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Abstract. I/O Virtualization provides a convenient way of device sharing 
among guest domains in a virtualized platform (e.g. Xen). However, with  
the ever-increasing number and variety of devices, the current model of a cen-
tralized driver domain is in question. For example, any optimization in the  
centralized driver domain for a particular kind of device may not satisfy the 
conflicting needs of other devices and their usage patterns. This paper has tried 
to use IO Virtual Machines (IOVMs) as a solution to this problem, specifically 
to deliver scalable network performance on a multi-core platform. Xen 3 has 
been extended to support IOVMs for networking and then optimized for a 
minimal driver domain.  Performance comparisons show that by moving the 
network stack into a separate domain, and optimizing that domain, better effi-
ciency is achieved.  Further experiments on different configurations show the 
flexibility of scheduling across IOVMs and guests to achieve better perform-
ance. For example, multiple single-core IOVMs have shown promise as a scal-
able solution to network virtualization. 

1   Introduction 

I/O Virtualization provides a way of sharing I/O devices among multiple guest OSes 
in a virtualized environment (e.g., Xen [2]). Take network virtualization for example 
(see Fig. 1), here the platform has one Gigabits/second network link, but a guest OS 
may only need 100Mbps network bandwidth, so it would be very cost-efficient to 
share this Gigabit link among several guest OSes. In order to support this kind of de-
vice sharing, Xen has employed a split-driver design, where the I/O device driver is 
split into a backend and a frontend. The physical device is managed by a driver do-
main which acts as a proxy between the guest OSes and the real device. The driver 
domain creates a device backend, and a guest OS which needs to access the device 
creates a frontend. The frontend talks to the backend in the driver domain and creates 
an illusion of a physical device for the guest OS. Multiple guest OSes can share a 
physical device in this way through the backend in the driver domain. 
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The most common way of deploying driver domains in Xen is to have the service 
OS (e.g. domain 0) as the single driver domain (called centralized I/O Virtualization 
in this paper), as shown in Fig. 1. However, this centralized architecture is not scal-
able when the platform has many devices, as in a server consolidation environment. 
Specifically, as the number and variety of shared devices increase, the centralized I/O 
Virtualization has the following problems. First, the Service OS can be easily over-
loaded by I/O virtualization. Second, any optimization of the Service OS for better 
I/O virtualization performance needs to consider all other tasks in the service OS 
(e.g., service daemons and management tasks), so it may not be easy to do such op-
timizations. Third, different devices may have different needs for better performance. 
For example, a graphics device may be more sensitive to latency while a network de-
vice may be more interested in throughput, so it may be difficult to find an optimiza-
tion that satisfies both graphic devices and network devices at the same time. 

 

Fig. 1. Centralized I/O Virtualization Architec-
ture 

Fig. 2. IOVM Architecture 

One possible solution to the scalability problems with centralized I/O Virtualization is 
scale-up (e.g., adding more resources to the Service OS). However, our experience 
with Xen (version 3.0.2) shows that allocating more computing resources (e.g., more 
CPUs) does not necessarily translate into better I/O virtualization performance. For 
example, we found that a Service OS domain (uniprocessor Linux) with only one 
CPU saturates before it can support 3 Gigabits/second NICs (Network Interface 
Cards) at full capacity. Adding one more CPU to this domain (SMP Linux) does not 
show much improvement - the receive throughput increases by 28%, but at the cost of 
reduced efficiency (by 27%); the transmit throughput even decreases by 6.6%, and the 
transmit efficiency drops by 88%. The definition of efficiency can be found in  
Section 4.1. 

The difficulties of scale-up lead us to consider another way of deploying driver 
domains: scale-out, e.g., using dedicated guest domains other than the service OS as 
driver domains. This idea was suggested by Fraser [5] and Kieffer [7], and we have 
also proposed IOVMs [1]. The IOVM approach can solve the three problems with 
centralized I/O Virtualization. The first problem is solved by moving the I/O Virtual-
ization out of the service OS, so it will not be overloaded by I/O Virtualization. Sec-
ond, any possible optimization is performed in a different domain from the service OS 
so it does not affect the existing tasks. Third, when different devices have different 
requirements for high performance, we can create different IOVMs and optimize each 
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one in a different way, according to the characteristics of the device and workload. 
Therefore the IOVM approach opens up opportunity for scalable I/O virtualization 
given that proper optimizations are done in the IOVMs and the addition of IOVMs to 
the platform does not consume excessive resources. 

