
Result Integrity Check for MapReduce Computation

on Hybrid Clouds
Yongzhi Wang, Jinpeng Wei

Florida International University

Miami, USA

ywang032@cis.fiu.edu, weijp@cis.fiu.edu

Mudhakar Srivatsa

IBM T.J. Watson Research Center

Yorktown Heights, USA

msrivats@us.ibm.com

Abstract— Large scale adoption of MapReduce computations

on public clouds is hindered by the lack of trust on the participat-

ing virtual machines, because misbehaving worker nodes can

compromise the integrity of the computation result. In this paper,

we propose a novel MapReduce framework, Cross Cloud MapRe-

duce (CCMR), which overlays the MapReduce computation on

top of a hybrid cloud: the master that is in control of the entire

computation and guarantees result integrity runs on a private and

trusted cloud, while normal workers run on a public cloud. In

order to achieve high accuracy, CCMR proposes a result integrity

check scheme on both the map phase and the reduce phase, which

combines random task replication, random task verification, and

credit accumulation; and CCMR strives to reduce the overhead

by reducing cross-cloud communication. We implement our ap-

proach based on Apache Hadoop MapReduce and evaluate our

implementation on Amazon EC2. Both theoretical and experi-

mental analysis show that our approach can guarantee high result

integrity in a normal cloud environment while incurring non-

negligible performance overhead (e.g., when 16.7% workers are

malicious, CCMR can guarantee at least 99.52% of accuracy with

33.6% of overhead when replication probability is 0.3 and the

credit threshold is 50).

Keywords— MapReduce, Integrity Assurance, Hybrid Cloud

I. INTRODUCTION

MapReduce [1] has become the dominant paradigm for
large-scale data processing applications such as web indexing,
data mining, and scientific simulation. However, MapReduce
applications normally are running on a cluster of hundreds or
thousands of computation nodes. Most MapReduce customers
cannot afford or do not want to invest in computer clusters of
such a large scale. The emergence of Cloud Computing [2][3]
provides an economical alternative for getting a large-scale
cluster on demand, thus MapReduce in the cloud has been
embraced by the market with enthusiasm. For example,
various services such as Amazon Elastic MapReduce [12] and
Microsoft Daytona [13] are provided to facilitate the transition
of MapReduce applications to the cloud.

However, MapReduce applications running on the cloud
suffer from the integrity vulnerability problem: the malicious
participant can render the overall computation result useless.
While the cloud vendors can be trusted and the cloud
infrastructure (i.e., the virtualization layer) can be assumed to
be secure, the virtual machines and the MapReduce
applications installed in the virtual machines cannot be trusted
to always return correct results. For instance, [14][15] points
out a security vulnerability that Amazon EC2 suffers from:
some members of the EC2 community can create and upload

malicious Amazon Machine Images (AMIs), which, if widely
used, could flood the EC2 cloud with virtual machine
instances that contain malicious applications, including
MapReduce. The above threat puts a MapReduce customer in
a dilemma: using public clouds has economic advantage but
incurs the risk of getting wrong computation results; on the
other hand, avoiding the public cloud completely (i.e., running
everything “in house” or in the private cloud) can guarantee
result accuracy, but there will be less economic benefit.

In this paper, we propose Cross Cloud MapReduce
(CCMR for short) that combines the benefits of private clouds
and public clouds. CCMR overlays the MapReduce
framework on top of a hybrid cloud which consists of a private
cloud and a public cloud. The master that is in control of the
entire computation and guarantees result integrity runs on a
private and trusted cloud, while normal workers run on the
public cloud and are untrusted. We further introduce a special
type of workers (called verifiers) on the private cloud to detect
collusive malicious workers on the public cloud. The key
rationale of our solution is to retain control and trust “at
home”, while delegating the more resource-intensive
computations to the public cloud.

We explore the design space of result integrity checking in
both phases of MapReduce: the map phase and the reduce
phase. We extend the capability of the master to propose the
result integrity check mechanism, which combines several
integrity assurance techniques (replication [8][10], verification
[8][9], and credit-based trust management [8]). Due to the
different properties of map and reduce phases, CCMR uses the
result integrity check on different objects. In the map phase,
integrity check is performed on map tasks. In the reduce
phase, CCMR factors each reduce task into multiple sub-tasks
and applies the integrity check on sub-tasks.

We make the following contributions in this paper: 1) we
propose a novel cross-cloud MapReduce architecture that
combines the benefits of private clouds and public clouds; 2)
we propose a result integrity check mechanism that combines
several integrity assurance technique to enhance the result
integrity of MapReduce on both the map and reduce phases; 3)
we analyze the security of CCMR and quantitatively measure
its accuracy and overhead; 4) we implement CCMR based on
Apache Hadoop MapReduce [7] and run a series of
experiments over the commercial public cloud (Amazon EC2
[2]). We show that CCMR is an efficient framework to
guarantee high computation integrity.

The rest of this paper is organized as follows. Section II
describes the system assumptions and attacker model. Section

III presents the system design of CCMR. Section IV makes the
theoretical analysis in terms of security, accuracy, and over-
head. Section V describes and analyzes the experiment result.
Section VI discusses related work, and Section VII concludes
the paper and points out future work.

