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Abstract.
This paper has two main goals: first, to describe a new class of optimal stopping problems for

which the solutions can be found either in an explicit form, or in a finite number of steps, and
second, to demonstrate the potential of the State Elimination algorithm developed by one of the
authors earlier, for the problem of optimal stopping of a finite or countable Markov chain.
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1. Introduction and problem setting. Let us consider the following three
problems which have a common structure and each of them being a generalization
of the previous one. In each problem a statistician observes a random sequence Z =
(Zn)n=0, and her goal is to maximize Eβτg(Zτ ) over all possible stopping times τ ,
where β is a discount factor, 0 < β 5 1, and g is a reward function.

Problem 1: A classical problem of optimal stopping of independent trials, see
e.g. [6]. A sequence of i.i.d. random variables (Zn)n=0 with known distribution F is
observed and β < 1. For example, a six side die is rolled repeatedly. It is well known
that the solution for this problem is given by a threshold value c∗ = c∗(β), such that
the moment of a first visit to a set {z : g(z) = c∗} is optimal.

Problem 2: “Seasonal observations”. In this problem a ”die” is replaced by m
different ”dice” and they are rolled sequentially, i.e. first, second, ..., mth, again first,
second, and so on. Formally, let (Y s

n )n=0 be m independent i.i.d. sequences with
known distributions F s = {qs(i), i = 1, 2, ...}. A sequence of observations (Zn) has a
form Zn = Y s

n , where s ≡ n (mod m), s ∈ B = {1, 2, ...,m}, β < 1. Problem 1 is a
special case of Problem 2 when m = 1.

Problem 3: Sequence of observations modulated by Markov chain (generalized
seasonal observations). In this problem, as in Problem 2, there are m different ”dice”
but which die to observe at moment n is specified by the position of an underlying
Markov chain (Un)n≥0 which take values in a set B, independent of observations on
dice. Formally, as in Problem 2, m independent i.i.d. sequences (Y s

n )n=0 with known
distributions F s = {qs(i), i = 1, 2, ...} are given. A sequence of observations (Zn) now
has a form Zn = (Un, Y Un

n ), where (Un) is a finite Markov chain with values in B
and known transitional probabilities p(s, k). Problem 2 is a special case of Problem 3
when Markov chain (Ũn)n=0 is a deterministic cyclical movement along set B.

Let us remind that in the applied probability models the case β < 1 can be reduced
to the case β = 1 if an additional absorbing state is introduced. So we introduce an
absorbing state e = (ẽ, 0), and instead of (Ũn)n=0 we consider new Markov chain
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(Un)n=0 with values in ẽ ∪ B, and transition probabilities ps,k = βp̃s,k, s, k ∈ B;
ps,ẽ = 1− β, s ∈ B, and we define Y ẽ

n ≡ 0, g(e) = 0. Then for any stopping time τ

E
[
βτg(Ũτ , Y Ũτ

τ )
]

= E
[
g(Uτ , Y Uτ

τ )
]
.

In this paper we consider even more general problem than Problem 3, when
the transition probability into absorbing state may depend on the state of Markov
chain (Ũn)n=0. We assume that a sequence of random variables Z = (Zn)n=0 with
values in X = {e} ∪ (B ⊗R), is defined on a probability space (Ω,F ,P), such that
Zn = (Un, Yn), n = 0, and

P[Zn+1 = e |Z0, . . . , Zn−1, Zn = e] = 1,

P[Un+1 = j, Yn+1 ∈ A |Z0, . . . , Zn−1, Zn = z = (i, y)] = pijF (j, A),(1)

P[Zn+1 = e |Z0, . . . , Zn−1, Zn = z = (i, y)] = 1−
∑

j∈B

pij

for i, j ∈ B, y ∈ R, where F (j, ·) are probability measures on a Borel space R,
F (j,R) = 1, j ∈ B, а P = (pij , i, j ∈ B) is a strictly substochastic matrix, i. e. a
matrix with nonnegative values such that

(2)
∑

j∈B

pij < 1 for all i ∈ B.

