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Smart Power Grid and Security

• Cyber-spies could use their access to take control of power plants during a 
time of crisis or war

• But they need to hide first; they rely on stealthy malware (e.g., rootkits) to 
stay hidden before the actual strike

• If we are to defeat such cyber-spies, we must better understand their hiding 
capabilities

2

Source: http://www.renewablepowernews.com/wp-content/uploads/smart-grid-doe-illustration.jpg



The Botnet Threat

• A network of compromised computers under the 
control of a bot master

• Command-and-control infrastructure seems 
ideal for managing cyber-spies
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ideal for managing cyber-spies

• Already one of the major security threats

• It is desirable and feasible for the bots to 
achieve stealthy hiding of malware in the kernel

space



Outline of the Talk

• Overview of kernel control flows

• Kernel-queue driven control flow 

attacks
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• Two case studies

• Possible defenses

• Conclusion



Classification of Stealthy Control 

Flow Attacks in the Kernel

• Detour attacks

• Persistent control flow attacks
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• Persistent control flow attacks

• Transient control flow attacks



Kernel Control Flows
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IRQ action queue, tasklet queue, soft timer queue, 

work queues



K-Queues (Kernel Schedulable 

Queues)

• Dynamic schedulable queues in the kernel

• Examples: IRQ action queue, tasklet queue, 

soft timer queue, work queues 
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Soft-timer-driven Transient Control 

Flow Attacks 

function
data 

expires 3. callback

Soft Timer 
Queue 
Engine

2. wait

function
data 

expires

function
data 

expires

8

data 
expires

timer->function 
(timer->data) 
{  ...

}

1. schedule

3. callback

Legitimate

Driver
… Legitimate

Driver

4. run

…

expires

Legitimate

Driver

expires



function
data 

expires 3. callback

Soft Timer 
Queue 
Engine

2. wait

function
data 

expires

function
data 

expires

Soft-timer-driven Transient Control 

Flow Attacks 

9

data 
expires

Malware

Module

1. schedule

3. callback

Legitimate

Driver
… Legitimate

Driver

4. run

…

expires expires

timer->function 
(timer->data) 
{  ...

}



K-Queue-driven Malware in 

Reality
• The Rustock.C spam bot relies on two Windows kernel 

timers to check whether it is being debugged/traced

• The Storm/Peacomm spam bot invokes 
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• The Storm/Peacomm spam bot invokes 

PsSetLoadImageNotifyRoutine to register a malicious 

callback function that disables security products

• Proof-of-concept malware



Proof of Concept Malware

• How do they work?
– Request the first tasklet to interpose on the kernel 

control flow at break-in

– Execute when the first tasklet callback function is 
invoked
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invoked

– Before giving up control, schedule the next tasklet

– Wait for the next callback to happen

• What can they do?
– Collect confidential information (stealthy key logger)

– Mount a DoS attack (stealthy cycle stealer)



The Stealthy Key Logger

• Runs in Linux kernel 2.6.16

TTY flip
buffer

line discipline
buffer

user 
app.

kernel space user space

keyboard
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• Runs in Linux kernel 2.6.16

• Uses a tasklet

• The callback function reads the TTY line 

discipline buffer in the kernel, which can keep a 

history of up to 2,048 keystrokes

• Triggered every one second



Code Skeleton of the Key Logger

DECLARE_TASKLET(keylogger_tasklet, log_it, 0);

static void log_it(unsigned long arg){
dump_keybuffer();
keylogger_timer.expires = jiffies + (HZ);
add_timer(&keylogger_timer);

Schedule the next tasklet

add_timer(&keylogger_timer);
return;

}

struct timer_list keylogger_timer  =
TIMER_INITIALIZER(sched_me, 0, 0); 

static void sched_me(void){
tasklet_schedule(&keylogger_tasklet);   return;

}
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The Stealthy Cycle Stealer

• Compute the factorial of a given number in the 

callback function

• Adjust the value of the number and the callback • Adjust the value of the number and the callback 

frequency to obtain different slowdown factors
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Slowdown Factors of the Stealthy 

Cycle Stealer
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Malware Remaining Available• Timer-driven: Frequency: 

one callback 

per second

� When the number is 41, about 1/3 of total CPU time is consumed by 
the malware

� The CPU is saturated when the number reaches 48
� Tested on an Intel Xeon at 2.93GHz with 196MB memory and 6GB 

hard disk
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The Stealthy Cycle Stealer

• Compute the factorial of a given number in the 

callback function

• Adjust the value of the number and the callback • Adjust the value of the number and the callback 

frequency to obtain different slowdown factors

• Manipulate the kernel accounting data to hide 

CPU time wasted
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Outline of Possible Defense

• Idea: a legitimate K-Queue callback function and 
all functions that it calls transitively should always 
conform to a predetermined control flow graph

• Complete mediation of K-Queue execution

– Check the callback function against a whitelist of 
legitimate K-Queue callback functions

– The whitelist can be built from a static analysis of the 
kernel
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Conclusion

• Maintaining a stealthy control over the kernels in 
the power grid cyber space has become an 
important strategy for the adversaries

• Transient kernel control flow attacks manipulate 
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• Transient kernel control flow attacks manipulate 
dynamic schedulable kernel queues (K-queues) 
to achieve continual malicious function 
execution

• Two illustrative examples show the feasibility 
and potential effectiveness of such attacks


