
Towards Adaptable Middleware to Support Service
Delivery Validation in i-DSML Execution Engines

Karl A. Morris, Jinpeng Wei and Peter J. Clarke

School of Computing and Information Sciences

Florida International University

Miami, FL 33199, USA

Email: {kmorr007, weijp, clarkep}@cis.fiu.edu

Fábio M. Costa

Institute of Informatics

Federal University of Goiás

Goiânia-GO, Brazil

Email: fmc@inf.ufg.br

Abstract—A developing paradigm in the area of Software
Engineering is that of Model Driven Development where models
are used to express operations that are thereafter interpreted and
executed through the use of an execution engine. The high level
of abstraction within these models present inherent challenges in
guaranteeing operation that respect policies and other constraints
during execution. Additionally, the domain specificity necessarily
present within these execution engines make them rigid and not
suited for repurposing across different domains. We propose to
address these issues through the use of a middleware architecture
that is responsible for the service delivery aspect of the execution
engine. Our architecture will provide a separation of domain
specific and domain independent concerns, resulting in a set of
domain specific artifacts which possess domain knowledge, and a
generalized execution platform that inherits its operations from
the domain artifacts. Our design facilitates the realization of
user intent through the generation, validation and execution of
adaptation models at runtime constrained by policies. We show
the viability of this approach in the User-Centric Communication
Middleware, a layer of the Communication Virtual Machine,
which is responsible for enforcing communication requirements.

Keywords-Models at Runtime; Adaptable Middleware; Func-
tional Assurance; Domain Independence;

I. INTRODUCTION

The growth of Model Driven Engineering and Model Driven

Development has increased tremendously in recent years [1].

Its growth has ushered in new research on how to interpret and

execute these models. Conventional approaches generally look

at model transformation through translation into programming

code. This code is then transformed into executable code by

a compiler. A developing trend in this area is to remove the

steps involved in model translation, and to instead execute the

models directly. To achieve this, one requires a semantically

rich environment capable of interpreting these models. The

use of an Interpreted Domain-Specific Modeling Language (i-

DSML) execution engine is one such environment [2]. These

engines are able to interpret and execute a model within a

given domain without the need for translation to executable

code. Within the i-DSML execution engine is a middleware

responsible for service delivery. This middleware must be

context-aware, policy-driven, and ensure full service delivery

in heterogeneous environments [3].

As the declarative nature of i-DSMLs may result in syn-

tactically similar languages across domains, it is natural that

their execution engines would also be similar as this can

reduce re-engineering time and effort. It is therefore desirable

to standardize the mechanism for interpreting and executing

models within a family of execution engines. In order to

achieve this, we must utilize an architecture that is capable

of achieving the necessary run time adaptation for varying

domains, while still providing functional guarantees. We must

ensure that a generalized execution engine is able to realize

all the required functionality of a specific domain with high

levels of assurance once it is specialized for that domain.
To address this issue of functional assurance, we have

designed an adaptable middleware architecture that, through

the use of models at runtime, performs on-the-fly validation

prior to adaptation. Our architecture is separated into two

distinct facets: A set of artifacts that capture the domain

specific concerns, and a domain independent platform which

serves as the executing machine of the middleware. A middle-

ware instantiated for a specific domain is able to dynamically

generate structural adaptation models that adhere to all relevant

system constraints while realizing user intent.
We put forward the following contributions:

• Model-driven adaptation based on operation classification:

We introduce an approach to middleware adaptation which

utilizes runtime generated models that capture the oper-

ations of the middleware as specified by the user. The

components of these intent models are categorized by a

domain specific ontology.

• On-the-fly model-driven assurance validation: We look at

functional assurance within our model driven approach by

ensuring policies are adhered to in any valid model. Our

middleware design incorporates the validation of models for

functionality assurance as a required step in the adaptation

process.

• Domain Independence in an adaptable middleware: Our

architecture encloses all domain specific information in a

set of classifiers and an organized set of operational units

called procedures. It then provides a platform capable of

executing those procedures based on semantics inherent to

the classifiers. As a result, our architecture is not limited to

a specific domain.

