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The Decomposition-Separation Theorem

for Finite Nonhomogeneous

Markov Chains and Related Problems

Isaac M. Sonin1

University of North Carolina at Charlotte

Abstract: Let M be a finite set, P be a stochastic matrix and U = {(Zn)}
be the family of all finite Markov chains (MC) (Zn) defined by M , P , and all
possible initial distributions. The behavior of a MC (Zn) is a classical result of
probability theory derived in the 1930s by A. N. Kolmogorov and W. Doeblin.
If a stochastic matrix P is replaced by a sequence of stochastic matrices (Pn)
and transitions at moment n are defined by Pn, then U becomes a family of
nonhomogeneous MCs. There are numerous results concerning the behavior
of such MCs given some specific properties of the sequence (Pn). But what if
there are no assumptions about sequence (Pn)? Is it possible to say something
about the behavior of the family U? The surprising answer to this question is
Yes. Such behavior is described by a theorem which we call a decomposition-
separation (DS) theorem, and which was initiated by a small paper of A. N.
Kolmogorov (1936) and formulated and proved in a few stages in a series
of papers including D. Blackwell (1945), H. Cohn (1971, 1989), and I. Sonin
(1987, 1991, 1996).

1. Introduction

The notion of a (homogeneous) Markov chain (MC) is one of the key notions in the
theory of stochastic processes and in probability theory. Its simplest version, the
case of discrete time and finite state space, is specified by a pair (M,P ), where M
is a state space and P = {p(i, j)} is a transition matrix indexed by the elements
of M . We denote by Z = (Zn), n ∈ N = {0, 1, . . .}, a MC from a family U0 of all
MCs defined by M , P , and all initial distributions on M .

The classical Kolmogorov–Doeblin results describing the decomposition of a state
space M into essential and nonessential (transient) states, into ergodic classes and
cyclic subclasses, and the asymptotic behavior of MCs from U0 can be found in
most advanced books on probability theory as well as the monographs on MC (see
for example Shiryayev [33], Kemeny and Snell [16], Isaacson and Madsen [15]).

If a MC is irreducible and aperiodic then an ergodic property holds, i.e., there
exists a limit (invariant) distribution π such that

lim
n→∞

P (Zn = j | Z0 = i) = π(j) > 0,(1)

which does not depend on the initial state i. If the number of cyclic subclasses
exceeds one, then the MC is aperiodic when considered only at the times of visiting
the given subclass, and (1) is true for corresponding n.
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These results, of course, represent only the basic facts about the structure of
MCs and many more detailed and subtle properties of MCs are contained in the
rich and extensive theory of this subject.

A natural extension of this theory is a theory of nonhomogeneous MCs when
the transitions at moment n are defined by a stochastic matrix Pn from a sequence
of stochastic matrices (Pn). We denote by U the family of all nonhomogeneous
MCs specified by M , (Pn), and all initial distributions on M now specified not
only for an initial moment 0 but for all initial moments k = 0, 1, 2, . . .. We again
denote by Z = (Zn), n ≥ k, a MC from this family. There is a substantial body
of literature on nonhomogeneous MCs, though this is still a small fraction of the
literature on homogeneous MCs. See e.g. the classical works of R. Dobrushin [8], D.
Griffeath [10], J. Hajnal [11], D. Isaacson and R. Madsen [15], M. Iosifescu [14], J.
Kingman [17], V. Maksimov [20], A. Mukherjea [22], E. Seneta [25], and others. A
survey of results about the products of stochastic matrices together with his own
contributions can be found in D. Hartfiel [12]. More recent publications are e.g.
[7], [19], and [32]. In the last ten years interest in this area has surged because an
important class of computational algorithms, so called simulated annealing, is based
on nonhomogeneous MCs with very specific transition probabilities. Namely, the
transition probabilities have the form pn(i, j) = c(i, j) exp{−q(i, j)/Tn} for i 6= j,
where {q(i, j} is a nonnegative matrix defined by an optimization problem, and Tn

is a “temperature” that tends to zero. From the vast literature on this topic we
mention only two papers, W. Niemiro and P. Pokarowski [23] and H. Cohn and M.
Fielding [5], which are more closely related to our paper.

Almost all literature mentioned above follows a rather natural format—given
some assumptions about the structure of the sequence (Pn), some results about the
behavior of the corresponding family (Zn) are obtained. A natural question, which
was not asked for a long time, is as follows: Is it possible to say something about
the behavior of the family U if there are no assumptions about the sequence (Pn)?
At first sight, the answer seems to be negative, especially if we take into account
that this question is equivalent to the question of how the products of matrices
P1P2 · · ·Pn behave when n tends to infinity, if the only information available about
these matrices is that they are stochastic. Nevertheless, surprisingly the answer
to this question is affirmative: There is a fundamental theorem which describes
such behavior. In particular this theorem generalizes the above mentioned results
of Kolmogorov–Doeblin about homogeneous MCs.

We call this theorem a decomposition-separation (DS) theorem, and briefly, this
theorem states that a decomposition with properties similar to that of homogeneous
MCs does exist but now it is not a decomposition of the state space M , but a
decomposition of the space-time representation of M , i.e., of the sequence (Mn) =
M ×N. The only assumption is that the set M is finite, |M | = N < ∞.