This paper presents our initial experience with IOVMs for network virtualization 
on a multi-core platform. The question we want to address is - Given a platform 
equipped with multi-core, how can its support for network virtualization scale as the 
number of network devices increases? By ‘scale’ we mean ‘aggregated bandwidth in-
creases linearly with the increase of computing resources (CPU cycles) on the plat-
form’. We believe that the software architecture (including the network device driver 
and protocol stack) is a key to the solution. In this paper, we show how IOVMs en-
able the division of work load among cores in such a way that scalability can be 
achieved by incrementally starting IOVMs on new cores. Specifically, this paper 
makes the following contributions: 

• It proposes a novel way of using IOVMs for scalable I/O Virtualization. Although 
dedicated driver domains were initially proposed for fault isolation [8][5], we ob-
serve and show experimentally in this paper that it is also beneficial to scalable I/O 
Virtualization. 

• The second contribution of this paper is a comprehensive set of experimental re-
sults to evaluate the idea of IOVMs. It compares the performance of three different 
configurations of network IOVMs: Monolithic IOVM, Multiple Small IOVMs, and 
Hybrid IOVMs. And it concludes that the Hybrid IOVM configuration offers a 
promising balance between scalable throughput and efficient use of core resources. 

The rest of this paper is organized as follows. Section 2 describes the IOVM architec-
ture. Section 3 briefly outlines the optimizations that we have carried out in a Net-
work IOVM. Section 4 presents a series of experimental results which evaluate the 
performance and scalability of the Network IOVM. Related work is discussed in  
Section 5 and we draw conclusions in Section 6. 

2   IOVM Architecture 

This section describes our IOVM architecture (See Fig. 2). The main idea is to move 
I/O Virtualization work out of the service OS (domain 0) and into dedicated driver 
domains. 

In Xen an IOVM is a specialized guest operating system, so it has the basic fea-
tures and structure of a modern operating system (e.g., memory management and 
process management). In addition, it has the following components. First, it contains 
the native device driver for the physical device(s) that it virtualizes. Second, it runs 
the backend drivers for guest domains interested in sharing the physical device. Fi-
nally, it runs any multiplexer/demultiplexer that glues the first two together (e.g., code 
for routing). A network IOVM essentially has the structure of a switch or router. 

2.1   Different IOVM Configurations 

Three different IOVM configurations can be used to virtualize devices: Monolithic, 
Multiple Small IOVMs, and Hybrid. 
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Monolithic IOVMs (Fig. 3): All devices are assigned to a single IOVM. As a result, 
the platform only has one IOVM, but this IOVM can be very heavy-weight due to a 
large number of devices to be virtualized.  

Multiple Small IOVMs (Fig. 4): Each device is assigned to a dedicated IOVM. So 
the number of IOVMs is equal to the number of physical devices being shared. When 
there are many devices, this configuration can result in many IOVMs. 

Hybrid IOVMs (Fig. 5): This configuration is a compromise between the first two 
configurations. In this configuration, there are multiple IOVMs, and each IOVM is 
assigned a subset of the physical devices being shared. The IOVMs are medium-
sized, so they are larger than those in the Multiple Small IOVMs configuration, but 
they are smaller than a Monolithic IOVM. A Hybrid IOVMs configuration results in a 
smaller number of IOVMs in the system compared with the Multiple Small IOVMs 
configuration, but a larger number of IOVMs compared with the Monolithic IOVM 
configuration. 

   

Fig. 3. Monolithic Configura-
tion 

Fig. 4. Multiple Small IOVMs 
Configuration 

Fig. 5. Hybrid Configuration 

3   An IOVM for Network Virtualization 

Having a separate IOVM gives us much freedom in terms of constructing it. For ex-
ample, we can start from a commodity OS (such as Linux) and specialize it; we can 
also build a custom OS from scratch. In this project we choose the first approach. 
Specifically, we customize the para-virtualized Linux for Xen for a network IOVM. 
The customizations (optimizations) that we perform fall into three categories: kernel, 
network protocol stack, and runtime. 

