we include β(x) in the tuple M to stress the presence of e and β(x). From now

on notation Ex, Px and (Zn) are referred to such model and survival probabilities β(·)

now are automatically included under the signs Px and Ex. We also assume that at an

absorbing state c(e) = 0.

The numerator in (1), in the presence of an absorbing state e, equals to Ex

∑τ−1
n=0 c(Zn),

where now, given a subset G ⊂ X, x /∈ G, τ = min(n : Zn ∈ G ∪ e). Such equality holds

independently of whether β(x) is a constant or variable. Let us denote this numerator

by Rτ (x). The denominator in the last expression in (1), in the presence of an absorb-

ing state e, when β = const, equals to Px(Zτ = e). In general case, when β(x) can be

variable, we denote Px(Zτ = e) by Qτ (x), the probability of termination on [0, τ), and

we define the Generalized GI (GGI), α(x) for a model with termination as

α(x) = sup
τ>0

Rτ (x)

Qτ (x)
, (3)

i.e. α(x) is the maximum discounted total reward per chance of termination.

If β(x) = const = β then the second equality in (1) obviously implies that γ(x) =

(1− β)α(x). The crucial point however is that, if β(x) is not a constant, then the latter

equality, or some kind of proportionality, can not be preserved anymore, even if the defini-

tion of γ(x) is correspondingly modified, i.e. Ex

∑τ−1
n=0 β

n is replaced by Ex

∑τ−1
n=0 I̸=e(Zn).

5



In other words, the expected time of survival till termination is proportional to the proba-

bility of termination only if β(x) = const. Thus, in the general case, the proportionality of

the two indices γ(x) and α(x) as functions of x completely disappears. At the same time,

for a reward model with termination a (generalized) KV index h(x), and a (generalized)

Whitlle index w(x) can be defined in an absolutely similar way as above. This means

that the sum in (2) with new P and E and modified τ has a form Ex[
∑τ−1

n=0 c(Zn)+h(s)]

and value function in Whittle model v(x, k) = supτ≥0Ex[
∑τ−1

n=0 c(Zn) + k]. As Theorem

2 shows below, the equality α(x) = w(x) = h(x) is preserved ! This means that the

”true meaning” of the Gittins index is given by the expression in (3) and not in (1) !

Theorem 2 ([13]). The three indices defined for a reward model with termination

M = (X,P, c(x), β(x)) coincide, i.e. α(x) = h(x) = w(x).

As a result of this theorem any of three problems can be used as a basis to calculate

α(x) but the most convenient is the Whittle family of OS models M(k), because the

problem of calculation v(x, k) for a particular k can be reduced to solving stopping

problems using the State Elimination algorithm. The corresponding algorithm described

in [13], calculates sequentially the index α(x) for all points x ∈ X in an order which we

do not know in advance. If the goal is to find α(s) for a particular s, and X is a finite

set then we know only that α(s) will be obtained at some stage. We also can apply this

algorithm to some cases of countable X.

Without describing this algorithm in detail, we give two simple examples with cal-

culations to illustrate the difference between constant and variable β and we use the

latter example later to illustrate our main result about the equivalence of the three

optimization problems.

Example 1. State set X = {1, 2}, c(x) = x, x = 1, 2, p(1, 1) = 2
3
, p(1, 2) =

1
3
, p(2, 1) = p(2, 2) = 1

2
. Let β = const, 0 < β < 1. First we introduce an absorbing

state e, so X1 = {1, 2, e}, c1(x) = x, x = 1, 2, c1(e) = 0. Then the transition probabilities

are modified as follows: p1(1, 1) = β 2
3
, p1(1, 2) = β 1

3
, p1(2, 1) = p(2, 2) = β 1

2
, p1(1, e) =

p1(2, e) = 1− β(1) = 1− β(2) = 1− β. According to [13] we need to calculate the func-

tion d1(x) = c1(x)/(1− β(x)) and α(z) = d1(z) if the maximum of the function d1(x) is
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obtained at z. We have d1(1) = 1/(1− β) and d1(2) = 2/(1− β). Thus α(2) = 2/(1− β)

and the point z = 2 must be ”eliminated”. It means that the state space X1 is reduced

to X2 = X1�z = {1, e} and new transition probabilities p2(x, y) and new cost function

c2(x) must be recalculated by the formulas

p2(x, y) = p1(x, y) + p1(x, z)n1(z)p1(z, y), c2(x) = c1(x) + p1(x, z)n1(z)c1(z), (4)

where n1(z) = 1/(1 − p1(z, z)). Such transformation describes MC (Zn) and related

costs during its visits to the set X2. Using these formulas, we obtain p2(1, 1) = β2(1) =

β(4−β)/3(2−β), p2(1, e) = 1−β2(1) = (6−β)(1−β)/3(2−β), c2(1) = (6+β)/3(2−β).