Obviously, the random sequences Z = (Zn)n=0 and (Un)n=0 form Markov chains
and Markov chain (Un)n=0, with transitions for all states except an absorbing state
defined by matrix P , is in a sense a master chain “modulating” sequence (Yn)n=0.

Such situation is described sometimes by saying that random sequence (Yn)n=0

is defined on a Markov chain (Un)n=0, or that Markov chain Z is defined by matrix
P and measures F (j, ·), j ∈ B.

If
∑

j∈B pij = β for all i ∈ B, 0 < β < 1, we obtain a problem equivalent
to Problem 3, with transition probabilities p̃ij = pij/β, i, j ∈ B. Note that the
assumption (2) can be relaxed, e.g. assuming that only some power of matrix P
satisfies this condition.

We assume that a measurable function g(·) is defined on X, such that g(e) = 0,∫
R
|g(i, v)|F (i, dv) < ∞ for all i ∈ B, and we consider the problem of optimal

stopping (OS) of Markov chain Z, defined by a matrix P , measures F (i, ·), with
terminal reward function g(·) and β = 1. The value function in this problem is
denoted by V (z) = supτ E[g(Zτ ) |Z0 = z].

The main result of our paper is the following theorem which describes the optimal
stopping set and value function for this OS problem. Before formulating this theorem
let us introduce some basic notation. For any A = {(j, y) : j ∈ B, y ∈ Aj}, where
Aj , j ∈ B, are some (possibly empty) sets from R, we denote by Fd(A) the diagonal
matrix

(3) Fd(A) = (δijF (j, Aj), i, j ∈ B).

Theorem. There is a vector d∗ = (d∗1, . . . , d
∗
m), such that

a) an optimal stopping time τ∗ is a moment of the first visit of Markov chain Z
into set {e} ∪D∗, where D∗ = {z = (i, y) : i ∈ B, y ∈ D∗

i }, D∗
i = {y : g(i, y) = d∗i };

b) the value function satisfies the equation

(4) V (z) = g(z), z ∈ D∗, V (i, y) = d∗i > g(i, y), z = (i, y) /∈ D∗,
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and d∗ satisfies the equation

(5) d∗i =
∑

j∈B

p∗ij

∫

D∗j

g(j, v)F (j, dv),

where matrix P ∗ = (p∗ij , i, j ∈ B) is defined by the equality

(6) P ∗ = [I + PFd(D∗)− P ]−1P.

For any initial state i, function F (j,D∗
j )p∗ij = P[Uτ̃ = j |U0 = i] gives a distribution

of the first coordinate of Markov chain Z at the moment τ̃ of the first, after moment
zero, visit of Z into set D∗;

c) there is an algorithm to find vector d∗, and therefore to construct the value
function and the optimal stopping set. In the case of discrete distributions with support
sets without finite limit points, this construction requires only a finite number of steps.

The proof of this theorem is given in Section 3. Not only do we prove this theorem,
but we also present in there an algorithm mentioned in point c) (see (22) – (24) and
Lemma 3). This algorithm is based on a general, so-called the State Elimination
Algorithm (SEA) developed by I. Sonin for the problem of OS of discrete Markov
chain. In Section 2 we recall the main facts from the general theory of optimal
stopping and discuss this algorithm. Some preliminary results of this paper were
obtained in [12] for the discrete case.

2. The problem of optimal stopping of Markov chain and the State
Elimination algorithm. There are two different approaches to the problem of OS,
usually called the “martingale” and the “Markovian”. Both were developed inten-
sively in the 1960’s. The first one is represented by the classical monographs Chow,
Robbins and Sigmund (1971) [3] (see also the book of T. Fergusson [6]). The second
approach is represented by books A.N. Shiryayev (1969, 1976) [4] and E.B.Dynkin
and A.A.Yushkevich (1969) [1]. We mention only two other monographs, [5] and [8],
from the numerous lists of books with chapters or sections discussing this subject.
The modern presentation of both approaches can be found in the monograph by G.
Peskir and A.N. Shiryayev [7]. Our presentation follows the Markovian approach.