Minimal kernel for a Network IOVM: We use the Linux configuration facility to 
remove irrelevant modules or functionalities from the kernel, e.g., most of the device 
drivers, IPv6, Cryptography, and Library Routines. The essential part of the kernel 
(e.g., memory and process management) is kept. Besides, we keep the list of func-
tionalities shown in Table 1. The network interface card driver is configured to use 
polling for receive. Due to the inefficiency of SMP Linux on network virtualization, 
we turned off SMP support in the Network IOVM for the rest of the paper. By per-
forming this step, we reduce the compiled size of the “stock” kernel by 44%. 

Minimal network protocol stack: To make the network IOVM fast we use Ethernet 
Bridging in Linux kernel to forward packets between the guest OS and the NICs 
(Network Interface Cards). An Ethernet bridge processes packets at the data link layer 
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(e.g. only looking at the MAC addresses to make forwarding decisions). We do not 
use layer 3 or above forwarding, and we do not use iptables. As another special note, 
we found that bridged IP/ARP packets filtering is very CPU intensive: For example, 
although it happens at the data link layer, it computes IP checksum, looks up routing 
table, and replicates packets. In other words it adds significant processing to the criti-
cal path of every packet, even if no filtering rules are defined. So it is disabled in the 
network IOVM for better performance. 

Minimal IOVM runtime: In this part we shutdown most of the irrelevant services in 
the network IOVM (e.g., sendmail) to save CPU cycles. As a result only network, sys-
log and possibly sshd are needed to support a network IOVM. We also start the net-
work IOVM in a simple run-level (multiuser without NFS). 

Table 1. Kernel Functionality Required for the Network IOVM 

Basic TCP/IP networking support 802.1d Ethernet bridging 
Packet socket Unix domain socket 
Xen Network-device backend driver Ext2 , ext3, /proc file system support 
Initial RAM disk (initrd) support Network Interface Card driver (PCI, e1000) 

4   Evaluation of the Network IOVM 

In this section, we present several experiments which lead to a method for scalable 
and high performance network virtualization. 

4.1   Experiment Settings 

We test the idea of network IOVMs on an Intel platform with two Core Duo proces-
sors (4 cores total). This platform has several gigabit NICs. Each NIC is directly con-
nected to a client machine, and is exclusively used by a guest OS to communicate 
with the client machine (Figures 3-5). The maximum bandwidth through each NIC is 
measured by the iperf benchmark [6]. There are 4 TCP connections between each 
guest OS and the corresponding client machine, which start from the guest OS, trav-
erse through the IOVM and the NIC, and reach at the client machine. The connections 
are all transmitting 1024 byte buffers. The combined bandwidth of the NICs is con-
sidered the aggregated bandwidth (throughput) supported by the platform. Both Xen 
3.0.2 and Xen-unstable (a version before Xen 3.0.3) are used as the virtual machine 
manager, and a para-virtualized Linux (kernel 2.6.16) is used as the guest OS. The 
guest OSes and IOVMs have 256MB memory each. 

We me asured two metrics: throughput and efficiency. Throughput is measured 
using the microbenchmark iperf. Efficiency is calculated by dividing the aggregate 
throughput transferred by the IOVM(s) by the number of processor cycles used by the 
IOVM(s) during the workload run. The processor cycles used by the IOVM(s) are 
measured using xentop, a resource measurement tool included in Xen. This results in 
a value measured in bits transmitted per processor cycle utilized or bits/Hz for short. 

Network bandwidth through each NIC is measured in two directions: (1) from the 
client to the guest OS (denoted as Rx, for receive), (2) from the guest OS to the client 
(denoted as Tx, for transmit). 
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Fig. 6. Comparison of Throughput Fig. 7. Comparison of Efficiency 