2012 IEEE 14th International Symposium on High-Assurance Systems Engineering

1530-2059/12 $26.00 © 2012 IEEE

DOI 10.1109/HASE.2012.25

82

We begin by giving needed background information in

Section II. In Section III we take a closer look at i-DSMLs

and execution engines. In Section IV, we present an overview

of our proposed architecture. Section V describes our Domain

Specific Classifiers, which form the high level taxonomy of a

middleware’s domain. In Section VI we present the structural

metamodel of the middleware, which defines the constructs

used to build intent models. In Section VII we detail the

domain independent platform, which is responsible for the

generation, validation and execution of these models. Section

VIII describes an implementation of the middleware in the

context of the Communication Virtual Machine (CVM). We

then close with related work and conclusions in sections IX

and X respectively.

II. BACKGROUND

A. Adaptive Middleware
Adaptive middleware, as with adaptive systems in general,

allows for the monitoring and reconfiguring of its structure

and/or behavior at runtime [4]. This is achieved through var-

ious introspection mechanisms such as reflection. The ability

to adapt a system based on system context gives it the ability

to change based on the availability of new information and

new resources.

B. Models at runtime
Models at runtime provide us with a mechanism to leverage

models and the abstraction they provide during the real time

operation of a system [5]. Similar to models used in the

software development process, a runtime model allows us

to reason about a system’s environment and its behavior

by presenting us with relevant information, while abstracting

away superfluous information. This process opens the door to

semantic based reasoning on, and modification of, a system’s

architecture and operations.

C. Data Privacy
Ensuring data privacy during storage and transmission is

an important requirement for today’s connected systems. Key-

based cryptography is one mechanism used to achieve this.

Cryptography deals with the encryption of plain text files using

external data called keys. There are two types of key-based

cryptography: one that uses single or symmetric keys, where a

single key is shared by the encrypting and decrypting systems.

Such a system gives us the encryption function E → C=E(T,

K), and decryption function D → T=D(C, K) where T is the

plain text, C is the cipher text and K is the key.
The other type is referred to as public or asymmetric keys,

where there is a distinction between the encipherment (Ke,

C=E(T, Ke)) and decipherment (Kd, T=D(C, Kd)) keys. One

well known symmetric key cryptographic scheme is titled

Diffie-Hellman key exchange [6]. In this scheme, a single key

is iteratively generated among all parties in a communication

over an unsecured connection. This approach ensures that even

though all transmissions between parties can be monitored, the

final key will be private, and can thereafter be used to encrypt

subsequent communication.

III. I-DSMLS AND EXECUTION ENGINES

An Interpreted Domain-Specific Modeling Language (i-

DSML) provides a declarative mechanism to express a user’s

requirements in a given domain through the use of models. The

model generated by an i-DSML is in turn interpreted by an

execution engine which is responsible for realizing the model’s

intent. An i-DSML execution engine is separated into 4 layers

each with its own set of concerns. An instance of an i-DSML

execution engine and the modeling language it interprets is

presented in III-A.

A. Communication Virtual Machine and CML

The Communication Virtual Machine (CVM) is an i-DSML

execution engine which provides a runtime environment for

the modeling and realization of user-centric communication

services (Fig. 1). Models are specified using the Communica-

tion Modeling Language (CML), an i-DSML which contains

abstract representations of concepts relevant in the commu-

nication domain [7]. The CVM platform is divided into four

major levels of abstraction, each layer playing a role in realiz-

ing communication services. The layers of CVM are: (1) User

Communication Interface (UCI) - provides an environment

for users to specify their communication requirements using

CML; (2) Synthesis Engine (SE) - synthesizes and negotiates

CML models with other participants in a communication

and generates control scripts; (3) User-centric Communication

Middleware (UCM) - executes commands found in a control

script to manage and coordinate the delivery of communication

services to users; (4) Network Communication Broker (NCB)

- provides a network-independent API to UCM and manages

underlying frameworks to deliver communication services.

Our work focuses on the functions of the User-centric Com-

munication Middleware. We will augment the functionality of

the current implementation by incorporating the artifacts of

our middleware design.

B. User-centric Communication Middleware

The User-centric Communication Middleware (UCM) is the

layer of the Communication Virtual Machine charged with

��������		
��������
��
�

�������������������������

���������������������

�������������������
����
� ��������

!�� ��"�������#��"����!�#�

������$��� ��"�

�%� ������
�����������������
���&����������

��������
�'�������
���������'����

��������
�'�����������

��������������
������
���������

&�����
������
����(��$
� ����)
�����)�������

�����)�

��&��������� ��������������

������
�����	� ����'����

�*���

� �����'����

�*���

� !�#��'����

��������		
���������������

�������������������������

���������������������

�������������������
����
� ��������

!�� ��"�������#��"����!�#�

������$��� ��"�

�%�

����	����

Fig. 1. Communication Virtual Machine

83

ensuring the delivery of services resulting from the synthesis

of a communication model by the Synthesis Engine (SE)

[8]. Upon completion of the model synthesis process, the SE

packages and delivers a control script, which is an ordered set

of commands, to the UCM. It is the job of the UCM to realize

the intent of the user by performing the necessary operations

described by the commands found in the control script while

adhering to the non-functional requirements of the system.