The DS theorem was initiated by a small paper of A. N. Kolmogorov [18] who
analyzed the situation when a sequence of stochastic matrices (Pn) is given in
inverse time, i.e., for n = 0,−1,−2, . . .. This paper is known mainly by the re-
versibility criterion introduced there but besides this result Kolmogorov asked two
questions. First, does there exist a MC (Zn) governed by this sequence, i.e., sat-
isfying equalities P (Zn+1 = j | Zn = i) = pn(i, j) for all n, i, j. In a few lines
Kolmogorov answered this question positively. The second question was: When is
such a MC unique? Kolmogorov proved that a necessary and sufficient condition
for the uniqueness is that the limits

lim
n→−∞

P (Zm = j | Zn = i) = πm(j),(2)



The Decomposition-Separation Theorem 3

exist for all m, j and do not depend on the initial point i when n tend to minus
infinity.

A breakthrough step to the description of all MCs defined by a sequence (Pn)
was made in 1945 by David Blackwell [2]. In our terms his description can be
explained as follows. Let us introduce a sequence (Mn) of disjoint copies of the
state space M , e.g., Mn = (M,n), n ≤ 0. Without loss of generality we can assume
that the stochastic matrices (Pn) are indexed by the elements of these sets, i.e.,
Pn = {pn(i, j), i ∈ Mn, j ∈ Mn+1}. A sequence J = (Jn), Jn ⊂ Mn, n ≤ 0, for
brevity is called a jet. A tuple of jets (J1, ..., Jc) is called a partition of (Mn) if
correspondingly (J1

n, . . . , Jc
n) form a partition of Mn for every n. Blackwell proved

that there is a partition (T 0, T 1, . . . , T c) of (Mn) such that for any MC Z ∈ U the
trajectories of this MC with probability one will reach and stay eventually in one of
the jets T i, i = 1, . . . , c, i.e., (lim sup(Zn ∈ T i

n)) = (lim inf(Zn ∈ T i
n)), and for MCs

“inside” of one of these jets there are limits similar to (2). In T 0 such limits may not
exist but P (lim sup(Zn ∈ T 0

n)) = 0. The decisive point of his proof was the use of
the existence of limits for almost all trajectories of bounded (sub)martingales, then
a relatively new result of his Ph.D. advisor J. Doob. As Kolmogorov did, Blackwell
considered MCs in reverse time.

The next step was made in the works of Harry Cohn (see [3], [4], and the expos-
itory paper [6]). Cohn considered forward time, proved that the tail σ-algebra of
any nonhomogeneous MC consists of a finite number c ≤ N of atomic (indecompos-
able) sets, each of them related with an element T k of Blackwell’s decomposition,
k = 1, . . . , c. He also simplified Blackwell’s proof, though it was still very compli-
cated. Note that the jets (T i

n) in the Blackwell–Cohn decomposition are defined up
to jets (Jn) such that P (lim sup(Zn ∈ Jn)) = P (lim inf(Zn ∈ Jn)) = 0, so generally
there is a continuum of such partitions.

The last step in the proof of the DS theorem was made by the author in a se-
ries of papers Sonin [26], [27], [28], [29], [30], where it was proved that among the
Blackwell–Cohn partitions there are partitions into jets having the additional prop-
erty that the expected number of transitions of trajectories of any MC (Zn) between
jets is finite on the infinite time interval. This additional separation property was
not obvious and its existence was not noted or mentioned before. At the same time
it played a crucial role in the initial problem that led the author to the formulation
of the separation property, the problem of sufficiency of Markov strategies for the
Dubins–Savage functional. An example of such a functional is the probability of
visiting a given subset of the state space infinitely often. The study of the problem
of sufficiency of Markov strategies led to the study of equivalent random sequences
and to the proof of the so called Feinberg inequality (see [29]). In this paper the
initial proof of sufficiency given for the finite case by T. Hill [13] was substantially
simplified. Note also that the problem of sufficiency of Markov strategies is still an
open problem for the countable case.

The DS theorem also has a simple deterministic interpretation in terms of the be-
havior of the simplest model of an irreversible process represented by a system of N
cups filled with a liquid with initial concentration of a second substance and mixed
at discrete moments of time in some proportions defined at each moment n by a
stochastic matrix Pn. The irreversibility of this process manifests itself in the mar-
tingale property of some bounded random sequences defined by the family of MCs
U . Since the state space M is finite, |M | = N < ∞, these (sub)(super)martingales
take no more than N values at each moment of time. Such martingales have ex-
tra properties that do not follow from the well-known Doob’s upcrossing lemma.
The generalization of Doob’s lemma for these martingales, the theorem about the



4 Isaac M. Sonin

existence of “barriers,” published in [26] played a crucial role in the proof of the
separation property. A survey of corresponding results and their interrelationship
was given in [30].

The main goal of this expository paper is to complement this survey by presenting
a more refined version of the DS theorem, to give an answer to an open problem,
and to give a sketch of the proofs of the DS theorem and “barriers” theorem.

The plan of this paper is: In Section 2 we present the deterministic version of
DS theorem and its probabilistic counterpart; in Section 3 we discuss the third
key ingredient—the martingale type (i.e., martingales or (sub)supermartingales)
random sequences. In Section 4 we outline the sketch of the proof of DS theorem
and we will show why the separation part needs the strengthening of Doob’s up-
crossing lemma—the theorem about existence of barriers. Section 5 will outline
the construction of barriers. Section 6 is about open problems related to the DS
theorem.