Let random sequence (Zn)n=0 with values in state space (X,B), defined on a
measurable space (Ω,F) with probability measures Pz, measurable with respect to
z ∈ X, be a Markov chain with respect to the filtration Fn, where Fn is a σ-algebra
generated by Z0, . . . , Zn and Pz[Z0 = z] = 1. Note that in this section Markov chain Z
is a general one and does not coincide with a Markov chain from the previous section.
Let P be a transition operator defined by Z, i.e., Pf(z) = Ez[f(Z1)]. Operator P
maps any measurable function f defined on X with finite mathematical expectation
to a measurable function on X. We assume that a number β, 0 < β 5 1, and
measurable functions g(z) and c(z), are given. The stopping times are defined with
respect to the sequence of σ-algebras Fn, n = 0. We assume that for any z ∈ X and
any stopping time τ a function Vτ (z) = Ez[g(Zτ )βτ −∑τ−1

k=0 c(Zk)βk] is well defined.
Function g(z) is a terminal reward for stopping at state z, and c(z) is an observation
fee (reward) to make one more observation (both functions can be of any sign). To
solve the problem of optimal stopping means to find the value function

(7) V (z) = sup
τ

Vτ (z) = sup
τ

Ez

[
g(Zτ )βτ −

τ−1∑

k=0

c(Zk)βk

]
,
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where supremum is taken over all stopping times, and to find an optimal stopping
time, i.e., a stopping time where this supremum is attained. As in the previous section,
the case when 0 < β < 1 can be reduced to the case β = 1 by introduction of an
absorbing state. Thus, in what follows, without restriction of generality, we assume
that β = 1.

Let us define a reevaluation operator T as follows:

(8) T f(z) = −c(z) + Pf(z).

It is well known that under standard conditions the function V (z) is finite and the
following theorem holds (see. [7, theorem 1.11, corollary 1.12 and section 11 of chap-
ter 1]).

Statement 1. a) Function V (z) is a minimal solution of optimality equation
(Bellman equation)

(9) V (z) = max[g(z), T V (z)];

b) if Pz[τ∗ < ∞] = 1 for all z ∈ X, where τ∗ = inf{n = 0: Zn ∈ D∗}, D∗ =
{z : V (z) = g(z)}, then a stopping time τ∗ is optimal and τ∗ 5 τ ′ Pz-a.s. for all z
and any stopping time τ ′;

c) the sequence Ṽ (0)(z) = g(z), Ṽ (k+1)(z) = max[g(z), T Ṽ (k)(z)] satisfies Ṽ (k) ↑
V.

The set D∗ is called a stopping set, and the set C∗ = X\D∗ = {z : V (z) > g(z)} is
called a continuation set.

It is sometimes stated that point c) provides a constructive method for calculating
function V (z). Note, however, that as a rule Ṽ (k+1) 6= Ṽ (k) 6= V for all k. This maybe
true even if Zn is a Markov chain with only two values, z1 and z2, and g(z1) 6= g(z2).
If Zn takes values in a finite set, then the equation (9) can be solved via linear
programming, but under this approach a probabilistic interpretation is missing and it
is not clear how to generalize this approach to the countable state space, for example.
Sonin in [9] – [11] proposed an algorithm to solve the OS problem for the finite
and sometimes countable state space. This algorithm calculates function V (z) by
sequential elimination of some states, and guarantees that if the state space has m,
m < ∞, points, then the set D∗ can be obtained in no more than (m− 1) steps and
after that the function V (z) can be obtained for all z in the same number of steps. It
was mentioned that sometimes V (z) and D∗ can be found in a finite number of steps
even if the state space is countable.