This may require the UCM to determine at runtime what the

semantics of a particular command should be based on the

current system context.

The Assurance Problem

As our modeling language is declarative, it lacks the ability

to state non-functional constraints when stating requirements.

Additionally, the dynamic determination of operational seman-

tics based on system context presents us with the challenge

of ensuring that one execution path matching a particular

intent is operationally equivalent to another. These limitations

present us with the assurance problem. Our middleware must

ensure that the chosen adaptation is representative of the user’s

intent while at the same time ensuring adherence to all system

constraints.

C. Policies for non-functional constraints

CML models give us a mechanism for stating intent. It con-

tains the necessary artifacts for us to stipulate the requirements

of a communication instance. However it lacks the facility

to state how a particular communication instance should be

realized, and what, if any, constraints must be adhered to.

We therefore utilize policies to express these non-functional

requirements.

D. Illustrative Scenario

To illustrate how the design of our middleware provides

assurance of functionality during adaptation, we will take a

look at a scenario in the Communication Virtual Machine.

Mr. J is a patient at a local hospital after becoming ill while

on a business trip. The doctor at this hospital has contacted

Mr. J’s primary care physician in his home city and they

are discussing his case. The physician needs to send Mr. J’s

records to the doctor, however since they are communicating

via an unsecured Internet connection, the records must be

encrypted before being sent to conform to the HIPAA privacy

rule [9].

We will present an in depth overview of our design and then

revisit our scenario to show how our architecture guarantees

adherence to stated policies while ensuring delivery of service.

IV. OVERVIEW

Our middleware architecture achieves functional assurance

through runtime validation of adaptation models. These intent

models perform the necessary adaptation of our middleware

based on current policies and environmental context. It gener-

ates, validates and executes intent models in response to sys-

tem commands and events. Our approach, by design, ensures

that any model which is selected for execution to carry out a

user’s intent fully conforms to all constraints the system has in

place. It achieves this through the full classification of the mid-

dleware’s operations, the generation of runtime models based

on the classifiers, and finally validating and selecting a model

for execution based on whether or not a model incorporates

the features necessary to meet system constraints. This facility

allows our middleware to only perform requested adaptation

if it is able to do so within the current environment and with

the available procedural components. If the middleware lacks

the proper components to meet stated constraints, it throws an

exception to the overlaying layer.

Fig. 2 gives an illustrative overview of the middleware’s salient

functions during the model generation and selection process.

1) Command Classification matches a command to a

Domain Specific Classifier (DSC) in order to begin the

model generation process. The relationship between

DSCs and commands is discussed further in Section V.

2) Candidate Model Generation enumerates all possible

candidate models which are able to realize the current

intent based on the set of available procedures. This

process is bound by the Maximum Partition Product

which is discussed in Section VII-A.

3) Candidate Reduction and Selection first derives the

subset of available models which conform to system

policies. This process satisfies the assurance problem

by ensuring that all resulting models match the user

intent and fit all current system constraints imposed by

policies. The resulting models are then passed to a cost

function which selects the best model based on some

predefined analysis.

4) Model Execution utilizes the selected intent model as

an execution plan. This is discussed further in Section

VII-C.

V. DOMAIN SPECIFIC CLASSIFIERS

Domain Specific Classifiers (DSCs) form a top level taxon-

omy that categorizes the actions performed by the middleware

(behavior) and the attributes that it is concerned with (state).

Through this approach, DSCs catalog the domain specific

concerns of the middleware and provide a framework on top

of which all operational facilities will be built. They provide

a common point of reasoning for commands, procedures and

policies governing the middleware operation.