II. SYSTEM ASSUMPTIONS AND ATTACKER MODEL

A. System Assumptions

In CCMR, we assume the private cloud is trusted since it is
deployed within the user’s organization. Therefore, the master
and the verifiers are trusted, since they are deployed on the
private cloud. On the public cloud, we assume the
infrastructure provided by the cloud provider, such as the
virtualized hardware and network, is trusted. However, we
assume the virtual image used by the customer is untrusted.
That makes the MapReduce entities running on the public
cloud untrusted. Since our paper only focuses on the
MapReduce computing, we assume Distributed File System
(DFS) of MapReduce is trusted. For example, the integrity of
DFS can be guaranteed by the techniques proposed in [1][6].

In CCMR, the master requires each worker who runs a
task/sub-task submit the hash value of its computation result to
the master. We further assume the hash value is consistent
with the actual task output. Such an assumption can be
realized by applying the commitment-based protocol proposed
in [4] (i.e., check the correctness of the hash value by the later
task that takes the current task output as its input). Finally, we
assume that the tasks running on each worker are
deterministic. We use this assumption to guarantee that
multiple executions of the same task/sub-task by honest
workers return the same result.

B. Attacker Model

We model the attacker as an intelligent adversary that
controls the malicious nodes on the public cloud. It receives
and correlates information collected by the malicious nodes
and coordinates them to cheat at the right time in order to
introduce as many errors as possible to the final result without
detection. For example, if the master replicates the same task
on two malicious workers, the adversary can instruct them to
return the same erroneous results (i.e., to collude) so that
simply comparing the results cannot detect the error. We call
such malicious workers collusive workers.

III. SYSTEM DESIGN

A. System Overview and Architecture

CCMR overlays MapReduce on a hybrid cloud which
consists of one private cloud and one public cloud, as shown
in Fig. 1. The master node and a small number of slave nodes
(called verifiers) are deployed on the trusted private cloud
within the customer’s organization. Other slave nodes (called
workers) and Distributed File System (DFS) are deployed on
the public cloud. According to our assumption, the verifiers,
the master and the DFS are trusted, yet the workers are not.

In both the map and the reduce phases, CCMR defines
three types of tasks: the original task, the replication task, and

Fig. 1. Architecture of CCMR.

the verification task. Both the original and replication task are
executed by the workers on the public cloud. While the verifi-
cation task is executed by the verifier on the private cloud.
The replication task repeats the original task’s work to validate
the original task result. While the verification task repeats the
original task’s work to verify the result returned by the repli-
cation task, since the replication task is not trusted. In the map
phase, the replication and verification task completely repeat
the original map task’s work. While in the reduce phase, the
replication and verification reduce task repeats only a portion
of original reduce task. Each repeated portion in a reduce task
is called a sub-task.

In both Map and Reduce phase, CCMR applies a two-layer
check on each returned original task/sub-task result: replica-
tion and verification. In order to achieve high accuracy, credit
based trust management is also applied on each worker. The
master only accepts a worker’s task/sub-task results when it
achieves certain credit threshold.

The task/sub-task execution in CCMR differs from the
original MapReduce in both the map and reduce phase. Rather
than passively waiting for the worker to ask for task/sub-task,
the master of CCMR randomly selects the worker to execute a
certain task/sub-task. When a task/sub-task is finished, CCMR
requires the worker to return the result. In order to reduce the
communication cost, the worker only returns the hash value of
the result. The actual result of replication and verification
task/sub-tasks will not be stored back to the DFS.

Given the different characteristic of map and reduce phas-
es, we propose different integrity check solutions.

B. Map Phase Integrity Check

CCMR applies two-layer check on each returned original
map task result. In the first layer, CCMR creates a replication
task and assigns the task to another worker. When the worker
returns the replication task result, CCMR compares the origi-
nal and replication task results. If the results are not consistent,
at least one of the workers are cheating, so CCMR will create
a verification task and assign it to a verifier to detect the mali-
cious mapper(s). If the original and replication task results are
consistent, CCMR launches the second layer check. In the
second layer check, CCMR creates a verification task and as-
signs it to a verifier to verify the consistent results. If the con-
sistent results are different from the verification task result, the
two mappers providing the results are all determined as mali-
cious. The reason for the second layer check is to detect collu-
sive workers. To reduce overhead, CCMR creates replication
and verification tasks with certain probabilistically. Each orig-
inal map task is replicated with replication probability, and
each consistent result is verified with verification probability.

Since replication or verification is not performed for every
task, there is a possibility that some bad results can evade the
detection of the two-layer check. In order to overcome this
drawback, CCMR performs the credit based trust management
to boost the job result accuracy. Initially, the master sets the
credit for each mapper as zero, and maintains a history cache
for each mapper to record the id and result (hash value) of
original map tasks the mapper has executed. When a mapper
passes one two-layer check, the master increments the credit
for this mapper and updates the mapper’s history cache. The
actual task result is buffered in the mapper’s local storage be-
fore it becomes trusted. When a mapper’s credit achieves cer-
tain threshold (called credit threshold), the mapper becomes
trusted temporarily. The task results buffered in its local stor-
age are accepted by the master in a batch. At the same time,
the credit and the history cache of this mapper are reset and
this mapper becomes untrusted again. The mapper has to earn
credit again in order to submit the next batch results to the
master. If a mapper fails any two-layer check before it
achieves credit threshold, it is determined to be malicious and
is added to a black list. The actual results buffered in its local
storage are discarded, and the tasks cached in its history cache
will be re-executed.

