
Flying Under the Radar:
Maintaining Control of Kernel without Changing

Kernel Code or Persistent Data Structures

Jinpeng Wei Calton Pu Keke ChenJinpeng Wei

Florida International

University

weijp@cs.fiu.edu

Calton Pu

Georgia Institute of

Technology

calton@cc.gatech.edu

Keke Chen

Wright State University

keke.chen@wright.edu

7th Annual Cyber Security and Information
Intelligence Research Workshop (CSIIRW)

Oak Ridge National Laboratory
October 12 - 14, 2011

Smart Power Grid and Security

• Cyber-spies could use their access to take control of power plants during a
time of crisis or war

• But they need to hide first; they rely on stealthy malware (e.g., rootkits) to
stay hidden before the actual strike

• If we are to defeat such cyber-spies, we must better understand their hiding
capabilities

2

Source: http://www.renewablepowernews.com/wp-content/uploads/smart-grid-doe-illustration.jpg

The Botnet Threat

• A network of compromised computers under the
control of a bot master

• Command-and-control infrastructure seems
ideal for managing cyber-spies

3

ideal for managing cyber-spies

• Already one of the major security threats

• It is desirable and feasible for the bots to
achieve stealthy hiding of malware in the kernel

space

Outline of the Talk

• Overview of kernel control flows

• Kernel-queue driven control flow

attacks

4

• Two case studies

• Possible defenses

• Conclusion

Classification of Stealthy Control

Flow Attacks in the Kernel

• Detour attacks

• Persistent control flow attacks

5

• Persistent control flow attacks

• Transient control flow attacks

Kernel Control Flows

6

IRQ action queue, tasklet queue, soft timer queue,

work queues

K-Queues (Kernel Schedulable

Queues)

• Dynamic schedulable queues in the kernel

• Examples: IRQ action queue, tasklet queue,

soft timer queue, work queues

7

function

data

next

expires

function

data

next

expires

function

data

next

expires

…

tvec_bases

… … …

foo_tmout

add_timerThe soft
timer queue:

Soft-timer-driven Transient Control

Flow Attacks

function
data

expires 3. callback

Soft Timer
Queue
Engine

2. wait

function
data

expires

function
data

expires

8

data
expires

timer->function
(timer->data)
{ ...

}

1. schedule

3. callback

Legitimate

Driver
… Legitimate

Driver

4. run

…

expires

Legitimate

Driver

expires

function
data

expires 3. callback

Soft Timer
Queue
Engine

2. wait

function
data

expires

function
data

expires

Soft-timer-driven Transient Control

Flow Attacks

9

data
expires

Malware

Module

1. schedule

3. callback

Legitimate

Driver
… Legitimate

Driver

4. run

…

expires expires

timer->function
(timer->data)
{ ...

}

K-Queue-driven Malware in

Reality
• The Rustock.C spam bot relies on two Windows kernel

timers to check whether it is being debugged/traced

• The Storm/Peacomm spam bot invokes

10

• The Storm/Peacomm spam bot invokes

PsSetLoadImageNotifyRoutine to register a malicious

callback function that disables security products

• Proof-of-concept malware

Proof of Concept Malware

• How do they work?
– Request the first tasklet to interpose on the kernel

control flow at break-in

– Execute when the first tasklet callback function is
invoked

11

invoked

– Before giving up control, schedule the next tasklet

– Wait for the next callback to happen

• What can they do?
– Collect confidential information (stealthy key logger)

– Mount a DoS attack (stealthy cycle stealer)

The Stealthy Key Logger

• Runs in Linux kernel 2.6.16

TTY flip
buffer

line discipline
buffer

user
app.

kernel space user space

keyboard

12

• Runs in Linux kernel 2.6.16

• Uses a tasklet

• The callback function reads the TTY line

discipline buffer in the kernel, which can keep a

history of up to 2,048 keystrokes

• Triggered every one second

Code Skeleton of the Key Logger

DECLARE_TASKLET(keylogger_tasklet, log_it, 0);

static void log_it(unsigned long arg){
dump_keybuffer();
keylogger_timer.expires = jiffies + (HZ);
add_timer(&keylogger_timer);

Schedule the next tasklet

add_timer(&keylogger_timer);
return;

}

struct timer_list keylogger_timer =
TIMER_INITIALIZER(sched_me, 0, 0);

static void sched_me(void){
tasklet_schedule(&keylogger_tasklet); return;

}

13

The Stealthy Cycle Stealer

• Compute the factorial of a given number in the

callback function

• Adjust the value of the number and the callback • Adjust the value of the number and the callback

frequency to obtain different slowdown factors

14

Slowdown Factors of the Stealthy

Cycle Stealer

30

40

50

60

70

80

90

100

%
C

P
U

Malware Remaining Available• Timer-driven: Frequency:

one callback

per second

� When the number is 41, about 1/3 of total CPU time is consumed by
the malware

� The CPU is saturated when the number reaches 48
� Tested on an Intel Xeon at 2.93GHz with 196MB memory and 6GB

hard disk

15

0

10

20

30

26 28 30 32 34 36 38 40 42

Level of DoS Attack Represented by the Number

• Tasklet-driven:

The Stealthy Cycle Stealer

• Compute the factorial of a given number in the

callback function

• Adjust the value of the number and the callback • Adjust the value of the number and the callback

frequency to obtain different slowdown factors

• Manipulate the kernel accounting data to hide

CPU time wasted

16

Outline of Possible Defense

• Idea: a legitimate K-Queue callback function and
all functions that it calls transitively should always
conform to a predetermined control flow graph

• Complete mediation of K-Queue execution

– Check the callback function against a whitelist of
legitimate K-Queue callback functions

– The whitelist can be built from a static analysis of the
kernel

17

Conclusion

• Maintaining a stealthy control over the kernels in
the power grid cyber space has become an
important strategy for the adversaries

• Transient kernel control flow attacks manipulate

18

• Transient kernel control flow attacks manipulate
dynamic schedulable kernel queues (K-queues)
to achieve continual malicious function
execution

• Two illustrative examples show the feasibility
and potential effectiveness of such attacks