��������

	
�������

���

��

�
��
��

�

��
��

�
��

�
�

��
���
�
��

����
���
� ����������������
��
�������
��
��
�����

�������
�� ���������
�����
�
����

���!��"����
��
#���$
�
��
�

�������
����
��
�������
�����

%�����������������"
����������&������

Fig. 2. Model Generation and Selection Process

84

ID Name Kind

1 CommunicationModel attr
2 FileURI attr
3 Send(FileURI) oper
4 Receive(FileURI) oper
6 plainTextFileURI attr
7 encryptedFileURI attr
8 Encrypt(plainTextFileURI, encryptedFileURI) oper
9 Decrypt(encryptedFileURI, plainTextFileURI) oper
10 homeNetwork attr

TABLE I
A SET OF DSCS

Classifiers have a one-to-one relationship with the middle-

ware’s commands, and a one-to-many relationship with proce-

dures. That is, a classifier may have more than one procedure

that can carry out a specified command. All commands to

which the middleware can respond must form a subset of

the set of DSCs. An intent model for adaptation is therefore

derived by building a dependency tree of procedures with

the root being a procedure that matches the classifier of the

command being executed. The set of DSCs are extensible. This

allows the capabilities of the middleware to be expanded or

reduced by manipulating classifiers and associated procedures.

DSCs that describe operations may, as a part of their

definition, state parameters that are required for the completion

of those operations. These parameters are themselves DSCs.

For example, the DSC which describes sending a file, Send,

would include a DSC for the name and path of the file to be

sent, FileURI. Therefore, any procedure which conforms to

the Send DSC must expect and handle the FileURI parameter.

The makeup of a DSC is as follows:

• Name - String. Must be unique within a namespace.

• Kind - Operation or Attribute

• Namespace - A package-like system that helps provide

classifier uniqueness within a domain

• Parameters An ordered set of DSCs

Table I presents a set of DSCs for the communication domain.

VI. STRUCTURAL METAMODEL

Here we detail the constructs of our intent models and their

relationship (Fig. 3).

A. Procedures

We formally describe a procedure P as a 6-tuple (I, N, C,

EU, EU0, D) where

• I is the unique identifier

• N is the name of the procedure

• C is the classifier where C ∈ {DSC}
• EU is the set of execution units

• EU0 is the starting unit where EU0 ∈ EU

• D is the set of dependencies where D ⊂ {DSC}
From an implementation perspective, we may view a proce-

dure as an ordered collection of executable units, which may

list a set of procedures on which it depends to perform its

task. It is comprised of two parts.

• The descriptor, which provides the necessary meta-data

for the procedure including name, the unique identifier,

classification, starting component, and dependencies.

• The set of executable units which undertake the operations

of the procedure including manipulating state information,

making API calls, and calling for the execution of other

units and procedures.

The set of dependencies of a given procedure is a proper

subset of the set of DSCs. This is because a procedure of a

given type cannot be dependent on that same type. To reduce

potential complexity, we define a procedure as having only

one classifier.

Dependencies: Our architecture describes procedure depen-

dencies through DSCs (typed), as well as through their IDs

(named). By utilizing DSCs, a procedure can simply declare

what type of functionality must exist within the middleware

for it to perform its function. In contrast, when a dependency

is expressed via an ID, a specific procedure will be selected.

B. Execution Units

An execution unit is an atomically executable set of in-

structions that performs some aspect of the operations of its

parent procedure. It may perform any number of allowed

system operations; however it should be limited to making

a single API call to any external interface. This constraint

facilitates a high level of adaptability as the operations of

the parent procedure are granulated in terms of their effect

outside the middleware. An execution unit may be triggered

as the initial step of a procedure, or in response to internal or

external events, such as a timer or a message from a remote

middleware instance respectively. It should be noted that we

detail execution units here only for the completeness of the

metamodel as they do not factor into the model generation

and selection process.

C. Intent Models

An intent model is an acyclic directed graph where the

nodes are procedures and the root of any subtree is dependent

on its child procedures. The root of an intent model is a

procedure whose DSC matches that of the currently executing

command. The composition of an intent model is discussed

further is Section VII-A. For safety and to reduce complexity,

we define a well formed intent model as meeting the following

criteria:

���������	
����������	��������������	

������ ���	
����

Fig. 3. Composition of an Intent Model

85

• Singly classified - This prevents a node from having

multiple parents.

• Unique procedural dependence - A model must have only

one dependence of a given type. As such, we speak of the

set of dependencies to infer the nonexistence of duplicates.

VII. DOMAIN INDEPENDENT PLATFORM

This section details the domain independent platform which

is the part of the middleware that performs generation, selec-

tion and execution of intent models. Through the use of DSCs,

procedures, and their execution units, we are able to abstract

the domain specific considerations from our architecture. By

removing this knowledge, what remains is a domain inde-

pendent platform which serves as the execution mechanism

for procedures in response to commands and events (Fig. 4).