Fig. 2 presents the control flow of CCMR. In the figure,
W1 and W2 are two slave workers randomly chosen from the
public cloud. The “Arbitrate/Verify task” step is completed by
the verifier on the private cloud, and the remaining compo-
nents in the figure are all performed on the master. Notice that
in the figure, instead of assigning the replication and original
task simultaneously, the “replication” decision (step 3) is
made after W1 returns the original task result R2 (step 2). We
call such a technique hold-and-test, and it makes it harder for
malicious workers to collude because the adversary cannot
predict whether the replication task will be assigned to another
collusive worker. A detailed discussion of the benefit of hold-
and-test is deferred to section IV.A.

If the total number of original map tasks in a job is less
than the credit threshold, CCMR directly assigns all tasks to
verifiers since the computing workload is not significant.
Therefore, the accuracy in this case is still guaranteed. If the
total number of original map tasks is large enough, a higher
credit threshold would guarantee a higher accuracy, as our
theoretic analysis shows (Section IV.A).

C. Reduce Phase Integrity Check

In the reduce phase, the approach presented in section III.B
can be directly applied if the number of reduce tasks is big
enough (i.e., bigger than the credit threshold). However, in
some applications, the reduce task number is smaller than the
credit threshold, even though the computing workload for each
reduce task is significant. For example, the word count appli-
cation in section V.B contains only one original reduce task.
However, this single task processes 2.7M of records (1.07GB
of data) in the input and generates 598K of records in the out-
put, and it takes 262 seconds. In this case, directly verifying
the entire reduce task is expensive in terms of computation
and communication cost. Therefore, we break down an origi-
nal reduce task into many sub-tasks and apply two-layer check
on each sub-tasks to achieve high accuracy.

Fig. 2. Control Flow of CCMR

In MapReduce, each map task stores its output locally in
the form of <key, value> tuples, which are sorted by key. Each
reduce task has to fetch tuples from each map task output and
aggregates tuples that contain the same key. If we can precise-
ly fetch a portion of map output that only contains a certain
key, we can reproduce the portion of the original reduce task
that is only related to that specific key. By applying two-layer
check to the result of each portion (called a sub-task), we can
guarantee high accuracy of the original reduce task.

Our reduce phase integrity check uses the same high-level
ideas as the map phase. Each original sub-task returns its re-
sult to the master in the form of a hash value (we call each
returned sub-task result as a report). The master applies first-
layer (replication) and second-layer (verification) check on
each report with replication probability and verification prob-
ability, respectively. The replication sub-task is generated after
the result of original sub-task is returned to the master (hold-
and-test). In addition, an original reduce task result is accepted
by the master only when all its sub-tasks pass two-layer check,
which is essentially a credit-based trust management. The
credit threshold is the number of sub-tasks in the original re-
duce task. In the case that the number of sub-tasks in a reduce
task is smaller than the credit threshold, we simply assign the
verifier to verify the entire original reduce task.

Due to the special characteristic of reduce phase, in order
to make the above idea practical, we need to overcome three
challenges. 1) Creating a sub-task for each key would incur
significant overhead because in many cases, a reduce task can
generate many keys (e.g., 598K keys in the word count appli-
cation in Section V.B). 2) So far our two-layer check only
checks the sub-task reports submitted by the reducer. If a ma-
licious reducer cheats on some sub-tasks but does not send
these reports to the master, the master would have no way to
detect the error. 3) The replication and verification sub-tasks
should efficiently locate the portion of map task output with
the key they are interested in.

We address the first challenge by requiring each report to
cover a range of (instead of only one) consecutive keys. With
this improvement, the number of sub-tasks can be reduced.

For the second challenge, CCMR requires that consecutive
reports must overlap in one key. Since the reduce task result is
sorted by the key, this requirement ensures that no key in the
output is skipped in the reports. In case that the master does
not know the range of keys in the original reduce task output,

the master can insert dummy records in the job input data,
which will generate reduce result tuples with predictable
smallest and largest keys. For example, when the type of the
key is integer, the master can insert records with keys Inte-
ger.MIN_VALUE and Integer.MAX_VALUE. When the re-
duce task is finished, the output can be sanitized to remove the
dummy records.

For the third challenge, each map task in CCMR builds a
key table to facilitate record look up in the map task output, as
shown in Fig. 3. Each map task stores the map output file lo-
cally, which consists of key-value pairs sorted by key. Notice
that multiple key-value pairs can have the same key (e.g., Key
3), and for simplicity we call such key-value pairs a block.
Each record in the key table corresponds to a unique key and it
stores information about the block that contains this key, in-
cluding the position and length of the key, as well as the
length of the block. The length of each key table record is
fixed, while the length of key and values in the map output file
varies. Hence, the access of each key on the map output file
needs to go through the key table. Since the key table is sorted
by key, CCMR employs binary search to find the biggest and
smallest key contained in the report key range (e.g., key 2 to
key 9). When the keys (key 3 through key 8) are found, the
key position and the record length directs the reducer to fetch
the portion of map output containing the keys of interest.Since
each key table is generated by a mapper, a malicious mapper
could manipulate its content to fool CCMR. As a defense,
CCMR requires each map task to submit the hash value of its
key table to the master along with that of task result, and the
consistency of the hash value with the key table can be
achieved by the commitment-based protocol [4].