2. A simple model of an irreversible process, two formulations of the
DS theorem

We assume that two sequences (Mn) and (Pn) are given, where a set Mn represents
the state space at moment n. The stochastic matrices (Pn) are indexed by the
elements of these sets, i.e., Pn = {pn(i, j), i ∈ Mn, j ∈ Mn+1}. At this stage it
is does not matter whether the sets Mn are countable or finite, though the DS
theorem holds only under the assumption

|Mn| ≤ N < ∞, n ∈ N.(3)

The following simple physical model and physical interpretation of the DS theo-
rem for a particular Markov chain was introduced in [26]. Given a sequence (Mn),
let Mn represent a set of “cups” containing a “liquid”—tea, schnapps, vodka, etc.
A cup i ∈ Mn is characterized at moment n by a volume of liquid in this cup,
mn(i). The matrix Pn describes the redistribution of liquid from the cups Mn to
the (initially empty) cups Mn+1 at the time of the nth transition, i.e., pn(i, j)
is the proportion of liquid transferred from cup i to cup j. The sequence (mn),
mn = (mn(i), i ∈ Mn), n ∈ N, for the sake of brevity called the (discrete) flow,
satisfies the relations

mn+1(j) =
∑

i

mn(i)pn(i, j).(4)

We assume that for some k ∈ N an initial condition mk(i), i ∈ Mk, is given and
without loss of generality

∑
i mk(i) = 1, and hence a similar equality holds for

any n ≥ k. In Section 1 we introduced U , the family of all (nonhomogeneous)
Markov chains (MC) Z = (Zn), n ∈ N, specified by (Mn) and (Pn) and all possible
initial distributions µ on Mk, k = 0, 1, . . .. Given a MC (Zn) we can define a
flow (mn), with mn(i) = P (Zn = i), i ∈ Mn, n ≥ k. Vice versa, a flow (mn),
mn = (mn(i), i ∈ Mn), satisfying (4) defines a MC Z ∈ U . Thus we have

Proposition 1. There is a one-to-one correspondence between MCs (Zn) ∈ U and
flows (mn).

Let us assume additionally that each cup contains some material (substance,
color), and let us denote αn(i), 0 ≤ α ≤ 1, a “concentration” of this material at
cup i at moment n. The sequence (mn, αn) = (mn(i), αn(i)), i ∈ Mn, n ∈ N),
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for the sake of brevity is called a colored (discrete) flow. Concentrations obviously
satisfy the relations

αn+1(j) =
∑

i

mn(i)αn(i)pn(i, j)/mn+1(j).(5)

Note that we can replace the notion of concentration by temperature since it
follows the same formula (5). One more interpretation is obtained if we consider
mn(i) as masses and αn(i) as their positions on a horizontal axis. The mixing is
replaced by taking the center of gravity of corresponding subsystem. We can also
use not one but many colors and so on.

The initial conditions mk(i), αk(i), i ∈ Mk, for some k ∈ N are assumed given
and the sequence mn(i), αn(i), i ∈ Mn, evolve in time according to (4) and (5) for
n ≥ k. If we introduce sn(i) = mn(i)αn(i), the amount of “substance” contained
at cup i at moment n, and we denote by mn and sn the corresponding row vectors,
then the equations (4) and (5) can be presented in the symmetrical form

mn+1 = mnPn, sn+1 = snPn, n = 0, 1, . . . .(6)

The colored flow described above is probably the simplest example of an irre-
versible process, i.e., a process such that no state can be repeated after a few steps,
or in other words a process for which any sequence of states in reversed time is
not an admissible sequence in a forward time. Such property holds of course except
in the trivial cases when all concentrations become equal after some moment, or
when the redistribution avoids any mixing. Intuitively the property of irreversibility
seems obvious. The formal proof is based on the consideration e.g. of the following
function describing the state of a system at moment n:

Fn(mn, αn) =
∑

i

mn(i)α2
n(i).(7)

It is easy to prove that for any colored flow function Fn is nonincreasing and
Fn = Fn+1 only if there no mixing at moment n. As we will see later this function
is equivalent to a variance of some random sequence.

The colored flows also have a simple probabilistic interpretation. Let (Zn) ∈ U ,
n ≥ k, be a Markov chain and set Dk ⊂ Mk. Let us denote

αn(i) = P (Zk ∈ Dk | Zn = i).(8)

It is easy to check that the sequence (mn(i), αn(i)), n ≥ k, specifies a colored
flow with initial values αk(i) = 1 for i ∈ Dk, αk(i) = 0 otherwise. Vice versa,
for every colored flow (mn, αn) with initial data of concentrations equal to zero or
one at the initial moment k, there is a pair ((Zn), Dk), where (Zn) ∈ U , n ≥ k,
Dk ⊆ Mk, such that αn(i) coincide with values given by (8).

We will consider also a slightly more general colored flows which allows a jet (On),
On⊂Mn, n ∈ N, called an “ocean,” where by definition for i ∈ Dn = Mn ↘ On,

αn(i) = P (Zs ∈ Ds, s = k, . . . , n | Zn = i),(9)

and for i ∈ On, n ∈ N, we define αn(i) ≡ 0. If Z = (Zn), n ≥ k, is a MC and (Dn)
is a sequence of sets, Dn ⊆ Mn, n ≥ k, we call (Zn, Dn) a Markov pair.

Proposition 2. There is a one-to-one correspondence between Markov pairs (Zn,
Dn) and colored flows with ocean (mn, αn, On), On = Mn ↘ Dn, with initial values
of concentrations equal 0 or 1.
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First we formulate the DS theorem as a theorem about the asymptotic behavior
of colored flows. Denote also rn(i, j) = P (Zn = i, Zn+1 = j) = mn(i)pn(i, j). In
terms of flows, this is the amount of liquid transferred from cup i to cup j at
moment n.