The platform provides a framework in which we specify a

set of classifiers, and provide the procedures that perform the

operations these classifiers describe.

A. Model Generation

Intent models are built using the concepts defined in Section

VI, as specified in the generateModels() method of Algorithm

1. An intent model is a dependency tree which contains

procedures as nodes, with the initial executing procedure as the

root of that tree. A procedure with stated dependencies form

the root of any subtree, and its children are procedures that

match said dependencies. The leaves of the tree are procedures

which have no stated dependencies. An intent model is built by

matching the DSC of a command to the DSC of all available

procedures. For a given procedure, we recursively walk its

dependencies until no additional dependencies are required. If

any dependency cannot be met, that model is eliminated from

consideration.

A consequence of our method of defining and dynamically

composing models based on types is model space explosion.

In theory, an idealized set of procedures may produce an ex-

cessively large number of intent models that match a particular

command. While this may not prove to be a limiting factor

in practice, as a typical command may only relate to a small

subset of the available procedures, it is still a motivating factor

for addressing optimization strategies as we have done in

Section VIII-C. The issue arises due to the Maximum Product

Partition problem [10], where for a given set of procedures

�������

�	�
���

���

������

�����

���

�������������
��

�	�
��������

��
�����

����

�������������

������������

������������

��

��������

�

�

���
��������

�

�

Fig. 4. Platform Metamodel

Algorithm 1 Model Generation and Selection

1: IN: Command
2: OUT: Intent Model
3: for all parameter in Command.Parameters do
4: System.StateManager.set(parameter)
5: end for
6: models← generateModels(Command.DSC)
7: validModels← validateModels(models, Command.DSC)
8: for all model in validModels do
9: cost← costFunc(model)

10: if cost < lowestCost then
11: lowestCost← cost
12: bestModel← model
13: end if
14: end for
15: return bestModel

1: generateModels (DSC:initDSC)
2: procedures← getMatchingProcedures(initDSC)
3: for all procedure in procedures do
4: depDSCs = procedure.deps
5: for all depDSC in depDSCs do
6: subModels← generateModels(depDSC)
7: end for
8: matchingModels.add(mergeModel(procedure, subModels))
9: end for

10: return matchingModels

1: validateModels (Model[]:models, DSC:modelDSC)
2: policies← System.getMatchingPolicies(modelDSC)
3: for all model in models do
4: for all policy in policies do
5: if (checkModelForV alidProcedure(model, policy)) then
6: continue
7: else
8: break
9: end if

10: end for
11: validModels.add(model)
12: end for
13: return validModels

P , there exists a partitioning based on DSCs that creates a

maximal number of models.

B. Candidate Selection

The system can incorporate a multitude of techniques for

selecting the most viable intent model through the implemen-

tation of a cost analysis mechanism. We define the function

f(M) such that

f(M) =

n−1∑

i=0

cost(Mi)

where n is the number of procedural nodes in the model

and cost() takes a procedure Mi and returns a deterministic

cost associated with it. A specific mechanism for determining

cost is not defined by our architecture. This ensures that we

do not constrain domains which may have varied analysis

requirements. We run this function on all candidate models

and select the model with the minimal total cost.

C. Model Execution

We initialize execution of a model by loading the initial

execution unit of the root procedure. Each unit has the

responsibility of ensuring progression through a procedure by

directly executing, or registering for execution, the next unit

86

in sequence. Execution units may also call on a dependent

procedure if its capabilities are required. This call to a de-

pendent procedure may be done indirectly (via a DSC), or

directly (via the procedure’s ID). If a call is made via a DSC,

the middleware will execute the starting execution unit of the

procedure previously identified during the model generation

process.

D. State Information and Access Control

The middleware must manage state information which is

used to coordinate inter and intra procedural operations. It

accomplishes this through the use of the State Manager which

manages key/value pairs which can be DSC attribute values

as well as data generated by executing procedures.

E. EU Register

In order to facilitate distributed procedure execution (a

procedure executing in response to continuous events from

a remote instance of the middleware, e.g. during negotiation),

the middleware must allow a procedure, or more specifically

its execution units, to respond to events. Our architecture

facilitates this by maintaining an register where execution units

are registered to respond to specific events, including those

generated in response to the action of remote middleware

instances.

F. Repository

The repository of the platform houses the procedures, their

execution units, and the DSCs which describe them.