The Elimination algorithm for the OSP of a Markov chain is based on the following
three considerations (see [10], [11]).

1. Although in the OS problem it may be difficult to find the states where it is
optimal to stop, it is relatively easy to find a state (states) where it is optimal not
to stop. Indeed, it is optimal to stop at z if g(z) ≥ c(z) + Pv(z) ≡ Fv(z), but v is
unknown until the problem is solved. On the other hand, it is optimal not to stop at z
if g(z) < T g(z), i.e., when the expected reward of taking one more step is larger than
the reward from stopping. (Generally, it is optimal not to stop at any state where the
expected reward of taking some, perhaps random number of steps, is larger than the
reward from stopping).

2. After we have found a set of states C, which are not in the optimal stopping
set, we can eliminate them and recalculate the transition matrix for all remaining
states D = X \ C, i. e., to consider an embedded Markov chain. The current fee
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function must also be recalculated with the new fee equal to the expectation of the
sum of the original fees between two subsequent visit to set D. It is almost obvious,
and we prove this below, that an optimal stopping set for the new Markov chain is
the same as for the original Markov chain and the original value function coincides
with the new one on a set D, and on the eliminated set C, equals the expected sum of
the observation fees, plus the value function at the moment of the first visit to set D.

3. It may happen that after a finite number of such steps, we obtain a situation
where for the new Markov chain the following inequality will hold for all states z from
the remaining set D̃

(10) g(z) = T̃ g(z), z ∈ D̃,

where c̃(z) is an observation fee, and T̃ is a reevaluation operator for the new Markov
chain. If Z0 ∈ D̃, then the inequality (10) will hold for the entire state space of the
new Markov chain. Note that if an initial state space has m states, then such situation
occurs in no more than m − 1 steps. But Statement 1 implies that if (10) holds for
the entire state space of the new Markov chain, then the state space coincides with
the optimal stopping set and the value function is equal to the terminal reward. It
remains to calculate value function for states z from C.

A computational procedure for this algorithm for the finite state space was de-
scribed in [10], and it was a mention of a possibility to use it in the countable case,
when after a finite number of steps the situation (10) occurs. The following modifica-
tion was proposed in [2], that allows also to consider a general state space. The main
point is to consider the new Markov chain with the same state space as the initial
one, see Lemma 1 and Corollary below. Note that a version of this Lemma on the
reduced state space was presented for the countable case in [13]. For simplicity we
consider a case where c(z) ≡ 0.

For any A ⊂ X, in addition to operator P, let us consider also an operator PA,
defined by an equality

(11) PAf = PIAf,

where IA is an operator of multiplication by a characteristic function of set A.
Let a subset D ⊂ X be given. Let us denote by C the complement of set D, i.e.,

C = X \D. In the following, a complement of any set D (with possible subindexes
and/or indication to dependence on some other parameters) will be denoted as C with
the same subindexes and parameters.

Let τ0 = 0, and τn > 0, n = 1, be the moments of subsequent visits of Markov
chain Z into set D (if Z0 = z and z ∈ D, then τ1 is the moment of the first return).
Suppose that Pz[τ1 < ∞] = 1 for any z ∈ X. Let us introduce a Markov chain
Z ′ = (Z ′n)n=0, where Z ′n = Zτn , n = 0. Let us denote by P ′ the transition operator
of Z ′, and by I, the identity operator, i.e. I = IX .

Lemma 1. The following equalities are true

P ′f =
∞∑

l=0

(PC)l PDf = (I − PC)−1 PDf,(12)

P ′f = Pf + (I − PC)−1 PC(Pf − f).(13)
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Proof. The second equality in (12) follows from the definition of operator (I −
PC)−1, and the first one is a formula of total probability for the partition {τ1 = l+1},
l = 0, since (PC)lPDf(z) is f(Zl+1), averaged over all trajectories which start in
state z, then spend l moments in C, and finally go to D.