4.2   Making a Case for Network IOVMs 

The first experiment compares the performance of centralized network virtualization 
versus a network IOVM. Here we use a Monolithic configuration (Fig. 3) with 3 
NICs. Fig. 6 shows the throughput results for different number of NICs and different 
virtualization architectures (Rx means receive and Tx means transmit in this paper). 
From Fig. 6 we can see that the throughputs are the same for centralized network vir-
tualization and IOVM network virtualization when only one NIC is used by iperf. It is 
so because at this load the CPU is not a bottleneck so both architectures can support 
nearly line rate (e.g. 940Mbits/sec). When we move on to 2 NICs, we can see that the 
IOVM network virtualization continues to deliver nearly line rate (1880 Mbits/sec), 
but the centralized network virtualization can not (1760Mbits/sec). This result shows 
that at 2 NICs, the Service OS in centralized network virtualization starts to be satu-
rated. The IOVM is doing better because it is optimized for networking as described 
in Section 3. When we move on to 3 NICs, it becomes more apparent that IOVM 
network virtualization can support higher throughput. E.g., 2230Mbits/sec versus 
1700Mbits/sec for transmit (denoted as Tx), and 1500Mbits/sec versus 1400Mbits/sec 
for receive (denoted as Rx). Comparatively the benefit of IOVM is not as big for re-
ceive as it is for transmit. The reason is that receive is more CPU intensive in current 
implementation (polling is used). As a result the optimization in the network IOVM is 
still not enough to meet the increase in CPU demand when there are 3 iperf loads. By 
carrying out more aggressive optimization in the network IOVM we may be able to 
support higher throughput. But the point of Fig. 6 is that using a network IOVM has 
advantage in terms of throughput. 

Fig. 7 shows the result for efficiency (Section 4.1), which is more revealing about 
the benefit of a network IOVM. For example, when there is only one NIC used by 
iperf, the efficiency is about 1.2 bits/Hz for IOVM and about 0.8 bits/Hz for central-
ized network virtualization, meaning that network IOVM is 50% more efficient than 
centralized network virtualization. In other words, although the two architectures ap-
pear to support the same level of throughput (940Mbits/sec in Fig. 6) at one NIC 
level, the network IOVM is actually using much less CPU cycles to support that 
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throughput. So a network IOVM is more efficient in terms of CPU usage. This claim 
is also true for the 2 NICs case in Fig. 7. When there are 3 NICs, the efficiency of 
IOVM is still much higher than that of centralized network virtualization in terms of 
transmit, but the efficiency difference in terms of receive becomes small. This is be-
cause in both IOVM and centralized network virtualization the CPU is saturated, but 
the throughput is nearly the same. 

Table 2.  The Static Core Assignment Schemes 

co-locate Each guest and its corresponding IOVM are on the same core. 

separate 
Each guest and its corresponding IOVM are on different cores, but a guest 
shares a core with a different IOVM. 

IOVM-
affinity 

All IOVMs are on the same core, and the guests are each on one of the re-
maining cores. 
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Fig. 8. Throughput Results for Different Static 
Core Assignment Schemes Using the Multiple 
Small IOVMs Configuration 

Fig. 9. Efficiency Results for Different Static 
Core Assignment Schemes Using the Multiple 
Small IOVMs Configuration 

4.3   Multiple Small IOVMs and Static Core Assignment 

This section evaluates the performance of using Multiple Small IOVMs (Fig. 4) for 
network virtualization, e.g., assigning each NIC to a dedicated IOVM. One concern 
about this configuration is the overhead (e.g., memory and scheduling overhead) of 
having a large number of simple IOVMs (domains). For example, the platform that 
we used only has 4 cores, but we have 7 domains in total (3 guests, 3 IOVMs and 
domain 0) when there are 3 test loads. Obviously some of the domains must share a 
physical CPU core. Xen 3.0.2 allows the assignment of a domain to a physical core, 
and this section shows that the way that the IOVMs and the guest domains get as-
signed is very important to the virtualization performance. 
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Specifically, we have tried 3 different assignment schemes as shown in Table 2. 
Fig. 8 and Fig. 9 show the evaluation results. 

Fig.8 compares the 3 different assignment schemes in terms of throughput. We can 
see that given a certain number of NICs (test loads), no matter if it is transmit or re-
ceive, co-locate has the lowest throughput, IOVM-affinity has the highest through-
put, and separate has a throughput in between the other two schemes. 