VIII. CASE STUDY

We now revisit the scenario introduced in Section III.

A. Mapping our Architecture

We begin by mapping our design to the current implemen-

tation of the Communication Virtual Machine, and specifically

the User-Centric Middleware (UCM). Our execution units are

the macros utilized in the UCM. These are minimal blocks of

Java code which are executed by the system at runtime using

reflection.

We formalize the concept of Domain Specific Classifiers

within the UCM by subsuming the current list of commands

that can be passed to the UCM through control scripts.

Additionally, we formalize procedures by extending the macro

definitions to associate them with specific procedures. Our

architecture will allow the UCM to respond not only to com-

mands provided through control scripts, such as establishing

a connection or sending a file, but also to events received

from the NCB. This is required to allow procedures to execute

when they depend on responses from remote instances of the

middleware.

As the current implementation of the CVM has no support

for policies, we infer constraints appropriate for this domain

to demonstrate the validation of models.

As stated in Section III, our scenario is set in the context of

a larger communication model currently being executed where

we have a multi-party connection established.

ID Name DSC Init Deps

1 SendBasic Send SBInit0
2 SendSecure Send SSInit0 {Encrypt}
3 DHEncrypt Encrypt DHE0 {Aux:5}
4 PKIEncrypt Encrypt PKIE0 {Aux:6, Aux:7}
5 DHGenKey Aux DHG0
6 PKICertAuth Aux PKICA0
7 PKICertCheck Aux PKICC0

TABLE II
SUBSET OF UCM PROCEDURES

The middleware receives a command to send a patient file

from the primary care physician to the local doctor. Due to

HIPAA, the CVM has a policy in place (Fig. 5) which specifies

that all media transfers taking place on an unsecured network

must encrypt the media prior to transmission.

The middleware first generates candidate models based on

the user’s intent. It does so by mapping the system command

to the appropriate classifier, selecting all matching procedures,

and then recursively walking their dependencies to build

the appropriate models. We present a subset of procedures

available to the UCM in Table II.

After this process, we arrive at three models with the first

containing the root node SendBasic, and the remaining two

sharing the same root node, SendSecure (Fig. 6). All of these

candidate models support the user intent of sending a file.

The middleware analyzes the current policies to find all

contextually relevant model constraints. This ensures that our

assurance guarantees are met as only models which conform

to current system constraints are seen as viable candidates for

execution. It finds a policy that applies an encryption constraint

on all media transfers (Send). It then reduces the candidate

list by querying the generated models to ensure that they

contain a procedure which facilitates encryption (classified by

the Encrypt DSC). As the names suggest, only two models

include the ability to send a file securely resulting in the

SendBasic model being discarded. The remaining models

are then analyzed to ascertain their overall operational cost.

The middleware incorporates a naive cost() function which

simply returns a constant value for each procedure, reducing a

if (!homeNetwork) {Send(FileURI) → Encrypt(FileURI)}

Fig. 5. Policy expressed using DSCs

��������	
��������	
����

������	���
����

���	����
��	����

�$�����
���

������	���
�
������	���
����

�����	����
��	����

�����������
���

������	���
�

����������	�
���

Fig. 6. Candidate models for scenario

87

model’s overall cost to a count of the procedures it possesses.

We therefore favor the model with fewer nodes and select

SendSecure:1 for execution.

Fig. 7 and 8 show the state machines depicting the execution

of the procedures involved in the selected intent model. The

DHGenKey procedure is executed in a distributed fashion on

local and remote instances of the middleware.

During execution, SendSecure will first make a typed call

to the middleware to execute the bound Encrypt procedure.

It awaits completion of the called procedure by registering a

macro to listen for the specific completion event. DHEncrypt is

then called, which may, depending on whether or not a shared

key is already established, make a named call to DHGenKey
.

Upon execution, DHGenKey will attempt to create a shared

key utilizing the Diffie-Hellman key exchange protocol [6].

This is then used by DHEncrypt to encrypt the file prior to

it being sent by the SendSecure procedure. If at any point a

procedure is unable to execute its assigned function, it throws

an exception, which invalidates the operation, and the user is

informed of the failure.

B. Prototype

We implemented a basic prototype to measure the overhead

of the model generation process. This is the most normalizable

process as it has no bearing on the relative complexity of

procedures.

