Flying Under the Radar:

Maintaining Control of Kernel without Changing
Kernel Code or Persistent Data Structures

Jinpeng Wei Calton Pu Keke Chen
Florida International Georgia Institute of Wright State University
University Technology keke.chen@wright.edu
weijp@cs.fiu.edu calton@cc.gatech.edu

7t Annual Cyber Security and Information
Intelligence Research Workshop (CSIIRW)

Oak Ridge National Laboratory
October 12 - 14, 2011

Smart Power Grid and Security

The Smart Grid Can Deliver

Source: http://www.renewablepowernews.com/wp-content/uploads/smart-grid-doe-illustration.jpg

« Cyber-spies could use their access to take control of power plants during a
time of crisis or war

- But they need to hide first; they rely on stealthy malware (e.g., rootkits) to
stay hidden before the actual strike

- If we are to defeat such cyber-spies, we must better understand their hiding
capabilities

The Botnet Threat

* A network of compromised computers under the
control of a bot master

- Command-and-control infrastructure seems
ideal for managing cyber-spies

 Already one of the major security threats

* |t is desirable and feasible for the bots to
achieve stealthy hiding of malware in the kernel
space

Outline of the Talk

 Overview of kernel control flows

» Kernel-queue driven control flow
attacks

 Two case studies
 Possible defenses
e Conclusion

tion of Stealthy Control

Ica

Class

Flow Attacks in the Kernel

e
)
)
e
.
|
S
.
..
.
lon N & 2
l~ AN/
- VVVY
| VWV W
t]
-
.
.
..
-
.z]
__
\ /
N/
<«
"

-

 Detour attacks

[el

tent control flow attacks

IS

 Pers

E
P
P)
.
F)
...
.
. |
.
e
.
..
.
~Nn .,
VYV |

.

-
-
-

-
-

-

-
M”
.
.

=

-

-
~

N\

t control

ien

e Trans

:ﬁ
o

E
.
P
f
e
|
P
6
.
- N .
N~z
DY Y B g
:M*:::?””m”%*””mﬁ
-
-
.
]
.
N\
N 4

-
-

-

-

-

-

.
=

i
-
-

.

-

*
.
-

*

-

.

|
\

=
.
.
.
.
.
.
.
-

}—>

ST

Kernel Control Flows

— A A
Exception handlers

Interrupt
Interrupt Service disabled
Routines | ‘U]
——————————————————————————————— ¥— - ——-Interrupt - —————-|- -
context
Tasklets <SS
Softirgs < : Kernel
Space
Soft timers |S{[[T
Kernel threads < Workqueues r»’]DDDDDDDD Ienrﬁgluerg

IRQ action queue, tasklet queue, soft timer queue,
work queues

|_processes | space

K-Queues (Kernel Schedulable

Queues)

« Dynamic schedulable queues in the kernel

« Examples: IRQ action queue, tasklet queue,
soft timer queue, work queues

The soft) add_timer
] [tvec_bases |
timer queue: | @
» next » next |——» ... —— next
function function function
data data data
expires —| expires expires
v -E

Soft-timer-driven Transient Control
Flow Attacks

Soft Timer
2. wait Que_ue
Engine
function function function
..... y| daia |——> | dala y| data @
. expires expires expires 43 /] &fa"back
0“‘ 1.schedule sttt ‘,I;_I:Un timer->function
.. ST e (timer->data)
‘0..’ : - {
Ny, ; }
Legitimate Legitimate Legitimate
Driver Driver Driver

Soft-timer-driven Transient Control
Flow Attacks

Soft Timer
2. wait Que_ue
Engine
function function function
..... y[dafa |——— | daia » [dafa m

expires expires expires M &fallback

.
*
0“
% 4 mmdamdiiln yaummEEEEEEEmRaaag,,, . .
*,, 1. schedule R timer->function
“ S A T, (timer->data)
* [] San,
’0. . {
0.. n
0..

.)
Malware | | Legitimate | Legitimate
Module Driver Driver

K-Queue-driven Malware in
Reality

* The Rustock.C spam bot relies on two Windows kernel
timers to check whether it is being debugged/traced

* The Storm/Peacomm spam bot invokes
PsSetLoadlmageNotifyRoutine to register a malicious
callback function that disables security products

* Proof-of-concept malware

10

Proof of Concept Malware

* How do they work?

— Request the first tasklet to interpose on the kernel
control flow at break-in

— Execute when the first tasklet callback function is
Invoked

— Before giving up control, schedule the next tasklet
— Wait for the next callback to happen

* What can they do?

— Collect confidential information (stealthy key logger)
— Mount a DoS attack (stealthy cycle stealer)

11

The Stealthy Key Logger

keyboard i TTY fhi line discipline user
Y = bufferp > buffell? | > app.

kernel space | user space

* Runs in Linux kernel 2.6.16
 Uses a tasklet

* The callback function reads the TTY line
discipline buffer in the kernel, which can keep a
history of up to 2,048 keystrokes

* Triggered every one second

Code Skeleton of the Key Logger

DECLARE_TASKLET (keylogger _tasklet, log_it, 0);

static void log_it(unsigned long arg){
dump_keybuffer();
[keylogger_timer-eXpireS = jifies + (HZ); F Schedule the next tasklet
add_timer(&keylogger_timer);
return;

}

struct timer_list keylogger_timer =
TIMER_INITIALIZER(sched_me, 0, 0);

static void sched_me(void){
tasklet_schedule(&keylogger tasklet); return;

}

13

The Stealthy Cycle Stealer

« Compute the factorial of a given number in the
callback function

« Adjust the value of the number and the callback
frequency to obtain different slowdown factors

14

Slowdown Factors of the Stealthy
Cycle Stealer

 Timer-driven:

+ Tasklet-driven:

%CPU

‘ —O—Malware —x—Remaining Available

Level of DoS Attack Represented by the Number

Frequency:
one callback
per second

0 When the number is 41, about 1/3 of total CPU time is consumed by

the malware

a The CPU is saturated when the number reaches 48

QO Tested on an Intel Xeon at 2.93GHz with 196MB memory and 6GB

hard disk

15

The Stealthy Cycle Stealer

« Compute the factorial of a given number in the
callback function

« Adjust the value of the number and the callback
frequency to obtain different slowdown factors

« Manipulate the kernel accounting data to hide
CPU time wasted

16

Outline of Possible Defense

 |dea: a legitimate K-Queue callback function and
all functions that it calls transitively should always
conform to a predetermined control flow graph

« Complete mediation of K-Queue execution

— Check the callback function against a whitelist of
legitimate K-Queue callback functions

— The whitelist can be built from a static analysis of the
kernel

17

Conclusion

« Maintaining a stealthy control over the kernels in
the power grid cyber space has become an
important strategy for the adversaries

« Transient kernel control flow attacks manipulate
dynamic schedulable kernel queues (K-queues)
to achieve continual malicious function
execution

« Two illustrative examples show the feasibility
and potential effectiveness of such attacks

18