Fig. 4 depicts how CCMR works in the reduce phase of
word count application. The word count application calculates
the frequency of each word appeared in a collection of text
files. For simplicity, our example only has two map tasks
(map 0 and map 1) and one original reduce task (reduce 0). As
Fig. 4 shows, each map task creates a key table (Step 1). When
original reduce task (reduce 0) starts to output (step 3), sub-
task reports (e.g., report 1 and 2) are sent to the master sequen-
tially. The report format is <start key, end key, hash value of
the output records covered in the key range> (Step 4). Since
consecutive reports must overlap in one key (According to the
solution of challenge 2), the key “Driver” appears in both re-
port 1 and report 2.When the master receives report 1(Step 5),
it launches the first layer check (with replication probability)

Fig. 3. Locating Map Output Between Key 2 and Key 9 using Key Table

Map 0

Map 1

Reduce 0

<Apple, 1>

<Banana,1>

<Cat, 2>

<Egg,2>

<Fish, 2>

<Apple, 2>

<Cat, 1>

<Driver, 1>

<Good, 3>

<0,5,9>

<10,6,10>

<21,3,7>

<29,3,7>

<37,4,8>

<0,5,9>

<10,3,7>

<18,6,10>

<28,4,8>

1

1

1

1

<Apple, 3>
<Banana, 1>

<Cat, 3>
<Driver, 1>

<Egg, 2>
<Fish, 2>

<Good, 3>

…...

Reduce 0

Output

Report 1:

<Apple, Driver, hash#1>

Report 2:

< Driver, Good, hash#2>

2

2

3

Master

5

Replicate? 6Sub-task 1 YES

…...

4

7

7

<Apple, 3>
<Banana, 1>

<Cat, 3>
<Driver, 1>

87

7

Map 0

Output

Map 1

Output

Report 1':

<Apple, Driver, hash#1>9

10

Consistency Check

and Verify if needed
11

Map 1 Key

Table

Map 0 Key

Table

…...

…...

…...

…...

Fig. 4. Control Flow of CCMR on Reduce Phase

 on report 1 by initiating a replication sub-task. The replication
sub-task fetches input with a key range of (Apple, Driver)
from each map task (map 0 and map 1) with the help of key
tables (Step 7). When it finishes reducing (Step 8), the replica-
tion sub-task sends a report to the master (Step 9), and the
master compares the report with the original sub-task report
(Step 10). If they are consistent, a second layer check is per-
formed to verify the consistent result (Step 11). The verifica-
tion sub-task also resorts to the key tables to fetch the input.

IV. SYSTEM ANALYSIS

A. Quantitive Analysis

We give quantitative analysis on CCMR. Since the major
differences of map and reduce phase in CCMR is only the
object used to perform two-layer check (task in map phase and
sub-task in reduce phase), we can use the same model to ana-
lyze both phases. In our analysis, we denote the malicious
worker fraction on the public cloud as m. We assume that the
adversary controls all malicious workers. In other words, each
malicious worker is collusive, and there exists only one collu-
sive group.

Adversary Strategy: Assuming the goal of the adversary
is to inject as many errors as possible and yet not reveal the
malicious worker, we analyze the strategy of the adversary
under CCMR as follows. Suppose a task/sub-task is assigned
to a malicious worker.

Case 1. If the adversary has not seen a similar task/sub-
task (i.e., the one with the same input) before, it has to make a
decision on whether to cheat, and remembers the decision, the
current task/sub-task and the returned result. Due to the exist-
ence of hold-and-test (section III.B), the adversary is not al-
lowed to defer the decision to the time that it see the replica of
the current task/sub-task. If the decision is not to cheat, the
worker is obviously safe (i.e., not to be caught). If the decision
is to cheat, the malicious worker survives the first-layer check
only when either the current task/sub-task is not replicated, or
the replica of the current task/sub-task is assigned to another
malicious worker.

Case 2. If the adversary has seen a similar task/sub-task
before, it is assured that the current task/sub-task is a replica-
tion task/sub-task. It can simply ask the worker to take the
same action for the current task/sub-task as the one it has seen

TABLE I. CCMR SYSTEM SETTING PARAMETERS

Notation Name Comment

m malicious

worker

fraction

The fraction of malicious workers on the public

cloud.

c cheat prob-

ability

The probability that the adversary decides to cheat in

Case 1 of the Adversary Strategy.

r replication

probability

The probability that an original task/sub-task is

replicated.

v verification

probability

The probability that consistent task/sub-task results

are verified.

T credit

threshold

The credit a mapper/reducer has to achieve in order

for its batch of results to be accepted by the master.

L survival

length

The expected number of batches a malicious worker

can submit to the master before it is detected.

E batch error

number

The expected number of incorrect task/sub-task

results in one accepted batch.

e batch error

rate

The fraction of incorrect task/sub-task results in one

batch of results.

J job error

rate

The ratio of incorrect task/sub-task results number to

the total task/sub-task results number in one job.

O overhead The expected number of extra executions for each

task/sub-task performed on the public cloud.

V verifier

overhead

The expected number of extra executions for each

task/sub-task performed on the private cloud.

before. In this case, it is guaranteed that the malicious worker
will survive the first-layer check.

Since in case 2 the adversary just follows its decision made
previously in case 1, the risk of revealing a malicious worker
is essentially determined by the adversary’s decision in case 1.
Because the master controls task assignment and replication in
a randomized manner, the adversary in case 1 cannot predict
whether cheating at the current task is safe or not. On the other
hand, since the master constantly applies the two-layer check
on tasks/sub-tasks in a randomized manner, the adversary can-
not tell whether cheating at the current task/sub-task has a
smaller chance of detection than cheating at other tasks/sub-
tasks. Therefore, the only thing the adversary can do in case 1
is to make a random guess/predict in terms of whether cheat
can be detected. We model the adversary’s decision making
behavior in case 1 as a random variable, cheat probability c.
Note that adversaries who cheat rarely (e.g., only once out of
hundreds of tasks) can still fit in our model because we can set
c as a small value close to 0.