1) Platform: Our prototype was developed in Java 1.6

running on a 1.8 GHz Intel Core i5 MacBook Air with 8

GB of 1600 MHz DDR3 memory running Mac OS X Lion

10.7.4. Appropriate data structures were used to represent the

artifacts of the architecture.

2) Setup and Results: We curated a test environment where

we initialized our prototype with a set of 100 procedures to

simulate a typical middleware implementation. Of the gen-

erated procedures, 10 were designed to realize the operation

of the test command. Additionally, these 10 procedures were

designed to realize the maximum partition sum bound (VII-A).

Our set of procedures resulted in the generation of 36

intent models (3 × 3 × 2 × 2) which are detailed below. We

validated our model against a DSC known to be present in all

models, therefore ensuring that no models were eliminated

from the candidate list, and passing all 36 models to the

model selection phase. Finally our prototype selected a model

���������

��� ������������������������

������������������������������

������������������������������

������������

	� 	��!���

���

�������"�� !�������

��������

�����
������ ����#�

Fig. 7. State Machines for SendSecure and DHEncrypt Procedures

Procedures available 100
Procedures used 10
Models generated from command 36
10,000 operation cycles 0.770 seconds

TABLE III
RESULTS OF MODEL GENERATION

for execution based on node count, on which our naive cost

analysis implementation bases its comparisons. The evaluation

results are presented in Table III:

As the results of our prototype evaluation show, we are

able to perform the full generation, validation and selection

process on commodity hardware in the order of micro seconds.

Repeating the set of operations 10,000 times still comes in at

under a second. We believe that these results demonstrate the

appropriateness of our architecture for many domains, even

those that may have a very high responsiveness requirement

such as smart electrical grid management [11].

C. Performance and Optimization Considerations

Inherent to any adaptive system is the overhead resulting

from the management of the transformation process. While the

impact of this delay is unavoidable, we argue that our approach

a) gives the implementing designer the flexibility to avoid ex-

cess overhead by carefully defining domain operations. In enu-

merating the operations in a given domain, a designer can limit

the number and size of intent models by defining monolithic

operations, and writing procedures which posses all the needed

facets to realize the respective operations. This approach may,

in the extreme case, result in single procedure models which

are not dissimilar to traditional adaptive systems. We therefore

highlight the flexibility of our architecture which gives the

designer the ability to trade granularity for performance on a

sliding scale by increasing or reducing the number of distinct

operations present in the system. Additionally, it should be

noted that even when accounting for the inherent overhead,

an adaptable system such as this can introduce optimizations

through the context aware selection of models which may

result in better performance under certain circumstances.

����

�����	

�����������������

���������	

������
���������	������������������������������������
��

������
���������	��� �!�����'����������������"������	������
��

#��

�����	

�����	
�������������

���������	

������
���������	������������������������������������
��

������
���������	��� �!�����'����������������"������	������
��

�����

���������
�����

$�����#����� ��%����#�����

���������

Fig. 8. State Machine for DHGenKey Procedure

88

Optimization

While our approach does not address optimizations in-depth,

there are many strategies that could be utilized to mitigate

performance degradation or slow response times. Examples of

such strategies are:

• Pre-generation of models: The system generates and selects

models to respond to all supported commands and keeps

these models resident in memory. This can be undertaken

at system start-up and the process reinitialized for specific

commands/models whenever there is an applicable context

change. Consequently however, this approach may leave a

large number of models resident in memory that may never

be utilized, but must still be managed by the system.

• Least Used Caching: The middleware may take a smarter

approach to caching models by employing a strategy of

Least Recently Used, Least Frequently Used, or some

combination of both [12]. This addresses the issue of main-

taining models which may not be needed by the middleware

by replacing them over time with newer, more frequently

used models.

IX. RELATED WORK

In [13], the authors present an approach to dynamically bind

middleware components for execution based on user intent

and context. Their work is similar to our own in that it treats

the platform as a base for execution in a programmatic way.

Our work differs in the granularity of operations as their

components are analogous to our procedures. As procedures

are further broken down into executable units, we are able to

achieve finer grain execution and adaptation. Our approach is

also inherently distributed, as the platform’s event registration

service allows procedures to be distributed across multiple

remote instances of the middleware.

Zachariadis et al. [14] demonstrate an adaptable mobile mid-

dleware that can augment its functionality based on functional

component availability. While interesting, this work does not

address having multiple components which meet the needs of

the system, nor does it purport to be agile in its execution

as components are monolithic in their composition and op-

eration. Additionally, this approach provides no consideration

of policies nor does it provide a single dialect with which

to analyze component capabilities against system policies.

