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MapReduce

� A highly parallel computing model designed for Big Data 
computation.

� Computation is performed on a cluster consists of a master and 
many slave workers.

� Data are stored and processed in <key, value> tuples.

� One MapReduce job can be divided into map phase and reduce 
phase.



Word Count, a MapReduce Example

Hello, 2

Hello, 4



� How to provide high integrity MapReduce computing 
service on an untrusted public cloud.

Problem

Our Solution: Cross Cloud MapReduce (CCMR)

Trusted private cloud + Untrusted public cloud 



Assumptions and Attacker model
� Assumptions

� The private cloud is trusted.

� The MapReduce storage (DFS) is trusted [5][6].

� The tasks in MapReduce jobs are deterministic 

� Attacker Model
� Certain portion (m) of workers are malicious (0 ≤ m ≤ 1).

� The malicious workers are controlled by an adversary.

� The adversary directs malicious workers to collaborate with 
each other to inject as many errors as possible without being
detected.

[5]Bowers, Kevin, et al. "HAIL: a high-availability and integrity layer for cloud storage." CCS ’09.
[6] Popa, Raluca Ada, et al. "Enabling security in cloud storage SLAs with Cloud Proof." USENIX ATC ’11.
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System Design

• Hybrid cloud architecture
• Trusted private cloud with verifiers
• Untrusted public cloud

• Core Techniques 
• Two-layer check
• Credit based trust management

• Different design for different phases.



Map Phase Integrity Check

� Two-layer check for each map task
� Replication with replication probability r. 

� For task passed first-layer check, verification with verification 
probability v.

� Credit accumulation for each mapper
� Increment credit of the worker.

� Buffer the task result on the worker.

� Accept results in batch only when worker achieves credit threshold T.



Map Phase Integrity Check

Two-layer check for each map task

Credit accumulation for each mapper



Reduce Phase Integrity Check
� Straightforwardly applying aforementioned techniques to 

Reduce phase may encounter difficulties
� In some job, reduce task number is smaller while the processed 

records in one task is huge. (e.g., word count: 1 reduce task, 
2.7 M of records to be processed, 262 seconds to finish).

� We wish
� To divide such reduce task into many sub-tasks. 

� To apply two-layer check and credit based trust management to 
each reduce sub-task.



Reduce Phase Integrity Check



Reduce Phase Integrity Check
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Model the System
� Model map and reduce phase with same set of parameters
� Model the CCMR

� T: Credit Threshold
� r: Replication probability
� v: Verification probability

� Model the Attacker
� m: Malicious worker fraction
� c: Cheat probability

� Measurement Metrics
� Accuracy: Job Error Rate

� Fraction of incorrect task/sub-task accepted by the master in one job. 

� Performance: Overhead & Verifier Overhead
� For each task/sub-task, the expected number of extra executions performed on 

public/private cloud.

� Theoretical analysis conclusion is presented in Theorem 1.



Accuracy and Performance Trade Off

• To decrease Job Error Rate
• Increase T
• A higher overhead
• A higher verifier overhead

T=50

T=600



Job Error Rate vs. Cheat Probability

• What’s the upper bound of job 
error rate.

• When m is 0.5, r is 0.5, job error 
rate upper bound is less than 1%.

• When m is 1.0,r is 0.5, job error
rate upper bound is 9%.
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Environment Setup
� CCMR

� Private Cloud:
� 1 Linux server (2.93 GHz, 8-core Intel Xeon CPU and16 GB of RAM)
� Running as a master and the verifier

� Public Cloud
� 12 Amazon EC2 micro instances (Amazon Linux AMI 32-bit, 613 MB 

memory, Shared ECU, Low I/O performance)
� Running as 12 slave workers. 

� Baseline (Original MapReduce)
� 13 Amazon EC2 micro instances (Amazon Linux AMI 32-bit, 

613 MB memory, Shared ECU, Low I/O performance)
� Running as 1 master and 12 slave workers. 



Experiment Applications
� Word Count: 

� Compute the frequency of each word in a batch of text files.

� 800 text files as input, total input size as 653M. 

� 800 map task, 1 reduce task. 

� Mahout 20 news group classification: 

� MapReduce implementation of Naïve Bayes classification 

� Classify news text files into 20 different categories.

� 5 jobs in one application. 



Map Phase (Accuracy)
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Job Error Rate of  Word Count (Map Phase with CCMR)
T=50, v=0.15, m=0.5 

r=0.3 r=0.5 r=1.0

When r is 0.3, job error rate ranges from 1.08% to 2.25%.
When r is 1.0, job error rate ranges from 0.14% to 0%.



Map Phase (Performance)
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Running time (s) of  Word Count (Map Phase with CCMR) 
Compared with Baseline, m=0

Extra execution times are 19%, 34% and 83%, when r increases from 0.3 to 1.0
The extra execution times are proportional to the replication probability r.



Reduce Phase(Performance)
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Mahout 20 news Group Classification Word Count

Running time (s) of Mahout 20 Class. & Word Count 
(Reduce phase with CCMR) compared with baseline

m = 0, r = 0.167, v = 0.07,  T = 600

Baseline Execution time (s) CCMR Execution time (s)

Extra execution time are 45% in Mahout classification, 43% in word count application.
The extra execution time are attributed to the vast number of sub-tasks for replication and verification.
E.g., Word Count application consists of 88 replication sub-tasks and 6 verification sub-tasks



Conclusion and Future Work
� Cross Cloud MapReduce(CCMR), a hybrid cloud 

MapReduce framework is proposed.

� By utilizing the trusting base gained from private cloud, a 
high integrity assurance MapReduce service can be achieved 
with majority of computation performed on public cloud.

� Reduce performance overhead and reasoning the optimal 
system parameter would be the next step work.