We define several metrics to measure the accuracy and
overhead of CCMR in both map and reduce phases, and sum-
marize the model in parameters in TABLE I. We provide the
analysis result in Theorem 1.

Theorem 1: Assuming that the assignment of tasks/sub-tasks
is uniformly distributed across all workers on the public cloud,
and the detected malicious workers are not added to the black
list, the probability for a malicious mapper/reducer to survive
after executing n original tasks/sub-tasks is

∑∑
=

−

=

−−

−−−






 −









=

n

i

in

j

jinji

n vcrmrcc
j

in

i

n
S

0 0

))1(())1(()1((1)

The survival length of a malicious mapper/reducer is

)1/(TT SSL −= (2)

The batch error number is

∑ ∑
= =

−−

−−−
















−

×=

T

k

k

i

ikikT
vcrmrcc

i

k

kT

T
kE

0 0

)))1(())1(()1(((3)

The batch error rate is TEe /= (4)

The job error rate is meJ = (5)

 Let ∑
−

=

+−−++−−−=

2

0

)1()1(1
T

k

kSmmvmrcrcmvrcmrcvrvrcU

The overhead for each task/sub-task is

USrcmvrcmrccmcvmr

SrmmrrmO

T

k

k

T

/)))(1)(1(

)1((

2

0

1

∑
−

=

−

+−+−−

+−−−+=

 (6)

The verifier overhead for each task/sub-task is

USrvcrvmvmrcm

ScmvcmvcvcmrvmcvcmrmV

T

k

k

T

/))1)(1(

)()()1((

2

0

1

∑
−

=

−

−++−+

+−−++−+−=

 (7)

The derivation of Sn is the foundation of Theorem 1. Sn is
the probability summation of all permutations on n independ-
ent events. Each event falls into one of three cases. For each
original task/sub-task it executes, a malicious worker can pass
the two-layer check in the following three cases: 1) the worker
does not cheat; 2) the worker cheats, but the task/sub-task is
not replicated; 3) the worker cheats, the task/sub-task is repli-
cated, but the replication task/sub-task is assigned to another
malicious worker and their results are not verified. The proba-
bilities of the above cases are (1-c), c(1-r), and crm(1-v), re-
spectively. By summing up the probabilities of different per-
mutations, we get (1). Further details of the proof of Theorem
1 are elided to save space but are available upon request.

We present several simulations based on Theorem 1 to
quantitatively analyze the accuracy and overhead of CCMR.
We first simulate the job error rate under different system pa-
rameters in Fig. 5(a). The four curves show that when other
parameters (c, v, r and m) are fixed, increasing credit threshold
T would reduce the job error rate J, and when T is greater than
200, J is close to 0 for any parameter combinations in the fig-
ure. Moreover, when T and other parameters are fixed, J
would increase if malicious worker fraction m is increased or
the replication probability r is decreased. For example, when T
is 50 and r is 0.5, J increases from near 0 to 0.06 when m in-
creases from 0.5 to 1.0; when T is 50 and m is 1.0, J increases
from 0.06 to 0.15 when r drops from 0.5 to 0.3.

Fig. 5(b) shows the relationship between cheat probability
c and job error rate J with fixed T and v. According to the
simulation, when T is 50, r is 0.5, and m is 0.5, the maximum
J an adversary can achieve is less than 0.01. When m is 1.0,
setting r as 0.5 can limit J to less than 0.09. The simulation
also shows an interesting tradeoff between c and J: if c is too
big, the malicious worker would be detected easily and thus its
injected errors are rejected, resulting in a small J; if c is too
small, the number of injected errors is reduced also, again re-
sulting in a small J. Fig. 5(c) shows the relationship between c
and J when T is 600, v is 0.07, and r is 0.16. With this config-
uration, even under the most extreme case where m is 1.0, the

maximum J the adversary can achieve is less than 0.06; when
m is no larger than 0.5, the maximum J is close to 0.

Fig. 5(d) shows the relationship between cheat probability
c and survival length L when T is 50 and v is 0.15. We can see
that L is generally very small when c is bigger than 0.02,
which means that a malicious worker cannot survive CCMR
checks for a very long time. Our experiment in section V.A
and Fig. 6 confirms this observation. However, L increases
exponentially when c decreases from 0.02 to 0, which suggests
that CCMR cannot remove very low-profile malicious workers
(those that rarely cheat) quickly, but since such workers inject
very few errors at the same time, CCMR can still guarantee
very low job error rate in that case.

Fig. 5(e) shows the tradeoff between job error rate J and
overhead O, and Fig. 5(f) shows the tradeoff between job error
rate J and verifier overhead V, given different credit threshold
T. For each curve in the figures, the top-left most point corre-
sponds to the setting where T is 0, and the bottom-right most
point corresponds to the case where T is 600. The difference
of T values between adjacent points on a curve is 50. The fig-
ures show that when T is small (e.g., 50), a higher value of r
results in a lower job error rate and higher overhead and veri-
fier overhead. When T is big enough (e.g., greater than 200),
different values of r do not make much difference in job error
rate. However, a smaller value of r would bring a smaller