To prepare the reader for the general case we first consider the cases of two and
three cups. Given a colored flow (mn, αn) we can relabel cups at each moment n ≥ k
in such a way that αn(1) ≤ αn(2) ≤ · · · ≤ αn(N). Then if N = 2 there are only two
possibilities: limn→∞ αn(1) = limn→∞ αn(2) or limn→∞ αn(1) < limn→∞ αn(2). In
the first case there is a complete mixing, i.e., concentrations in both cups have the
same limit and then the sequences of volumes, mn(i), i = 1, 2, may have no limits.
It is easy to prove that in the second case limn→∞mn(i) always exist. But this
a simple statement. A much less trivial fact (though still relatively simple) is the
following statement

Proposition 3. For the case of N = 2, if limn→∞ αn(1) < limn→∞ αn(2), then the
total amount of liquid transferred between cups 1 and 2 is finite, i.e.,

∑∞
n=0[rn(1, 2)+

rn(2, 1)] < ∞.

More than that, if this is true for one colored flow then it is true for any colored
flow, i.e., a property of convergence of a sum in Proposition 3 is a property of a
sequence (Pn).

Starting from a three cups situation becomes absolutely nontrivial. Let us again
relabel the cups at each moment n so that αn(1) ≤ αn(2) ≤ αn(3). If limn→∞ αn(1) =
limn→∞ αn(3) then again there is a complete mixing. If limn→∞ αn(1) = α∗(1) <
limn→∞ αn(3) = α∗(3) it can happen that the concentration in the middle cup may
have no limit at all, i.e., αn(2) will oscillate between α∗(1) and α∗(3). Such a situ-
ation is possible only if the volume in this cup tends to zero, limn→∞mn(2) = 0.
The direct total exchange between cups 1 and 3 will be finite as in Proposition
3 but the cup number 2 can actively participate in the exchange between cups 1
and 3. Though its volume tends to zero, the series

∑
n rn(2, 1),

∑
n rn(2, 3) can

be infinite. Thus the true analog of Proposition 3 will be a statement about the
existence of two jets (J1

n) and (J2
n), such that at each moment n = 0, 1, 2, . . . they

form a partition of Mn = ({1, 2, 3}, n), 1 ∈ J1
n, 3 ∈ J2

n, and the total exchange of
liquid between cups from these two jets is finite.

Note that the set of all such partitions has the power of the continuum and
the existence of a partition with the finite exchange property cannot be obtained
from the stabilization statement. But such decomposition does take place and it is
universal with respect to the initial conditions of the colored flow. This is one of
the main points of the DS theorem. The exact formulation is as follows.

Given a flow m = (mn) or equivalently a MC Z = (Zn), denote by V (Jk, Js | m)
the total amount of liquid transferred between jets Jk and Js,

V (Js, Jk|m) =
∞∑

n=0

 ∑
i∈Jk

n,j∈Js
n+1

rn(i, j) +
∑

i∈Js
n,j∈Jk

n+1

rn(i, j)

 .(10)

Note that if one of these sums is finite then the other is finite also. The equality
rn(i, j) = P (Zn = i, Zn+1 = j) implies also that V (Js, Jk | m) is the expected
number of transitions of trajectories of (Zn) between these two jets.

Theorem 1 (DS theorem, the elementary (deterministic) formulation). Let a se-
quence of disjoint sets (Mn) satisfying condition (3) and a sequence of stochastic
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matrices (Pn) be given. Then there exists an integer c, 1 ≤ c ≤ N , and a decompo-
sition of the sequence (Mn) into disjoint jets J0, J1, . . . , Jc, Jk = (Jk

n), such that
for any colored flow (mn, αn, On),

(a) the stabilization of volume and concentration take place inside of any jet Jk,
k = 1, . . . , c, i.e., limn→∞

∑
i∈Jk

n
m(i) = mk

∗; limn→∞ α(in) = αk
∗, in ∈ Jk

n ; the
concentration in jet J0 may oscillate; the total volume in this jet tends to zero, i.e.,
limn→∞

∑
i∈J0

n
m(i) = 0;

(b) the total amount of liquid transferred between any two different jets is finite
on the infinite time interval, i.e., V (Jk, Js | m) < ∞, s 6= k;

(c) this decomposition is unique up to jets (Jn) such that for any flow (mn) the
relation limn mn(Jn) = 0 holds and the total amount of liquid transferred between
(Jn) and (Mn\Jn) is finite.

The correspondence between (colored) flows and MCs (Markov pairs) allows us
to reformulate the DS theorem as a statement about the behavior of MCs as follows:

Theorem 1 (probabilistic formulation). Let a sequence of disjoint sets (Mn) satis-
fying condition (3) and a sequence of stochastic matrices (Pn) be given. Then there
exists an integer c, 1 ≤ c ≤ N , and a decomposition of the sequence (Mn) into
disjoint jets J0, J1, . . . , Jc, Jk = (Jk

n), such that
(a1) for any Markov chain Z ∈ U with probability one its trajectory after a finite

number of steps enters into one of the jets Jk, k = 1, . . . , c, and stays there forever;
(a2) each jet Jk, k = 1, . . . , c, is mixing, i.e., for any two Markov chains Z1, Z2 ∈

U such that limn P (Zi
n ∈ Jk

n) > 0, i = 1, 2, and any sequence of states in ∈ Jk
n ,

n ∈ N,

lim
n

P (Z1
n = in | Z1

n ∈ Jk
n)

P (Z2
n = in | Z2

n ∈ Jk
n)

= 1;(11)

(b) for any Markov chain Z ∈ U the expected number of transitions of its tra-
jectories between two different jets is finite on the infinite time interval, i.e.,

∞∑
n=0

[P (Zn ∈ Jk
n , Zn+1 /∈ Jk

n+1) + P (Zn /∈ Jk
n , Zn+1 ∈ Jk

n+1)] < ∞;(12)

(c) this decomposition is unique up to jets (Jn) such that for any Markov chain
Z ∈ U the expected number of transitions of Z between (Jn) and (Mn\Jn) is finite
and limn P (Zn ∈ Jn) = 0.