That co-locate performs worse than separate is somewhat surprising: one would 
expect the other way around because if a guest and its corresponding IOVM are on 
the same physical core, there will be no need for InterProcessor Interrupts (IPIs) when 
packets are sent from the guest to the IOVM. However, the benefit of eliminating 
such IPIs is offset by a more important factor: the elimination of opportunities for 
parallelism between the guest and the corresponding IOVM. Specifically, there are 
pipelines of packets between the guest and the IOVM, so when they are assigned on 
different cores (as in the separate assignment scheme), they can run concurrently so 
that while the IOVM is processing the nth  packet the guest can start sending the n+1th 
packet. However, when these two domains are assigned on the same core, they lose 
such opportunities. As a result, there is no pipeline for co-locate and the throughput is 
lower. 

But why is the throughput of IOVM-affinity the best? We found that a guest needs 
more CPU cycles than the IOVM to drive the same test load because the guest needs 
to run the network stack as well as iperf, which does not exist in an IOVM. Thus the 
bottleneck for CPU occurs in the guest. By assigning the IOVMs on the same core we 
reserve the most cores possible for the guests (each guest is running on a dedicated 
core in this case). As a result, the guests are able to drive more network traffic and we 
get the highest throughput. But this assignment can not be pushed too far, because if 
too many IOVMs are assigned to a same core, eventually they will run out of CPU 
cycles so there will be no further increase in throughput. In such cases, the bottleneck 
will move to the IOVMs. 

Fig. 9 compares the 3 different assignment schemes in terms of efficiency. The 
overall result is the same: Co-locate has the worst efficiency, IOVM-affinity has the 
best efficiency, and separate has efficiency in between the other two schemes. Co-
locate is the least efficient because of too much context switching overhead: for ex-
ample, whenever the guest sends out one packet, the IOVM is immediately woken up 
to receive it. There are 2 context switches for each packet sent or received. One may 
argue that separate should have the same context switching overhead, but this is not 
the case, because after the guest sends out one packet, the IOVM on a different core 
may be woken up, but the guest can continue to send another packet without being 
suspended. The Xen hypervisor is able to deliver packets in batches to the IOVM; 
running the guest and IOVM on different cores allows multiple packets to be received 
by the IOVM within one context switch. 

Finally, the workload of an IOVM is different from that of a guest, and a guest is 
more CPU intensive, so mixing them together on the same core (as in co-locate and 
separate) may result in more complicated, thus negative, interferences (e.g., cache 
and TLB misses due to context switches) to an IOVM than putting the homogeneous 
workloads of the IOVMs on the same core. Therefore, IOVM-affinity scheme is the 
most efficient. 
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One more note about Fig. 9 is that the efficiency drops with the increase of the 
number of NICs for co-locate and separate, which indicates that they are not scalable 
schemes. The reason is that each IOVM uses almost the same amount of CPU cycles 
under these schemes, so that when the number of NICs increases from 1 to 2 for ex-
ample, the CPU cycles used by the corresponding IOVMs are nearly doubled, but the 
throughput is much less than doubled (Fig. 8). As a result, the efficiency drops from 1 
NIC to 2 NICs. Similarly, efficiency drops off when moving from 2 NICs to 3 NICs. 
On the other hand, the efficiency for IOVM-affinity remains fairly constant as the 
number of NICS increases and is therefore much more scalable. 

0

500

1000

1500

2000

2500

1 2 3
Number of NICs

A
g
g
re

g
at

ed
 t
h
ro

u
g
h
p
u
t 
(M

b
it
s/

se
c)

Rx(SEDF) Tx(SEDF)

Rx(Credit-based) Tx(Credit-based)
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3
Number of NICs

E
ff
ic

ie
n
cy

 (
b
it
s/

h
z)

Rx(SEDF) Tx(SEDF)

Rx(Credit-based) Tx(Credit-based)
 