0 50 100 150 200

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Credit Threshold T

J
o
b
 E

rr
o
r

R
a
te

Job Error Rate vs Credit Threshold

 c= 0.5 , v= 0.15

r= 1 , m= 0.167
r= 0.5 , m= 0.5

r= 0.3 , m= 1

r= 0.5 , m= 1

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
5

0
.1

0
0
.1

5

Cheat Probability c

J
o
b
 E

rr
o
r

R
a
te

Job Error Rate vs Cheat Probability

 T= 50 , v= 0.15

r= 1 , m= 0.167
r= 0.5 , m= 0.5
r= 0.3 , m= 1
r= 0.5 , m= 1

 (b)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.0

1
0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6

Cheat Probability c

J
o
b
 E

rr
o
r

R
a
te

Job Error Rate vs Cheat Probability

 T= 600 , v= 0.07 , r= 0.16

m= 0.167
m= 0.5

m= 1

(c)

0.00 0.05 0.10 0.15 0.20

0
1
0
0

2
0
0

3
0
0

4
0
0

Cheat Probability c

S
u
rv

iv
a
l
L
e
n
g
th

Survival Length vs Cheat Proability

 T=50, v=0.15

m=0.167, r=1.0
m=0.5, r=0.5

m=1.0, r=0.3

m=1.0, r=0.5

 (d)

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
0
.0

1
0
.0

2
0

.0
3

0
.0

4

Overhead

J
o
b
 E

rr
o
r

R
a
te

Job Error Rate vs Overhead

 m= 0.5 , c= 0.1 , v= 0.15

r= 0.3
r= 0.5

r= 1

 (e)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.0

0
0
.0

1
0
.0

2
0

.0
3

0
.0

4

Verifier Overhead

J
o
b
 E

rr
o
r

R
a
te

Job Error Rate vs Verifier Overhead

 m= 0.5 , c= 0.1 , v= 0.15

r= 0.3
r= 0.5

r= 1

(f)

Fig. 5. Simulation of CCMR Analysis Model

overhead and verifier overhead limit. We find that on each
curve, the points become denser with the increase of T and
eventually concentrate to their outmost limits. This suggests
that when T is big enough (e.g., bigger than 200), further in-
creasing T would bring neither additional accuracy benefit,
nor additional overhead and verifier overhead cost.

We should point out that Theorem 1 assumes that mali-
cious worker fraction m is constant, i.e., detected malicious
workers are not eliminated. However, in our real implementa-
tion, detected malicious workers are eliminated, which will
cause fewer errors. As a result, task/sub-task reschedule will
be reduced, and eventually the overhead and verifier overhead
should be lower than the simulation result.

B. Communication Cost Analysis

In order to reduce the cross-cloud communication cost, we
only deploy DFS nodes on the public cloud. Such a
deployment not only avoids DFS data synchronization traffic
across clouds but also reduces the cross-cloud communication
incurred by MapReduce tasks. Since each mapper fetches
input from DFS and stores task output to its local storage, the
only major cross-cloud communication in the map phase
happens when a verification map task needs to fetch input data
from the DFS. Since each reducer fetches input from the
mappers’ local storage, and only the original reduce task
outputs to the DFS (According to section III.A), the only
major cross-cloud communication in the reduce phase happens
when a verification reduce task fetches input data. Since the
number of map/reduce verification tasks is usually very small
compared to the number of original and replication task, such
cross-cloud communication is not significant.

Other sources of cross-cloud communication includes task
scheduling instructions from the master to workers and the
task results (hash value) returned from workers to the master.
However, network traffic caused by such communication
messages is not significant due to their small sizes (e.g., a hash
value of a task result contains only a few bytes).

V. EXPERIMENTAL RESULT

We implement a prototype system based on Hadoop
MapReduce and deploy it across our private cloud and Ama-
zon EC2. The experiment environment consists of the follow-
ing entities: a Linux server (2.93 GHz, 8-core Intel Xeon CPU
and16 GB of RAM) is deployed on a private cloud, running
both the master and the verifier. Twelve Amazon EC2 micro
instances are running as slave workers (Amazon Linux AMI
32-bit, 613 MB memory, Shared ECU, Low I/O performance).

We perform experiments on map and reduce phase sepa-
rately to measure the job error rate, overhead, verifier over-
head, and performance overhead. To compare the performance
overhead, we set the baseline as a standard MapReduce cluster
consisting of thirteen nodes deployed on Amazon EC2. Each
node is a micro instance. Out of the 13 nodes, one is running
as the master, and the other 12 nodes running as workers.

A. Map Phase

We measure job error rate, overhead and verifier overhead

of CCMR by running a word count MapReduce job (Section
III.C) in an environment with malicious MapReduce workers.
We simulate such malicious workers by implementing the
adversary’s strategy described in section IV.A. The word
count job consists of 800 map tasks and one reduce task. We
fix T and v and vary other parameters with different value
combinations.

The experiment result in TABLE II. indicates that in all
parameter combinations, CCMR can keep a very low job error
rate. Overall, the maximum job error rate is 2.25% and the
minimum is 0. The changing trend of experiment result is con-
sistent with the theoretical analysis in Section IV.A. For ex-
ample, when m and c are fixed (m is 0.167 and c is 0.1), job
error rate drops from 0.48% to 0 when r increases from 0.3 to
1.0. When m and r are fixed (m is 0.5 and r is 1.0), the job
error rate drops from 0.14% to 0 when c increases from 0.1 to
1.0. On the other hand, a higher value of r incurs a higher
overhead and verifier overhead. For example, when r is 1.0,
the average overhead is 112%, and when r is 0.3, the average
overhead is 41%. We note that the experiment overhead and
verifier overhead is lower than the simulation result in Fig.
5(e) and 5(f), respectively. This fact affirms our prediction in
section IV.A: Since Theorem 1 assumes m as a constant value,
its estimation of overhead and verifier overhead should be
higher than the experiment result.