Property (b) combined with limn P (Zn ∈ J0
n) = 0 implies (a1), but we pre-

fer to formulate (a1) and (c) separately. We refer to the points (a1), (a2) as the
decomposition part and (b) as the separation part.

It was proved in [29] that in the homogeneous case when all stochastic matrices
Pn, n ∈ N, are copies of the same matrix P , the above decomposition is nothing else
than the space-time representation of the decomposition of M into ergodic classes
and cyclic subclasses, where each subclass is represented by a sequence Jk, k 6= 0.
Thus the DS theorem is a direct generalization of the Kolmogorov–Doeblin results.

3. Key elements of the proof of DS theorem

Given a MC Z = (Zn) a jet J = (Jn) is called a trap if the event that “Z visits J
infinitely often” coincides almost surely with the event that “Z stays in J forever,”
i.e., if P (lim sup(Zn ∈ Jn)) = P (lim inf(Zn ∈ Jn)). If J = (Jn) is a trap then it is
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easy to check that limn P (Zn ∈ J) does exists and coincides with these limits. We
denote this limit as v(Z, J), the “volume” of J for Z.

Given a MC Z = (Zn) a jet J = (Jn) is called a strap (strong trap) if the
expected number of transitions of Z between (Jn) and its complement (Mn ↘ Jn)
is finite, i.e., a sum similar to (12) is finite. Obviously, each strap is a trap but not
vice versa, because it is possible that a (random) number of exits from a given jet
is finite with probability one, but the expected value is infinite.

In the language of flows, a jet (Jn) is a strap for a flow m = (mn) if the total
“overflow” from jet J to all other jets is finite, i.e., a sum similar to (10) is finite.

Given a MC Z = (Zn) a strap (Jn) is called indecomposable if it cannot be
partitioned into two straps (Sn) and (Kn) of positive volume.

The decomposition into straps J0, J1, . . . , Jc described in the DS theorem has
two key features: First, it is universal, i.e., the same decomposition for all MCs in
U , second, for any MC (any colored flow) there is a mixing inside of every jet Jk,
k > 0. The first feature can be obtained if we consider a “universal” MC Z∗, i.e.,
a MC which coincides with positive probability with any MC from U , and prove
the existence of decomposition for this MC. The construction of Z∗ can be easily
done, see details in [29]. The decomposition into indecomposable straps for this MC
exists almost by definition. If (Mn) is indecomposable then c = 1 and there is only
one jet. If (Mn) is decomposable then there are two straps of positive volume and
if each of them is indecomposable then c = 2 and we obtained a decomposition.
Otherwise we can continue this process and since every jet with positive volume
for large n contains at least one point then in no more than N steps we obtain
a decomposition into indecomposable jets. The only remaining question is: Why
for any MC (colored flow) there is a mixing inside of an indecomposable jet? To
answer this question we need to relate some martingales to a given colored flow
(Markov pair (Z,D)) and to show that due to condition (3) they will have very
specific properties.

Given two sequences (an) and (bn) we say that they intersect at moment k if
ak ≤ bk, ak+1 > bk+1, or ak > bk, ak+1 ≤ bk+1. Given a real valued r.s. X = (Xn)
and a nonrandom sequence d = (dn), we denote RT (X | d) the expected number of
intersections of trajectories of X with (dn) on the interval (0, T ),

RT (X | d) =
T−1∑
n=0

[P (Xn ≤ dn, Xn+1 > dn+1) + P (Xn > dn, Xn+1 ≤ dn+1)].(13)

A nonrandom sequence (dn) is called a barrier for the r.s. X = (Xn) if the expected
number of intersections of (dn) by the trajectories of X on the infinite time interval
is finite, i.e., limT RT (X | d) < ∞. If additionally dn = d for all n, we call (dn) a
level barrier.

To prove the existence of barriers and relate them to the separation part of the
DS theorem we introduce a r.s. (Yn) as follows. Suppose a colored flow (mn, αn),
or equivalently a Markov pair (Zn, Dn) is given, where αn(i) are as in (5). Then
define

Yn = αn(Zn), n ∈ N,(14)

Lemma 1. A random sequence (Yn) specified by (14) is a submartingale in reverse
time.

To see why this lemma is true it is sufficient to notice that if we denote qn(j, i) =
mn(i)pn(i, j)/mn+1((j), the transition probabilities of a MC (Zn) in inverse time,
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then formula (5) will represent the condition of a r.s. (Yn) to be a martingale
in reverse time. Since earlier we introduced colored flows with an “ocean,” where
αn(i) are not calculated by formula (5) but are defined as αn(i) = 0 for i from the
“ocean,” sometimes the equality in (5) is replaced by an inequality representing the
submartingale property.

This simple lemma is a bridge between the DS theorem and Theorem 2 about
the existence of barriers. This theorem implies that r.s. (Yn) has barriers inside of
any interval (a, b). We will discuss Theorem 2 in the next section. Note also that
the reversed martingales are used extensively e.g. in [34] and [35].

Proposition 4. Let (Z,D) be a Markov pair and (Yn) be a corresponding sub-
martingale, i.e., Yn = αn(Zn). Then a sequence (dn) is a barrier for (Yn) iff a jet
(Jn), Jn = {i ∈ Mn : αn(i) ≤ dn}, is a strap for (Zn).