Substituting the equality PD = P − PC into the right side of equality (12), and
using also the equality (I − PC)−1 = I + (I −PC)−1PC , we obtain

P ′ = (I − PC)−1P − (I − PC)−1PC

= (I + (I −PC)−1PC)P − (I −PC)−1PC

= P + (I − PC)−1PCP − (I −PC)−1PC ,(14)

which is equivalent to (13). This completes the proof of Lemma 1.
Note that in the case of finite number of states an operator (I − PC)−1 is rep-

resented by a matrix, which is called the fundamental matrix for matrix PC . The
entries of this matrix are equal to the expected number of visits to a particular state
before an exit from set C.

Formula (13) implies the following statement.
Corollary 1. If C ⊆ {z : Pf(z) > f(z)}, then P ′f(z) = Pf(z) for any z ∈ X.
In the next section we show how Lemma 1 can be used to construct an optimal

stopping set and a value function for the problem in Section 1.

3. Random sequences defined on Markov chain. Let Markov chain Z be
defined by a strictly substochastic matrix P and probability measures F (i, ·), i ∈ B,
defined on the real line. Let us consider the transition operator P of this Markov chain
on a set of functions, such that f(e) = 0. Since e is an absorbing state to describe
this operator it suffices to consider its action on a set of functions defined only on
set B ⊗R. We denote by P this reduced operator. Functions defined on B ⊗R can
be considered as vector-functions f(y) = (f(1, y), . . . , f(m, y)), defined on R. Let us
define the operator on a set of such functions by

(15) Lf(i, y) =
∫

R

f(i, v) F (i, dv), (i, y) ∈ B ⊗R.

The definition of operator L implies that it maps any vector-function to a vector-
function with constant coordinates, and therefore the operator P has the same prop-
erty and then

(16) Pf = PLf.

In the following we say that a Markov chain Z is defined by a strictly substochastic
matrix P and operator L в (15).

For anyA = {(j, y) : j ∈ B, y ∈ Aj} in addition to operator L we shall consider
also an operator LA, defined by the equality

(17) LAf = LIAf.

This equality, (11) and (15) imply that

(18) PAf = PLAf.

Before we prove our main theorem let us present some auxiliary statements.



On optimal stopping of random sequences modulated by a Markov chain 7

Let a set D = {(j, y) : j ∈ B, y ∈ Dj} be given. Let τ0 = 0, and let τn > 0,
n = 1, be the moments of subsequent visits of Markov chain Z into set {e} ∪ D (if
Z0 = z and z ∈ {e}∪D, then τ1 is the moment of the first return). Obviously, τ1 5 τe,
where τe is a moment of the first visit to state e. Since P is a strictly substochastic
matrix, then Pz[τe < ∞] = 1, and therefore Pz[τ1 < ∞] = 1 for any z ∈ B ⊗R, and
we can apply Lemma 1.

Let us consider a Markov chain Z ′ = (Z ′n)n=0, where Z ′n = (U ′
n, Y ′

n), U ′
n = Uτn

,

Y ′
n = Yτn , n = 0. If Z0 = z, then for any z ∈ X with n = 1, the values of Z ′n belong

to {e} ∪D. Let us denote by P ′ the transition operator of Markov chain Z ′.
Lemma 1 implies the following key lemma which shows how the factorization (16)

is changed when set C = (B ⊗R) \D is “eliminated” .
Lemma 2. Markov chain Z ′ is defined by a strictly substochastic matrix P ′ and

an operator L′, where

P ′ = [I − PFd(C)]−1PFd(D),(19)

L′f(i, y) = (F (i,Di))−1

∫

Di

f(i, v)F (i, dv), если F (i, Di) 6= 0,(20)

and if F (i,Di) = 0, then L′f(i, y) can be defined arbitrarily with matrix Fd(A) defined
in (3) for any set A.