We observe that in each of the 18 parameter combinations,
CCMR is able to eliminate all malicious workers during the
execution of the word count job. In Fig. 6, we show three rep-
resentative combinations in terms of how soon each malicious
worker is detected and thus removed. We could see that under
the first two combinations, CCMR can remove all malicious
workers very quickly (within less than 15% of the total job
execution time). Under the third combination, the malicious
workers are very stealthy (cheat with a probability of 10%)
and the replication frequency is low (30%), but CCMR can
still remove all six malicious workers before 50% of the job
has finished. Such observations suggest that CCMR is effec-
tive in detecting malicious workers even if the adversary im-
plements its best strategy.

We also measure the execution time delay introduced by
CCMR in the map phase by running the same 800-map task
word count job. Since here our focus is map phase overhead,
we disable the reduce phase integrity check. We also disable
the combine phase. In addition, we do not introduce malicious
workers. The reason is that we believe the customer is willing
to pay extra cost to detect malicious workers. However, they
are reluctant to spend extra money for CCMR when there are
no malicious workers. The experiment result is shown in
TABLE III. It indicates that the extra running time compared
to the baseline grows with r. When r grows from 0.3 to 1.0,
the extra running time grows from 19.75% to 83.26%.

Fig. 6. Malicious Worker Elimination Progress.

B. Reduce Phase

To measure the reduce phase, we set the replication proba-
bility r as 0.16, the verification probability v as 0.07, and the
credit threshold T as 600. Our accuracy test shows that such a
configuration guarantees 0 job error rate when m is 0.5 and c
changes among 0.1, 0.5 and 1.0, which is consistent to our
simulation in Fig. 5(c). Given the space limit, we only present
the performance experiment result in this section. We use two
applications to measure the performance overhead of reduce
phase integrity check: word count and mahout twenty news-
groups classification 0. For a similar reason as the map phase,
we introduce neither map integrity check nor malicious nodes
in this performance test.

The word count job is the same job described in Section
V.A, which consists of 800 map tasks and one reduce task. We
compare the running time of CCMR with baseline. On aver-
age, CCMR with reduce integrity check takes 1398 seconds to
finishes the job. It produces 88 replication reduce sub-tasks
and six verification reduce sub-tasks. Compared with the
standard MapReduce, which takes 979 seconds to finish the
same job (we enable the combine phase to accelerate the exe-
cution), the execution delay is 43%. We attribute such delay to
the execution of big number of replication reduce sub-tasks.

We also run the Mahout twenty newsgroups classification
example on CCMR. Such application consists of five jobs.
Each of the first three jobs produces more than 100,000 keys.
Hence, CCMR still sets the credit threshold T to 600. The last
two jobs produce less than 600 keys, so CCMR sets the report
number of those two jobs as one and directly generates one
verification reduce task for each job. The total execution time
under CCMR is 1892 seconds. Compared to 1304 seconds on
the baseline, the execution delay is 45%. The details of each
job execution time are shown in TABLE IV. Interestingly, the
CCMR execution times of the last two jobs are smaller than
their baseline execution time. This is because compared with
the baseline, the cluster of CCMR has an extra node on the
private cloud to run as the master, which shares the workload
of task scheduling and management.

VI. RELATED WORK

Several existing solutions have been proposed using repli-
cation sampling, and verification techniques to address result

TABLE II. ACCURACY AND OVERHEAD OF WORDCOUNT APPLICATION WITH MAP PHASE INTEGRITY CHECK

Other settings T=50, v=0.15

m 0.5 0.167

c 0.1 0.5 1.0 0.1 0.5 1.0

r 0.3 0.5 1.0 0.3 0.5 1.0 0.3 0.5 1.0 0.3 0.5 1.0 0.3 0.5 1.0 0.3 0.5 1.0

Jmap (%) 1.31 0.58 0.14 1.08 0.28 0.05 2.25 0.76 0.0 0.48 0.04 0.0 0.19 0.45 0.02 0.11 0.0 0.0

Omap (%) 46.3 66.3 126.7 47.5 70.1 122.6 51.4 74.6 118.8 33.6 53.7 100.6 32.8 51.5 103.6 34.9 53.5 103.6

Vmap (%) 4.9 8.3 18.1 6.3 11.5 21.5 9.5 15.4 24.5 4.7 7.8 15.8 4.6 7.3 15.1 10.4 8.5 16.9

TABLE III. PERFORMANCE OF WORDCOUNT APPLICATION WITH

MAP PHASE INTEGRITY CHECK

Configuration baseline v=0.15, T=50

r=0.3 r=0.5 r=1.0

Running time(s) 1728 2069 2323 3167

Extra running time (%) --- 19.75 34.41 83.26

TABLE IV. PERFORMANCE OF MAHOUT TWENTY-NEWSGROUP

CLASSIFICATION WITH REDUCE PHASE INTEGRITY CHECK

Job# Baseline
Execution

time (s)

CCMR
Execution

time (s)

Replication
Reduce Sub-
ask Number

Verification
Reduce Sub-
task Number

1 517 983 95 7

2 331 482 108 8

3 210 221 80 6

4 85 63 0 1

5 161 143 0 1

integrity problems in other distributed environments such as
P2P Systems and Grid Computing. Golle et al. [10] propose to
guarantee correctness of the distributed computation result by
duplicating computations. Zhao et al. [8] proposed a sampling
based idea of inserting indistinguishable Quizzes to the task
package, which is going to be executed by the untrusted work-
er and verify the returned result for those Quizzes. Their simu-
lation result shows by combining reputation system, Quiz ap-
proach gains higher accuracy and lower overhead than replica-
tion based approach. However, suggested by their simulation,
the reputation accumulation is a long-term process so that in
order to accumulate reliable reputation, it takes as many as 10

5

tasks. Du et al. [9] proposed to insert several sampled tasks to
the task package, and check the sampled task returns using
Merkle-tree based commitment technique. The analysis in the
paper showed that in order to detect error from a malicious
worker who cheats with low probability such as 0.1, it takes
more than 75 samples to be inserted to each worker.