Now the maximum of the function d2(x) = c2(x)/(1−β2(x)) gives the next value of α. In

our case α(1) = (6+β)/(6−β)(1−β). Correspondingly the classical GI γ(x) = (1−β)α(x)

takes values: α(1) = (6 + β)/(6− β) and α(2) = 2.

Now let us consider the case of variable β(x).

Example 2. We keep all the parameters as in Example 1 execept that the constant

value β is replaced by β(1) = 2
3
, β(2) = 1

2
. Then p1(1, 1) =

4
9
, p1(1, 2) =

2
9
, p1(1, e) =

3
9
,

p1(2, 1) = p1(2, 2) =
1
4
, p1(2, e) =

1
2
. Then d1(1) = 1/(1− 2

3
) = 3 and d1(2) = 2/(1− 1

2
) =

4. Therefore α(2) = 4 and the point z = 2 must be ”eliminated”. Using formulas (4),

we obtain β2(1) = p2(1, 1) =
14
27

and c2(1) =
43
27
. Then α(2) = 43

27
/(1− 14

27
) = 43

13
≈ 3.3077.

Note that α(2)/α(1) = 52
43

≈ 1.2093, whereas in example 1, the ratio α(2)/α(1) =

2(6− β)/(6 + β) > 52
43

for all β, 0 < β < 1.

3 Three abstract optimization problems

The common part of all three problems described above is a maximization over the set

of all positive stopping times τ, or equivalently over all partitions of the state set X into

two sets, continuation and stopping (restart) regions. This is a special case of a very

general situation.

First we present three abstract optimization problems 1, 2 and 3.

Suppose there is an abstract index set U, and A = {au} and B = {bu} be two sets of
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real numbers indexed by the elements of U . Suppose that an assumption U holds,

−∞ < au ≤ a < ∞, 0 < b ≤ bu ≤ 1. (U)

We assume also that bu < 1 for at least one u. In all three problems a DM knows

sets U,A and B.

Problem 1. Restart Problem. Find solution(s) of the equation

h = sup
u∈U

[au + (1− bu)h] ≡ H(h). (5)

It is easy to see that equation (5) is a Bellman (optimality) equation for the ”value of

the game”, i.e. the supremum over all possible strategies, in the following optimization

problem. There are two equivalent interpretations of this problem. In both cases set

U represents a set of available actions, which we call ”buttons” (arms). A DM can

select one of them and push (test). She obtains a reward au and according to the

first interpretation with probability bu the game is terminated, and with complimentary

probability 1− bu she is again in an initial situation, i.e. she can select any button and

push. Her goal is to maximize the total (undiscounted) reward.

According to the second interpretation the game is continued sequentially without

possibility of random termination, but the value 1 − bu is now not a probability but a

discount factor applied to the future rewards after a button u was used at the first step.

Our second optimization problem is

Problem 2. Ratio (cycle) Problem. Find

α = sup
u∈U

au
bu

. (6)

The interpretation of this problem is straightforward: a DM can push some button u

only once and her goal is to maximize the ratio in (6), the one step reward per ”chance

of termination”. Since the game is terminated after the first push anyway, 1/bu is a

”multiplicator” applied to a ”direct” reward au.

In the sequel we shall use shorthand notation a ∨ b for max(a, b). Let H(k) be a

function defined in the right side of (5).
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Problem 3. A Parametric Family of Retirement Problems. Find w, defined

as follows: given parameter k,−∞ < k < ∞, let

v(k) = k ∨H(k), w = inf{k : v(k) = k}. (7)

In this problem, given number k, a DM has the following one step choice: to obtain

k immediately or to push some button u once and then to obtain a reward au and

additionally with probability 1− bu to obtain k, and with complimentary probability to

obtain zero.