Proof. From now on, the vector functions with constant coordinates will be de-
noted by bold font. Formula (15) then implies that Lf = f . Formulas (15), (18)
and (3) imply that LAf = Fd(A)f . Hence, using also (18) we obtain that PAf =
PFd(A)f , and therefore (PA)lf = (PFd(A))lf for any l = 1. From the last equality
with A = C and equality (18) with A = D, taking into account that PDf is a vector
function with constant coordinates, we obtain that (PC)lPDf = (PFd(C))lPLDf .
Substituting this equation into the right side of the first equality in (12), we obtain

(21) P ′f = P̃ ′LDf, где P̃ ′ = [I − PFd(C)]−1P.

Now, normalizing measures, defining operator LD, we obtain (19) и (20). If
F (i,Di) = 0 for some i, then corresponding measure F ′(i, ·) can be defined arbitrarily.
Lemma 2 is proved.

Now let us prove the main theorem. As in [2], we construct a sequence of Markov
chains Zk and a nondecreasing sequence of sets Dk, k = 0, such that an initial state
of each Markov chain is the same as the initial state for the initial Markov chain, and
the state of Markov chain Zk (for k = 1) at any moment r > 0 coincides with the
position of the initial Markov chain at the moment of its r-th visit into set Dk. Under
this construction, the sequence of functions V k(z), k = 0, where V k(z) is an expected
reward of stopping at the moment of the first visit of Markov chain Zk into set Dk,
will converge to the value function of the initial Markov chain, and a sequence of sets
Dk will converge to an optimal stopping set of the initial Markov chain.

Let Z0 = Z and P0 = P be a transition operator of Markov chain Z0. Let
d1 = P0g. Note that d1 is a vector function defined for all z ∈ B ⊗R, with constant
coordinates. We may consider d1 simply as a real valued vector with corresponding
coordinates. Let D1 = {g(z) = d1}. If Fd(D1) = I, we define Z1 = Z0.

If Fd(D1) 6= I, then it is better to continue at the states of set C1 = (B⊗R)\D1,
since one more step brings higher expected reward than immediate stopping. As a
result, we "eliminate" this set and consider Markov chain Z1, similar to Markov chain
Z ′ from Lemma 2 with D = D1. After that, applying the same procedure to Markov
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chain Z1 as was applied to Markov chain Z0, we obtain Markov chain Z2, and so on.
As a result, we obtain a sequence of Markov chains (Zk)k=0, Zk

0 = Z0
0 , corresponding

sequence of transition operators (Pk)k=0, and a sequence of vectors (dk)k=1, where

(22) dk = Pk−1g, k = 1,

and a sequence of sets (Dk)k=1, where

(23) Dk = {z : g(z) = dk}, k = 1.

For k = 1, let us consider a seuence of vector functions

(24) V k(z) = g(z), z ∈ Dk, V k(z) = dk, z ∈ Ck = (B ⊗R) \Dk;

Lemma 3. a) sequence (V k(z))k=1 is nondecreasing and converges to function
V (z), which is the value function in the OS problem for any Markov chain Zk, k = 0;

b) sequence of vectors (dk)k=1 is nondecreasing, bounded and converges to vector
d∗. Sequence of sets (Dk)k=1 is nondecreasing and converges to set D∗, such that
{e} ∪ D∗ is an optimal stopping set for any Markov chain Zk, k = 0, and Markov
chain Z∗, corresponding to the visits of Markov chain Z0 into set D∗. If dl+1 = dl

for some l, then dk = d∗, Dk = D∗ for k = l;
c) transition operator of Markov chain Zk for k = 1 and for k = ∗ has the form