The validity of Proposition 4 follows from the definition of barriers and straps.
Now we are able to explain heuristically why the existence of barriers is equiva-

lent to the mixing property inside of any indecomposable strap J = (Jn). Suppose
that there is a colored flow such that there are two disjoint jets (Sn) and (Kn)
such that lim infn αn(in) ≥ b > a ≥ lim supn αn(jn) for in ∈ Sn and jn ∈ Kn,
and limn

∑
i∈Sn

mn(i) > 0, limn

∑
j∈Kn

mn(j) > 0. Then r.s. (Yn) will have val-
ues above b and below a with positive probability. By Theorem 2 from the next
section there is a barrier for (Yn) inside of an interval (a, b) and therefore the in-
decomposable strap (Jn) can be decomposed into two straps of positive volume, a
contradiction.

4. Doob’s lemma and existence of barriers

Generally barriers or level-barriers may not exist for a given r.s. (Xn). The closest
statement about intersections of a level or an interval is the well known Doob’s
upcrossing lemma (Doob’s inequality). This lemma implies one of the central results
in the theory of stochastic processes—a theorem of Doob about the existence of the
limits of trajectories of a (sub)(super)martingale when time tends to infinity.

We recall that given two numbers a and b, with a < b and a sequence (xn),
the number of upcrossings of an interval (a, b) by (xn) on the interval (0, T ) is
the maximal number of disjoint intervals (ni, ni+1) ⊂ (0, T ) such that xni ≤ a
and xni+1 ≥ b. Given a random sequence (r.s.) X = (Xn) we denote the ex-
pected number of upcrossings of (a, b) by trajectories of X as UT (X, (a, b)). Note
that when an interval (a, b) is replaced by a sequence (dn), then the notion of
an (up)(down)crossing transforms naturally into a notion of intersection. We have
obviously UT (X, (a, b)) ≤ RT (X, d) for any (dn) ⊂ (a, b).

Doob’s lemma. Let X = (Xn) be a (sub)martingale. Then, for every T ,

UT (X, (a, b)) ≤ E(XT − a)+

b− a
.(15)

In particular, if supn EX+
n < ∞, then Doob’s lemma implies that the expected

number of upcrossings of every fixed interval (a, b) on the infinite time inter-
val, limT UT (X, (a, b)), is finite. The previously mentioned Doob’s theorem follows
immediately. The inequalities similar to (15) hold for downcrossings and cross-
ings, for the supermartingales and for sub(super)martingales in reversed time. We
call all such r.s. a martingale type r.s. and we denote the class of all bounded
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(sub)(super)martingales in forward or inverse time by M. For simplicity we will
further consider only bounded r.s. 0 ≤ Xn ≤ 1 for all n.

The width of the interval (b − a) is in the denominator of the estimate (15) so
Doob’s lemma does not imply that: 1) inside of the interval (a, b) there exists a
level c such that the expected number of intersections of this level is finite, or,
a weaker statement, that 2) there exists a nonrandom sequence d = (dn) with a
similar property.

In [31] an example shows that not only the level barriers but even the barriers
may not exist inside of a given interval if a bounded martingale (Xn) takes a
countable number of values. At the same time if (Xn) at each moment n takes
only a bounded number of values, i.e. if there exists a sequence of finite sets (Gn)
such that P (Xn ∈ Gn) = 1 for each n and |Gn| ≤ N < ∞, n ∈ N, then Doob’s
lemma can be substantially strengthened. Denote the class of all such r.s. by GN .
The following theorem holds.

Theorem 2. Let a and b be two numbers, a < b, and X = (Xn) ∈M∩GN . Then
inside of the interval (a, b) there exists a barrier d = (dn).

This theorem follows from a more general theorem in [26] about the existence of
barriers for processes with finite variation and a bounded number of values.

Let ϕ(s), s ≥ 0, be a nondecreasing function, ϕ(0) = 0. Denote by V ϕ
T (X) the

ϕ-variation of X on the time interval (0, T ), defined as

V ϕ
T (X) = sup

0≤n1<n2<···<nk≤T

k−1∑
i=1

Eϕ(|Xni+1 −Xni
|),(16)

where the sup is taken over all possible partitions (n1 < n2 < · · · < nk), k = 1, 2, . . .,
of the interval (0, T ). Let us denote by Fϕ the class of all r.s. with finite variation,
i.e., with limT V ϕ

T (X) < ∞. Using notation similar to the previously defined GN ,
let us denote by GN (a, b) the class of all r.s. which take no more than N values
inside of an interval (a, b).

Theorem 3. If (Xn) ∈ GN (a, b)∩Fϕ then there is a number h > 0 and a sequence
of intervals (∆n), such that (∆n) ∈ (a, b), |∆| ≥ h, and any sequence (dn), dn ∈
(∆n), is a barrier for (Xn).

Theorem 2 immediately follows from Theorem 3 because it is well known that
any r.s. X = (Xn) ∈M belongs to Fϕ for ϕ(x) = x2.

We will sketch the proof of Theorem 3 in the next section.
The statement of Theorem 2 left an open question, whether under its assumptions

inside of any interval (a, b) there exist level barriers, i.e., nonrandom sequences (dn)
with constant values of dn = d. It happens that the level barriers exist only if
N = 2, 3 and for N ≥ 4 the negative answer is given by the following theorem. For
a r.s. X = (Xn), denote by N(X, d) the function counting the expected number of
intersections of level d by r.s. (Xn) on an infinite time interval.

Theorem 4 (joint with Alexander Gordon). There is a nonhomogeneous MC X =
(Xn) that is also a martingale such that

a) X takes no more than four values {an, rn, sn, 1} at each moment n = 1, 2, . . .,
0 < an < rn < sn ≤ 1, and

b) N(X, d) = ∞ for each d ∈ (0, 1).

