
Yongzhi Wang, JinpengWei Florida International University

Mudhakar Srivatsa IBM T.J. Watson Research Center

Result Integrity Check for MapReduce

Computation on Hybrid Clouds

Agenda
� Problem Statement

� System Design

� Theoretical Analysis

� Experiment Result

Agenda
� Problem Statement

� System Design

� Theoretical Analysis

� Experiment Result

MapReduce

� A highly parallel computing model designed for Big Data
computation.

� Computation is performed on a cluster consists of a master and
many slave workers.

� Data are stored and processed in <key, value> tuples.

� One MapReduce job can be divided into map phase and reduce
phase.

Word Count, a MapReduce Example

Hello, 2

Hello, 4

� How to provide high integrity MapReduce computing
service on an untrusted public cloud.

Problem

Our Solution: Cross Cloud MapReduce (CCMR)

Trusted private cloud + Untrusted public cloud

Assumptions and Attacker model
� Assumptions

� The private cloud is trusted.

� The MapReduce storage (DFS) is trusted [5][6].

� The tasks in MapReduce jobs are deterministic

� Attacker Model
� Certain portion (m) of workers are malicious (0 ≤ m ≤ 1).

� The malicious workers are controlled by an adversary.

� The adversary directs malicious workers to collaborate with
each other to inject as many errors as possible without being
detected.

[5]Bowers, Kevin, et al. "HAIL: a high-availability and integrity layer for cloud storage." CCS ’09.
[6] Popa, Raluca Ada, et al. "Enabling security in cloud storage SLAs with Cloud Proof." USENIX ATC ’11.

Agenda
� Problem Statement

� System Design

� Theoretical Analysis

� Experiment Result

System Design

• Hybrid cloud architecture
• Trusted private cloud with verifiers
• Untrusted public cloud

• Core Techniques
• Two-layer check
• Credit based trust management

• Different design for different phases.

Map Phase Integrity Check

� Two-layer check for each map task
� Replication with replication probability r.

� For task passed first-layer check, verification with verification
probability v.

� Credit accumulation for each mapper
� Increment credit of the worker.

� Buffer the task result on the worker.

� Accept results in batch only when worker achieves credit threshold T.

Map Phase Integrity Check

Two-layer check for each map task

Credit accumulation for each mapper

Reduce Phase Integrity Check
� Straightforwardly applying aforementioned techniques to

Reduce phase may encounter difficulties
� In some job, reduce task number is smaller while the processed

records in one task is huge. (e.g., word count: 1 reduce task,
2.7 M of records to be processed, 262 seconds to finish).

� We wish
� To divide such reduce task into many sub-tasks.

� To apply two-layer check and credit based trust management to
each reduce sub-task.

Reduce Phase Integrity Check

Reduce Phase Integrity Check

Agenda
� Problem Statement

� System Design

� Theoretical Analysis

� Experiment Result

Model the System
� Model map and reduce phase with same set of parameters
� Model the CCMR

� T: Credit Threshold
� r: Replication probability
� v: Verification probability

� Model the Attacker
� m: Malicious worker fraction
� c: Cheat probability

� Measurement Metrics
� Accuracy: Job Error Rate

� Fraction of incorrect task/sub-task accepted by the master in one job.

� Performance: Overhead & Verifier Overhead
� For each task/sub-task, the expected number of extra executions performed on

public/private cloud.

� Theoretical analysis conclusion is presented in Theorem 1.

Accuracy and Performance Trade Off

• To decrease Job Error Rate
• Increase T
• A higher overhead
• A higher verifier overhead

T=50

T=600

Job Error Rate vs. Cheat Probability

• What’s the upper bound of job
error rate.

• When m is 0.5, r is 0.5, job error
rate upper bound is less than 1%.

• When m is 1.0,r is 0.5, job error
rate upper bound is 9%.

Agenda
� Problem Statement

� System Design

� Theoretical Analysis

� Experiment Result

Environment Setup
� CCMR

� Private Cloud:
� 1 Linux server (2.93 GHz, 8-core Intel Xeon CPU and16 GB of RAM)
� Running as a master and the verifier

� Public Cloud
� 12 Amazon EC2 micro instances (Amazon Linux AMI 32-bit, 613 MB

memory, Shared ECU, Low I/O performance)
� Running as 12 slave workers.

� Baseline (Original MapReduce)
� 13 Amazon EC2 micro instances (Amazon Linux AMI 32-bit,

613 MB memory, Shared ECU, Low I/O performance)
� Running as 1 master and 12 slave workers.

Experiment Applications
� Word Count:

� Compute the frequency of each word in a batch of text files.

� 800 text files as input, total input size as 653M.

� 800 map task, 1 reduce task.

� Mahout 20 news group classification:

� MapReduce implementation of Naïve Bayes classification

� Classify news text files into 20 different categories.

� 5 jobs in one application.

Map Phase (Accuracy)

0.0131
0.0108

0.0225

0.0058

0.0028

0.0076

0.0014 0.0005 0

c=0.1 c=0.5 c=1.0

Job Error Rate of Word Count (Map Phase with CCMR)
T=50, v=0.15, m=0.5

r=0.3 r=0.5 r=1.0

When r is 0.3, job error rate ranges from 1.08% to 2.25%.
When r is 1.0, job error rate ranges from 0.14% to 0%.

Map Phase (Performance)

1728
2069 2323

3167

r=0.3 r=0.5 r=1.0

baseline v=0.15, T=50

Running time (s) of Word Count (Map Phase with CCMR)
Compared with Baseline, m=0

Extra execution times are 19%, 34% and 83%, when r increases from 0.3 to 1.0
The extra execution times are proportional to the replication probability r.

Reduce Phase(Performance)

1304
979

1892

1398

Mahout 20 news Group Classification Word Count

Running time (s) of Mahout 20 Class. & Word Count
(Reduce phase with CCMR) compared with baseline

m = 0, r = 0.167, v = 0.07, T = 600

Baseline Execution time (s) CCMR Execution time (s)

Extra execution time are 45% in Mahout classification, 43% in word count application.
The extra execution time are attributed to the vast number of sub-tasks for replication and verification.
E.g., Word Count application consists of 88 replication sub-tasks and 6 verification sub-tasks

Conclusion and Future Work
� Cross Cloud MapReduce(CCMR), a hybrid cloud

MapReduce framework is proposed.

� By utilizing the trusting base gained from private cloud, a
high integrity assurance MapReduce service can be achieved
with majority of computation performed on public cloud.

� Reduce performance overhead and reasoning the optimal
system parameter would be the next step work.