(25) Pkf = P̃ kLDkf, where P̃ k = [I − PFd(Ck)]−1P,

so that Markov chain Zk is defined by matrix P k = P̃ kF (Dk) and by operator Lk,
which, if [F (Dk)]−1 exists, has the form Lk = [F (Dk)]−1LDk , and in general case is
defined according to Lemma 2;

d) let d∗ = (d∗1, . . . , d
∗
m), and let G(i, ·), i ∈ B, be the distributions of g(i, Ŷi),

where Ŷi has distribution F (i, ·). If there is an ε > 0, such that G(i, {(−ε+d∗i , d
∗
i )}) =

0 for all i ∈ B, then there is a k∗, such that Zs = Zk∗ for s = k∗.
Proof. From (22), (23) and Corollary 1 we obtain that

(26) dk+1 = dk, k = 1,

and therefore (23) implies that

(27) Dk+1 ⊆ Dk, k = 1.

Note that Markov chain Zk was obtained from Markov chain Zk−1 by "elimina-
tion" of set Ck, i.e. the values of Zk at moment n = 1 coincide with the values of
Zk−1 at the moment of n-th visit of Markov chain Zk−1 into set Dk. Formula (27)
implies that the same Markov chain will be obtained from Markov chain Z0, if set Ck

is "eliminated" at once, and then in correspondence with (21)

(28) Pkf = [I − PFd(Ck)]−1PLDkf.

The strict substochasticity of matrix P implies that the elements of matrix [I −
PFd(Ck)]−1 are bounded. According to our initial assumptions,

∫
R

g(i, v)F (i, dv) is
well defined and finite for every i ∈ B. Then, using also (28) and (22), we obtain that
the sequence of vectors (dk)k=1 is bounded. By (26) this sequence will converge to
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some vector d∗. Therefore, by (23) и (27), the sequence of sets (Dk)k=1 will converge
to some set D∗, and then, by (23), the sequence of matrices (P k)k=1 will converge
to the matrix P ∗ = [I − PFd(C∗)]−1P , where C∗ = (B ⊗ R) \ D∗. Markov chain,
corresponding to P∗, is obtained by the "elimination" of C∗ for any of Markov chains
Zk, k = 0. If dl+1 = dl for some l, then formulas (23), (22), and (25) and the
convergence we obtained, imply that dk = d∗, Dk = D∗ for k = l.

Note now that V k(z), k = 1, is the expected reward from stopping at the moment
of the first visit of any of Markov chains Zs, 0 5 s 5 k, into set Dk. Hence V k(z) 5
V (z), k = 1. This inequality and formulas (24), (22) and (26) imply that V k(z)
converges to some function V ∗(z), for which V ∗(z) 5 V (z). Formulas (23) and (24)
imply that V k(z) = g(z) = dk = Pk−1g(z) for z ∈ Dk and V k(z) = dk = Pk−1g(z) >
g(z) for z ∈ Ck. Passing to the limit in these relations, we obtain that function V ∗(z)
satisfies optimality equation (9). But according to Statement 1, V (z) is a minimal
solution of the optimality equation. Then V ∗(z) 5 V (z) implies that V ∗(z) = V (z).
The points a), b) and c) of the theorem are proved. Let us prove point d). The
assumption of this point and convergence of dk to d∗ imply that there exists a k∗,
such that dk > −εI + d∗ for all k = k∗. Then LDk = LD∗ for all k = k∗.Therefore
dk = d∗, Dk = D∗ for all k = k∗. Lemma 3 is proved.

Lemma 3 directly implies all points of the Theorem.
The relations (22)–(25) provide an effective algorithm to calculate the value func-

tion and an optimal stopping set in a finite number of steps if the distributions of all
random variables g(i, Ŷi) do not have finite limit points. We demonstrate that using
a specific example. Note that at each step from k to k + 1 we can "eliminate" not all
the states where dk 5 g(z) < dk+1, but only some of them.