Such a MC martingale is constructed explicitly but has a rather complicated
structure and this example is not published yet. Theorem 4 of course does not
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contradict Doob’s theorem. In this example every trajectory will tend to 0 or 1 and
will have only a finite number of intersections with any level d, but nevertheless the
expected number of intersections for every d is infinite.

5. Sketch of the proof of Theorem 3

Theorem 3 follows easily from the following estimate.

Lemma 2 (basic estimate). Let (a, b) be an interval, G = (Gn) be a sequence of
sets, |Gn ∩ (a, b)| ≤ N . Then there is a sequence of intervals (∆n), constructed
recursively, ∆n+1 = f(∆n, Gn+1), such that

(A) ∆n ⊂ (a, b), |∆n| ≥ h > 0, ∆n ∩Gn = ∅, n = 1, 2, . . .(17)

and for any sequence d = (dn), dn ∈ ∆n, any X = (Xn) ∈ GN (a, b), any nonde-
creasing function ϕ, and any T ,

RT (X, d) ≤ cV ϕ
T (X),(18)

for a constant c = c(ϕ, N, b− a).

Lemma 2 immediately implies that barriers do exist for any r.s. X = (Xn) from
GN (a, b) for which there is a ϕ such that limT V ϕ

T (X) < ∞.
Note that the sequence of intervals (∆n) in Lemma 2 has a universal character,

i.e., it depends only on a structure of a deterministic sequence of sets (Gn) and that
function f(∆, G) in Lemma 2 is constructed in an explicit form.

Now we explain heuristically what kind of sequence of intervals (∆n) we need to
construct to ensure that (18) will hold for any d, X, ϕ, and T .

Suppose initially that given a sequence (Gn), there is a sequence of intervals
(∆n) that satisfy, in addition to (A), the condition

(B) |∆n ∩∆n+1| ≥ h > 0, n = 1, 2, . . . .(19)

The following elementary lemma holds.

Lemma 3. Let ∆1 and ∆2 be intervals, X1, X2 be random variables such that
|∆1 ∩∆2| ≥ h > 0, and P (Xi ∈ ∆i) = 0, i = 1, 2. Then for any numbers d1 ∈ ∆1,
d2 ∈ ∆2, and nondecreasing function ϕ,

P (X1 ≤ d1, X2 ≥ d2) ≤ Eϕ(|X1 −X2|)/ϕ(h).(20)

The assertion of Lemma 3 follows immediately from the implications (X1 ≤
d1, X2 ≥ d2) ⊂ (|X1 − X2| ≥ h) and Chebyshev’s inequality, P (|Y | ≥ h) ≤
Eϕ(|Y |)/ϕ(h) for any r.v. Y .

The existence of a sequence (∆n) satisfying the conditions (A) and (B) implies
an estimate (18). Indeed, in this case by Lemma 3 for any sequence (dn), dn ∈
∆n, we have P (Xn ≤ dn, Xn+1 > dn+1) ≤ Eϕ(|Xn+1 − Xn|)/ϕ(h) and therefore
RT (X, d) ≤

∑T−1
n=0 Eϕ(|(Xn+1 −Xn|)/ϕ(h) ≤ cV ϕ

T (X, d) with c = 1/ϕ(h).
Since |Gn ∩ (a, b)| ≤ N there are of course sequences (∆n) satisfying (A) for

every h, 0 < h ≤ 1/(N + 1), but generally we cannot expect that for such (Gn)
there is a sequence of intervals that satisfy both (A) and (B). We will show that
an estimate (18) still holds if condition (B) is replaced by a weaker condition (C).

(C) (a) For any n there is r(n), 1 ≤ r(n) ≤ n, such that |∆r(n) ∩∆n| ≥ h > 0,
|∆r(n) ∩∆n+1| ≥ h,
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(b) every n is covered by no more than M intervals of the form [r(k), k].
First we formulate Lemma 4 which is an analog of Lemma 2 when the condition

(B) is replaced by condition (C).

Lemma 4. Let ∆1, ∆2, and ∆3 be intervals and Y1, Y2, and Y3 be random variables
such that |∆1 ∩∆2| ≥ h > 0, |∆1 ∩∆3| ≥ h, and P (Yi ∈ ∆i) = 0, i = 1, 2, 3. Then
for any numbers d2 ∈ ∆2, d3 ∈ ∆3, and nondecreasing function ϕ,

P (Y2 ≤ d2, Y3 ≥ d3) ≤ E[ϕ(|Y1 − Y2|) + ϕ(|Y1 − Y3|)]/ϕ(h).(21)

Note that for any d1 ∈ ∆1 we have a trivial inequality P (Y2 ≤ d2, Y3 ≥ d3) ≤
P (Y1 ≥ d1, Y2 ≤ d2) + P (Y1 ≤ d1, Y3 ≥ d3). Now the assertion of Lemma 4
can be easily obtained if we apply Lemma 2 to each of the terms in the right
side of the last inequality using pairs (Y2, Y1) and (Y1, Y3). Then using (21) for
Y1 = Xr(n), Y2 = Xn, Y3 = Xn+1, we obtain P (Xn ≤ dn, Xn+1 ≥ dn+1) ≤
E[ϕ(|Xr(n) −Xn|) + ϕ(|Xr(n) −Xn+1|)]/ϕ(h). Summing this inequality over all n,
and taking into account point (b) of condition (C), we obtain (18) with c = M/ϕ(h).