Theorem 3. a) Solution h of equation (5) is finite and unique;

b) h = α = w;

c) the optimal index, or an optimizing sequence for any of the three problems is the

optimal index (an optimizing sequence) for the other two problems.

A bit later we present Propositions 2 and 3 which describe in detail the properties

of functions H(k) and v(k) and explains the appearance of one more indicator (index),

but to prove Theorem 3 we need only a simple

Proposition 1. a) Functions H(k) and v(k),−∞ < k < ∞, are nondecreasing,

continuous, and convex (concave up);

b) index w < ∞, and function v(k) = k > H(k) for all k > w, and v(k) = H(k) >

k for all k < w.

Proof. a) follows directly from the definition of H(k) and v(k). b) The assumption

U implies that the slope of function H(k) is bounded by (1 − b). Therefore H(k) < k

for large k, w < ∞ and inequalities in b) hold.

Proof of Theorem 3. Assumption (U) implies that α ≤ a/b < ∞. The definition of

α implies that for any u ∈ U, α = au + (1− bu)α+ εubu, where εu ≥ 0 and that there is

a sequence un such that in a corresponding equality εn → 0. In particular it is possible

that all (an, bn) coincide and εn = 0. The first equality implies that α ≥ H(α). The

second relationship implies that α = limn(an+(1− bn)α) ≤ H(α). Therefore α = H(α).

If h is a solution of the equation (5) then h = H(h) = au + (1 − bu)h + δubu, with

δu ≥ 0 for any u and there is a sequence (an, bn) such that in a corresponding equality
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δn → 0. The first equality implies that h = au/bu + δu/bu and hence h ≥ α. The second

relationship, together with an assumption 0 < b ≤ bu, implies that h = limn an/bn ≤ α.

Therefore α = h and h is a unique solution of (5).

To prove the equality α = w, note that by Proposition 1, if k ≥ w then v(k) = k ≥

H(k) ≥ au + (1 − bu)k for all u and hence k ≥ au/bu for all u, i.e. k ≥ α. Since this is

true for any k ≥ w we obtain w ≥ α. If k < w then k < H(k) and hence there is u such

that k < au+(1− bu)k. Therefore k < au/bu and k ≤ α. Since this is true for any k < w

we obtain that then w ≤ α. Thus α = w. Point c) of Theorem 3 can be easily obtained

using standard reasoning.

Remark. As two simple examples below show, we can not skip the inequality

0 < b ≤ bu or to remove the inequalities au ≤ a < ∞, bu ≤ 1 < ∞ in assumption (U).

1) Let U = {1, 2, ...}, an = 2/n, bn = 1/n. Then α = 2 but it is easy to check that

any h ≥ 2 is a solution of the equation (2).

2) Let U = {1, 2, ...}, an = 2n + δn, bn = n and limn δn = ∞, limn δn/n = 0. Then

α = 2 but it is easy to check that the equation (2) has no solutions.

Let us consider one more problem initially analyzed by Mitten in one page paper [8],

where index α plays an important role.

Problem 4. Suppose that a DM has to solve the optimization problem similar to

one in Problem 1 with sequential selection of buttons with only one distinction - every

button can be used at most once.

The Mitten’s result essentially can be described as

Theorem 4. Suppose that there is a sequence of indices un such that after the

reordering α1 = a1
b2

≥ α2 = a2
b2

≥ ... ≥ au
bu

for each u ∈ U not in this sequence. Then to

push buttons in the order 1, 2, ... is an optimal strategy.

See the brief discussion of this problem and its relation to the GI and GGI in [13].

Now we present Proposition 2 and 3.

Proposition 2. Function H(k) is either strictly increasing for all k, or there are

finite c and d, such that H(k) = c on interval (−∞, d) and strictly increasing on (d,∞).
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Proof. If H(k) is not strictly increasing for all k then H(k1) = H(k2) = c < ∞ for

some c and some k1 < k2. Since au + (1− bu)k2 = au + (1− bu)k1 + (1− bu)(k2 − k1) the

former equality implies that there is a sequence of indices un such that limn an = c and

limn bn = 1. Then obviously H(k) = c for all k ≤ k2 and therefore there is d = sup{k :

H(k) = c}. Since H is unbounded we have d < ∞. Then c < H(k) for all k > d, and

for any sequence of indices un such that limn bn = 1 we have sup an ≤ c. If function

H(k) is strictly increasing for all k, we set d = −∞. If −∞ < d then it is convenient to

assume that set U is complemented by an extra index e such that ae = c and be = 1.