Example. Let us consider Problem 3, where set B consists of only two elements.
If Markov chain Ũ is in state 1, a fair six-side die is rolled, so the distribution F (1, ·) is
uniform on the set {1, 2, 3, 4, 5, 6}, and if Ũ is in a state 2, then a regular tetrahedron
is rolled, so the distribution F (2, ·) is uniform on the set {1, 2, 3, 4}. The discount
factor β and probabilities pi that Markov chain Ũ remains in a state i, are given.
Correspondingly, the probabilities of transition from state i to state 3 − i, are equal
to qi = 1 − pi, i = 1, 2. Thus, Markov chain Z is defined by the matrix P =[

p1β, q1β
q2β, p2β

]
= βP̃ . Let us consider an OS problem with g(1, y) = g(2, y) = y. For

integers k1, k2, 0 5 k1 5 6, 0 5 k2 5 4, let us define D(k1, k2) = {z = (i, j) : i =
1, k1 < j 5 6; i = 2, k2 < j 5 4}. To describe operator P ′, specified according

to Lemma 2 by set D = D(k1, k2), we denote d(k1, k2) =
[

d1(k1, k2)
d2(k1, k2)

]
= P ′g. In

this case, formula (21) has the form P = β

[
p1, q1

q2, p2

]
, Fd(C) =

[
k1/6, 0

0, k2/4

]
,

LDg =
[

3.5− ak1

2.5− ak2

]
, where ak1 = k1(k1 + 1)/12, ak2 = k2(k2 + 1)/8.

Using the explicit formula to invert the 2×2 matrix from formula (21), and using
simple algebraic calculations, we obtain

[I − PFd(C)]−1 =
1
γ

[
1− βp2k2/4, βq1k2/4

βq2k1/6, 1− βp1k1/6

]
,

where γ ≡ γ(k1, k2) = 1−β(p1k1/6+p2k2/4)+β2(p1−q2)k1k2/24 is the determinant
of matrix I −PFd(C). Then, using (21) and the definition of vector d(k1, k2), and by
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multiplying the matrices, we obtain that

d1(k1, k2) =
β

γ

(
2.5− ak2 + p1(1 + ak2 − ak1) + β(q2 − p1)

k2

4
(3.5− ak1)

)
,

d2(k1, k2) =
β

γ

(
2.5− ak2 + q2(1 + ak2 − ak1) + β(q2 − p1)

k1

6
(2.5− ak2)

)
.

Let [a] denote the integer part of a number a. Then, by formulas (22)–(24), we
have: d1 ≡ (d1

1, d
1
2) = d(0, 0), di+1 ≡ (di+1

1 , di+1
2 ) = d(ki

1, k
i
2), where ki

1 = [di
1], ki

2 =
[di

2]. We present below the calculations for certain particular values of the parameters.

N β p1 p2 d1 d2 d3 d4 d5

1 0.7 0.60 0.30 2.17, 2.24 2.44, 2.50 2.44, 2.50
2 0.8 0.60 0.30 2.48, 2.56 2.96, 3.01 2.957, 3.014 2.957, 3.014
3 0.8 0.64 0.20 2.51, 2.64 2.99, 3.09 3.005, 3.092 3.006, 3.093 3.006, 3.093
4 0.9 0.80 0.05 2.97, 3.11 3.76, 3.81 3.938, 4.001 3.938, 4.001 3.938, 4.001

The last statement of point b) of Lemma 3 implies the following. For case 1, the
optimal stopping set is found in one step, and in both states it is optimal to stop if
number three or greater is observed. For case 2, the optimal stopping set is found
in two steps, and if a die is rolled, it is optimal to stop if number three or greater is
observed, whereas if a tetrahedron is rolled, then it is optimal to stop if the number
four is observed. For case 3 the optimal stopping set is found in three steps and if
a die or a tetrahedron is rolled, then it is optimal to stop if number four or greater
is observed. For case 4, the optimal stopping set is found in three steps, and if a die
is rolled, it is optimal to stop if the number four or greater is observed, whereas if a
tetrahedron is rolled then it is optimal to roll no matter what number is observed.
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