Thus to prove Theorem 2 it remains to prove the pure combinatorial lemma

Lemma 5. Let (a, b) be an interval, G = (Gn) be a sequence of sets, |Gn∩ (a, b)| ≤
N . Then there is a sequence of intervals (∆n), calculated by a recursive formula
∆n+1 = f(∆n, Gn+1) satisfying conditions (A) and (C) for some h > 0.

The formal proof is rather complicated but the idea of the construction can be
explained using cases N = 1, 2. Note that the statement of Lemma 2 is not quite
trivial even in the case of N = 1.

Without loss of generality we can assume that |Gn| = N , n = 1, 2, . . . and
(a, b) = (0, 1). Initially we will construct a sequence of intervals (sn), which will
serve as a “frame” for intervals (∆n), sn ⊂ ∆n, n = 1, 2, . . ..

The case N = 1. Let us divide the interval (0, 1) into three equal intervals and
let us denote (0, 1/3) = (0) and (2/3, 1) = (1). To explain our construction we
can use the following informal interpretation. There is a “hunter” and a “game”
which tries to avoid the hunter hiding in one of the intervals (sn) ∈ {(0), (1)}. The
position of the hunter at moment n is one element set Gn. The game knows the
position of the hunter so it always can avoid the hunter but its goal is to spend the
minimal amount of “energy” switching from one of the possible hiding locations to
the other. We define the sequences of intervals (sn) and (∆n) as follows: sn+1 = sn

if sn ∩Gn+1 = ∅, otherwise sn+1 = (0) if sn = (1) and sn+1 = (1) if sn = (0). The
intervals ∆n are defined as ∆n+1 = sn+1 if sn+1 = sn and ∆n+1 = (0, 1) ↘ sn,
otherwise, n = 1, 2, . . .. Thus, ∆n+1 = f(sn, Gn+1), where f(s,G) = s if s∩G = ∅,
and f(s,G) = (0, 1) ↘ s otherwise.

For N = 2 we divide the vertical interval (0, 1) into three equal intervals and each
of the intervals (0, 1/3) = (0) and (2/3, 1) = (1) we again divide into three equal
intervals and denote the lower and upper of the corresponding intervals as (00), (01),
(10), and (11). Now there are two hunters with positions at two points from (Gn),
and a game who can use any of these four intervals for hiding. The minimizing
energy strategy of a game is now as follows. First, sn+1 = sn if sn ∩ Gn+1 = ∅,
otherwise if sn is e.g. in (0) and only one hunter is in (0), then game avoids the
second hunter changing sn inside of (0), i.e., from (00) to (01) and back. Only when
the second hunter is also in (0), is the hiding position in (1), i.e., sn = (10) or
(11). A sequence (∆n) is defined by ∆n+1 = sn+1 if sn+1 = sn, and otherwise as
follow: ∆n+1 = (0) ↘ sn if a switching occurs inside of (0), ∆n+1 = (1) ↘ sn if a
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switching occurs inside of (1), and e.g. ∆n+1 = (0, 1)\(0) if a switching occurs from
an interval in (0) to an interval in (1), n > 1.

For general N ≥ 2 our construction proceeds as follows. An interval (0, 1) is
divided as in the first N steps of Cantor’s construction of a perfect set, i.e., at
each step a middle interval of the three equal intervals is eliminated. The process
of switching the form of the hiding intervals to the other depends on how many
hunters are close to the game.

6. Open Problems

1. The DS theorem is an existence theorem. The value c and the structure of the
decomposition depends naturally on the structure and assumption about the se-
quence (Pn). Most of the literature on nonhomogeneous MCs in general and on
simulated annealing is in fact a study of such decompositions, without paying any
attention to the difference between traps and straps (see as an example an interest-
ing paper on simulated annealing [5]). At the same time such a distinction plays a
very important practical role. The statement that some algorithm or computational
procedure converges with probability one leaves a question whether such conver-
gence on average requires a finite or infinite time. Thus a general open problem is
to describe necessary and sufficient conditions on a certain structure of decompo-
sition. In fact, in many papers, starting from the pioneering paper of Kolmogorov
[18] the conditions for complete mixing, i.e., for c = 1 are well established.

2. The idea of using stochastic and especially doubly stochastic matrices for the
description of ordering in the space of finite-dimensional vectors is the key idea
of the so-called theory of majorization. We refer the reader to the monograph of
Marshall and Olkin [21] for the theory of majorization and to Sonin [27], where
the relation between the DS theorem and majorization theory is briefly described.
There is an unpublished (in English) paper of the author about the economic in-
terpretation of the DS theorem. The idea of using the theory of majorization in the
description of irreversible physical processes was elaborated in some papers follow-
ing the pioneering work of Ruch ([24]), see also [1]. The possible analog of the DS
theorem on general irreversible processes should replace formula (6) by a general
transformation of a system.

3. The analog of the DS theorem for the countable case. The main result of [31]
is the following:

Theorem 5. There exist a sequence of finite sets (Mn), |Mn| → ∞, a sequence of
stochastic matrices (Pn) indexed by (Mn), a Markov chain (Zn), and a sequence of
sets (Dn), Dn ⊆ Mn, n ∈ N, such that the submartingale (in a reversed time) (Yn)
specified by (14) has no barriers inside of some interval (a, b).

Note that while the above statement shows that the DS theorem is not true in
the form presented in Section 2, it is nevertheless possible that its analog may exist
in the countable case if the expected number of intersections is replaced by other
characteristics of the transitions of trajectories. The analog of the DS theorem for
the countable case would give a possibility to consider the case of continuous space.
Even the finite case can serve as a basis for the generalization of the DS theorem
to continuous time.
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