Proposition 2 is proved.

If −∞ < d, then in Problem 3 we can be interested also to find t defined as

t = sup{k : v(k) = c}. (8)

In other words t = min(d, w). The properties of function H(k) described in Propo-

sition 1 and 2 and definitions of w and t imply that indices t and w satisfy inequalities

−∞ < w, −∞ ≤ t ≤ w < ∞, and t ≤ d < ∞. (9)

The properties of function v(k) are described in Proposition 3.

Proposition 3. Function v(k) satisfies v(w) = H(w) = w, v(k) = k > H(k) for all

k > w, v(k) = H(k) = c > k for all k ≤ t, and v(k) = H(k) > c∨ k for all t < k < w .

Proof. The definition of H(k) and its continuity imply that H(w) = w. If H(k) ≤ k

for some k, then by definition of H(k) for all u we have au + (1 − bu)k ≤ k, which is

equivalent to au/bu ≤ k < s for all s > k. Hence au + (1− bu)s = au + (1− bu)k + au +

(1 − bu)(s − k) ≤ k + (1 − bu)(s − k) < s for all u and H(s) < s for all such s. This

implies that w ≤ k and H(k) < v(k) = k for all k > w, and that v(k) = H(k) > k for

all k < w. The continuity of v(k) implies that v(w) = w and if −∞ < t then v(t) = c

for all k ≤ t. The definitions of w and t imply that if t < w then v(k) = H(k) > c ∨ k

for all t < k < w. Proposition 3 is proved.

Theorem 3 shows the equivalence of three abstract problems but leaves an open

question which of them should be solved. Probably, there is no general answer to this
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question. It is possible that in some situations Problems 1 will be the easiest, and in

some other - Problem 2. At the same time Problem 3 provides the most general approach

since its solution breaks up in two stages: a solution for a particular k and finding w.

Exactly such situation occurs in Markov reward model and three related indices. Let us

show formally how the three problems described in sections 1 and 2 can be presented as

abstract problems.

Given a reward with termination M = (X,P, c(x), β(x)), and an initial point x,

let us define the set U = {u} = { set of all Markov moments τ > 0}, τ = τG =

min(n : Zn ∈ G ∪ e), G ⊂ X, x /∈ G. The rewards au and probabilities bu we define as

au = Rτ (x) = Ex

∑τ−1
n=0 c(Zn), the total expected reward till moment τ, and Qτ (x) =

Px(Zτ = e), the probability of termination on [0, τ). These are quantities participating

in (3). Then function H(k) coincides with supτ>0Exg(Zτ ), where g(x) = k. Respectively

v(x|k) = k ∨H(k) = supτ Exg(Zτ ), i.e. v(x|k) is the value function in an OS for MC in

model M(k).

Now we will show the value α = h = w in the example 2. In this example the

set U consists of all possible stopping times τ corresponding to possible subsets G of

a state space X = {1, 2, e}. Since each G should contain e, we have only four sub-

sets G1 = {1, e}, G2 = {2, e}, G3 = {1, 2, e} and G4 = {e} and correspondingly four

possible stopping times τi, i = 1, 2, 3, 4. For each τ the expression for Rτ (x) in (3) can

be calculated by the equality Rτ (x) =
∑∞

n=0

∑
y/∈G Px(Zn = y)c(y). Correspondingly

Qτ (x) =
∑∞

n=0

∑
y/∈G Px(Zn = y)p(y, e), where x is an initial point. Let us denote

Rτ (1) = ai, Q
τ (1) = bi for τ = τi, i = 1, ..., 4. Using the transition probabilities of exam-

ple 2, we have a1 = 1+ 2
9
(2+ 1

4
2+ (1

4
)22+ ...) = 43

27
, b1 =

3
9
+ 2

9
(1
2
+ 1

4
1
2
+(1

4
)2 1

2
+ ...) = 13

27

and a1/b1 = 43
13
. It can be checked similarly that a2 = 9

5
, b2 = 3

5
, a2/b2 = a3/b3 = 3

and a4/b4 = 43
13
. Thus the maximum of the ratio in Problem 2 is obtained on u1 and

u4 and equal to α = 43
13
. Correspondingly the equation (5) in Problem 1 has a solution

h = 43
13

= 43
27

+ (1 − 13
27
)43
13
. Similar calculations for the initial point 2 give α = 4 and

equation 4 = 2 + 1
2
4. For Problem 3 function H(k) is a piecewise linear function with

two linear parts and the equality in Theorem 3 is easily checked.