Our architecture facilitates adaptation with a minimal resource

footprint due to the use of execution units. Additionally, we

provide a mechanism to analyze models when more than one

are able to execute an operation. This can have a direct impact

on the middleware’s operational speed.

X. CONCLUSIONS

Our middleware architecture allows the separation of con-

cerns though the bifurcation of domain specific and domain

independent elements in the execution of interpreted domain-

specific modeling languages. Domain specific concerns are

captured through the use of procedures which perform oper-

ations relevant to the domain, and a set of domain specific

classifiers which categorize them. Our domain independent

platform is therefore able to execute procedures based on these

classifiers in response to commands and system events. In

doing so, we are able to provides assurance of functionality

during adaptation though the classification and validation

of required functionality in the selected adaptation model.

Through our construction process, we preclude the possibility

of generating inaccurate models with respect to functionality.

We also show that the performance overhead is minimal for

the contruction, validation and selection of models. We are

able to generate models for structural adaptation that respect

system policies and other constraints while ensuring service

delivery per the user’s intent.

ACKNOWLEDGMENT

This work was supported in part by a GAANN Fellowship

from the US Department of Education under P200A090061.

Fábio M. Costa would like to thank CAPES, Brazil, Proc. no.

BEX 0759/11-2, for the support received during his sabbatical

at FIU.

REFERENCES

[1] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in Future of Software Engineering, 2007.
FOSE ’07, pp. 37 –54, may 2007.

[2] P. J. Clarke, Y. Wu, A. A. Allen, F. Hernandez, M. Allison, and
R. France, Towards Dynamic Semantics for Synthesizing Domain-
Specific Models, ch. 9. IGI Global, 2012.

[3] K. K. Khedo, “Requirements for next generation middleware imple-
mentations,” in Computing in the Global Information Technology, 2006.
ICCGI ’06. International Multi-Conference on, p. 53, aug. 2006.

[4] F. Eliassen, A. Andersen, G. Blair, F. Costa, G. Coulson, V. Goebel,
O. Hansen, T. Kristensen, T. Plagemann, H. Rafaelsen, K. Saikoski, and
W. Yu, “Next generation middleware: requirements, architecture, and
prototypes,” in Distributed Computing Systems, 1999. Proceedings. 7th
IEEE Workshop on Future Trends of, pp. 60 –65, 1999.

[5] N. Bencomo, “On the use of software models during software exe-
cution,” in Modeling in Software Engineering, 2009. MISE ’09. ICSE
Workshop on, pp. 62 –67, may 2009.

[6] D. Coppersmith, “Cryptography,” IBM Journal of Research and Devel-
opment, vol. 31, pp. 244 –248, march 1987.

[7] Y. Wu, F. Hernandez, P. Clarke, and R. France, “A DSML for coordi-
nating user-centric communication services,” in Computer Software and
Applications Conference (COMPSAC), 2011 IEEE 35th Annual, pp. 93
–102, july 2011.

[8] Y. Wu, A. Allan, Y. Wang, F. Hernandez, P. J. Clarke, and Y. Deng, “A
user-centric communication middleware for CVM,” Software Engineer-
ing and Applications, 2008.

[9] U. S. Congress, “Health insurance portability and accountability act.”
U.S. Department of Health & Human Services.

[10] T. Došlić, “Maximum product over partitions into distinct parts,” Journal
of Integer Sequences, 2005.

[11] M. Allison, A. A. Allen, Z. Yang, and P. J. Clarke, “A software
engineering approach to user-driven control of the microgrid,” Software
Engineering and Knowledge Engineering, 2011.

[12] Z. sheng Li, D. wei Liu, and H. juan Bi, “CRFP: A novel adaptive
replacement policy combined the lru and lfu policies,” in Computer and
Information Technology Workshops, 2008. CIT Workshops 2008. IEEE
8th International Conference on, pp. 72 –79, july 2008.

[13] U. Bellur and N. Narendra, “Towards a programming model and
middleware architecture for self-configuring systems,” in Communica-
tion System Software and Middleware, 2006. Comsware 2006. First
International Conference on, pp. 1 –6, 0-0 2006.

[14] S. Zachariadis, C. Mascolo, and W. Emmerich, “The SATIN component
system-a metamodel for engineering adaptable mobile systems,” Soft-
ware Engineering, IEEE Transactions on, vol. 32, pp. 910 –927, nov.
2006.

89