For MapReduce, Wei et al. [4] proposed an integrity assur-
ance framework SecureMR to enforce the commitment proto-
col and the verification protocol. SecureMR employs task
duplication to defeat collusive workers. The design difference
from our paper is that the number of duplication task for each
original task is non-deterministic. Such an approach guaran-
tees 90% of detection rate in defeating periodical collusive
attacker with 40% of duplication rate when the malicious
worker fraction is below 0.15 and malicious cheat probability
is 0.5. (According to (2) in [4]) However, (2) in [4] also shows
that when malicious worker fraction is 0.5, malicious cheat
probability is 0.1, 40% of duplication rate can achieve only
25% of detection rate. The maximum detection rate SecureMR
can achieve under this environment setting is 80%, with a du-
plication rate more than 500%. Wang et al. [11] proposed the
VIAF framework that uses full replication and non-
deterministic verification. Such approach eliminates all non-
collusive workers and removes collusive worker with certain
probability. However, their work does not consider practical
factors when deployed on a real cloud, such as cross-cloud
communication. In addition, both above works cannot handle
the case where the reduce task number is very small (e.g. only
one reduce task).

VII. CONCLUSION AND FUTURE WORK

We propose a novel framework, CCMR, which overlays
MapReduce on top of a hybrid cloud to offer high result

integrity. Based on such framework, we propose the result
integrity check scheme in order to boost the accuracy mean-
while to reduce the delay. Our theoretical analysis and exper-
imental result suggests CCMR can achieve low job error rate
while incurring non-negligible performance overhead.

Even though CCMR suggests a promising result in guaran-
teeing high result accuracy in MapReduce, the performance
delay still needs improving. In addition, the trade-off between
accuracy and overhead in CCMR involves several system pa-
rameters. Automating the parameter selection to achieve high-
er accuracy and lower overhead would be another important
research topic.

VIII. ACKNOWLEDGEMENT

This material is based upon work supported by the U.S.
Department of Homeland Security under grant Award Number
2010-ST-062-000039. The views and conclusions contained in
this document are those of the authors and should not be inter-
preted as necessarily representing the official policies, either
expressed or implied, of the U.S. Department of Homeland
Security.

REFERENCES

[1] Dean, Jeffrey, et al. “MapReduce: simplified data processing on large
clusters”. Communications of the ACM, 51(1), 107-113.

[2] “Amazon Elastic Compute Cloud (Amazon EC2)”, http://aws.amzaon.
com/ec2/

[3] “Windows Azure Compute”, https://www.windowsazure.com/en-us/
home/features/compute

[4] Wei, Wei, et al. "Securemr: A service integrity assurance framework for
mapreduce." Computer Security Applications Conference, 2009.
ACSAC'09. Annual. IEEE, 2009.

[5] Bowers, Kevin, et al. "HAIL: a high-availability and integrity layer for
cloud storage." Proceedings of the 16th ACM conference on Computer
and communications security. ACM, 2009.

[6] Popa, Raluca Ada, et al. "Enabling security in cloud storage SLAs with
CloudProof." Proceedings of 2011 USENIX Annual Technical
Conference, Portland, OR. 2011.

[7] “What is Apache Hadoop”, http://hadoop.apache.org/

[8] Zhao, Shanyu, et al. "Result verification and trust-based scheduling in
peer-to-peer grids." Peer-to-Peer Computing, 2005. P2P 2005. Fifth
IEEE International Conference on. IEEE, 2005.

[9] Du, Wenliang, et al. “Uncheatable grid computing,”in Proceedings of
International Conference on Distributed Computing Systems. 2004.

[10] Golle, Phillippe, et al. “Secure distributed computing in acommercial
environment,” in 5th International Conference Financial Cryptography.

[11] Wang, Yongzhi, et al. “VIAF: Verification-based Integrity Assurance
Framework for MapReduce”, in the 4th IEEE International Conference
on Cloud Computing

[12] “Amazon Elastic MapReduce (Amazon AMR)”, http://aws.amazon.
com/elasticmapreduce/

[13] “Project Daytona: Iterative MapReduce on Windows Azure”,
http://research.microsoft.com/en-us/downloads/cecba376-3d3f-4eaf-
bf01-20983857c2b1/default.aspx

[14] “Cloud Security: Amazon’s EC2 serves up 'certified pre-owned' server
images” http://dvlabs.tippingpoint.com/blog/2011/04/11/cloud-security
-amazons-ec2-serves-up-certified-pre-owned-server-images

[15] Bugiel, Sven, et al., “AmazonIA: when elasticity snaps back”. In
Proceedings of the 18th ACM conference on Computer and
communications security.

[16] “Twenty news group example”, https://cwiki.apache.org/confluence/
display/MAHOUT/Twenty+Newsgroups