This almost trivial example shows also that the equivalence of the three problems
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does not lend itself to the solution of these problems. The set of all partitions of X,

which gives the size of the set U, grows exponentially with |X| = n but the algorithm

in [13] to calculate GGI is polynomial with complexity of order n3.

4 CQR Model and Open Problems

A restart in s Markov model can be naturally generalized into the following model

which we call continue-quit-restart (CQR) model. It is specified by a tuple M =

(X,B, P,A(x), c, q, ri(x)), where X is a countable state space, B = {s1, ..., sm} is a

set of restart points, a subset of a state space X, P = {p(x, y)} is a stochastic matrix.

At each state x a set of available actions is A(x) = {c, q, ri, i = 1, ..,m}, continue, quit,

and restart to point si, i = 1, ..,m. A reward function r(x, a) is specified by particular

functions c(x), q(x) and ri(x), i = 1, 2, ...,m. If an action c, ”continue” is selected then

r(x, c) = c(x) and transition to a new state occurs according to transition probabilities

p(x, y), if an action q, ”quit” is selected then r(x, q) = q(x) and transition to an absorb-

ing state e occurs with probability one, if an action ri, ”restart to state si ” is selected

then r(x, ri) = ri(x) and transition to a state si occurs with probability one. If set B

consists of one point s we obtain model similar to KV model but with variable discount

rate β(x) and fees for quit and restart, q(x) and r(x). The study of this problem and

algorithm for its solution are given in [14]. A strategy in this problem is a partition of

set X into three regions: continue, quit, restart.

If there are more than one restart point B = {s1, ...., sm), then we have the following

optimization problem. Index set U ={set of strategies}, where each strategy u is now a

partition of a set X into m+ 1 sets, X = Sc ∪ Sq ∪i=1,...,m Si. Given strategy u a vector

au = (au(i), i = 1, ...,m) and (sub)stochastic matrix Bu are defined as follows: au(i)

equals to the expected total reward up to moment of termination starting at point si.

The moment of termination is a moment of quit or restart or hitting the absorbing state

e. The total reward includes the accumulated sum of current rewards plus the reward

for quit or restart; an element bu(i, j) of a matrix Bu is a probability of return to state

sj starting from si using strategy u. Then set A = {au}, is a set of vectors au ∈ Rm, and

13



set B = {Bu} is a set of (sub)stochastic m×m matrices both indexed by the elements of

U. This model suggests the following multidimensional abstract optimization problem:

given an abstract set of indices U and sets A = {au}, au ∈ Rm, and B = {Bu},Bu a

stochastic matrix, to find a solution (an equilibrium point) of an equation

h = sup
u
[au +Buh], (10)

where the supremum over a multi-dimensional vector can be understood as a maximum

norm or some other norm.

The natural questions here are: whether there is a solution h for the equation (10),

and whether there exists an analog of the Gittins ratio.

A possible approach to a solution of (10) is to formulate an analog of the abstract

Problem 3. Given the vector k ∈ Rm,k = {ki, i = 1, ...,m} we can introduce the function

v(k) as a solution to an optimization problem v(k) = supu[au + Buk], and after that

to try to use some recursive scheme of convergence of v(k) to h. It is an open problem

to prove such convergence to an equilibrium point and to check whether such a point is

unique. A similar idea was used in [2] for a specific problem.

Note also that an equation of type (10) appears naturally in many optimization

problems related to renewal stochastic processes, and such equation can be defined not

only for finite dimensional vectors but also for h, au and Buof a more general kind.

Our final remark is that the idea of abstract optimization can be applied to a setting

to formulate and prove a general theorem similar to the renowned Gittins theorem of

optimality of a strategy based on the Gittins index in Multi-armed Bandit problem with

independent arms. This is the subject of a forthcoming paper due to the author.
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