Fig. 10. Throughput Comparison between 
SEDF and the Credit-based Scheduler 

Fig. 11. Efficiency Comparison between SEDF 
and the Credit-based Scheduler 

4.4   Credit-Based Scheduling and IOVM Configuration 

Core Scheduling and IOVM Performance 
In the evaluation so far we have been using static core schedulers - static in the sense 
that the CPU core that a domain runs on is fixed during its lifetime. The advantage of 
such schedulers is simplicity of implementation and reduced overhead of domain mi-
gration across cores. However, the drawback is that workload is not balanced across 
multiple cores, so that the platform resources are not efficiently utilized to achieve 
better overall performance (e.g. throughput). For example, while the core that an 
IOVM is running on is saturated, another core where a guest is running on may be 
idle for 30% of the time. Obviously the IOVM becomes the bottleneck in this case 
and thus the throughput can not improve, but there are free cycles on the platform that 
are not used. So if we could give the 30% free cycles to the IOVM, we can mitigate 
the bottleneck and have higher overall throughput as a result. This is the idea of the 
credit-based scheduler [13]. In a nutshell, a credit-based scheduler allows a domain to 
change the core where it runs on dynamically. The credit-based scheduler supports 
load balancing across the cores and is helpful for better overall performance. 

Fig. 10 and Fig. 11 show the throughput and efficiency comparison of a static 
scheduler (SEDF, or Simple Earliest Deadline First) and the credit-based scheduler, 
on a Monolithic configuration (Fig. 3). Fig. 10 shows that using credit-based sched-
uler can achieve equal or higher throughput than using a static scheduler. Especially, 
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when there are 3 test loads, the overall ‘receive’ throughput is 2070Mbits/sec for the 
credit-based scheduler, which is significantly higher than 1500Mbits/sec where the 
static scheduler is used. The credit-based scheduler does especially well for receive 
because receive is more CPU-intensive. 

Fig. 11 shows that the credit-based scheduler is not as efficient as a static scheduler 
when there are one or two test loads. This is understandable because moving the do-
mains around incurs overhead, e.g., a moving domain needs to transfer its context to 
the new core and warm up the cache at the new core. When the CPU is not the bottle-
neck, this overhead makes the network IOVM less efficient. However, when the net-
work IOVM is saturated (3 NICs), the credit-based scheduler results in better  
efficiency than the static scheduler, especially for receive. 

Credit-based Scheduling and IOVM Configuration 
Credit-based scheduling provides a solution to scalable network virtualization. This is 
because it virtualizes the core resources in a transparent way. In this sub-section we 
try to find out how to make the best use of this scheduler. We use the 3 configurations 
mentioned in Section 2.1 as the controlled variable. 

In this experiment, 3 test loads are used. We run the experiment using 3 different 
configurations: Monolithic, Multiple Small IOVMs, and a Hybrid configuration with 
2 IOVMs, where the first IOVM is assigned 2 NICs, and the second IOVM is as-
signed 1 NIC. Fig. 12 and Fig. 13 show the throughput and efficiency for the 3 con-
figurations, respectively. 
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Fig. 12. Throughput of Different IOVM Con-
figurations under the Credit-based Scheduling 

Fig. 13. Efficiency of Different IOVM Con-
figurations under the Credit-based Scheduling 

From Fig. 12 and Fig. 13 we can see that the Monolithic IOVM configuration is 
the most efficient, the Multiple Small IOVMs configuration has the highest through-
put but is the least efficient, and the Hybrid configuration has good enough through-
put and is more efficient than the Multiple Small IOVMs configuration.  

The better efficiency of the Monolithic and Hybrid configurations is due to larger 
packet batch size in their IOVMs. It turns out that Xen has optimized the network im-
plementation such that the network backend exchanges packets with the frontend in 
batches to reduce the number of hypervisor calls. The larger the batch size, the more 
savings in terms of hypervisor calls, and thus the more efficient. At runtime, the batch 
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size is influenced by workload, or the number of NICs in our case. For example, as 
Fig. 14 shows, an IOVM with 2 NICs has larger batch size than an IOVM with only 1 
NIC, so an IOVM with 2 NICs is more efficient. In our experiment, the Monolithic 
IOVM has the largest number of NICs (3), each of the Multiple Small IOVMs has the 
smallest number of NICs (1), and each of the IOVMs in the Hybrid configuration has 
1.5 NICs on average, so we get the efficiency result as shown in Fig. 13. 

Although the Monolithic IOVM is the most efficient, obviously it can not scale be-
cause it only has one core (it uses a uniprocessor kernel, see Section 3), so it can not 
support higher throughput beyond the core limit. On the other hand, the Multiple 
Small IOVMs configuration is a scalable solution because it can utilize more cores, 
but it is the least efficient. The Hybrid configuration is also scalable for reasons simi-
lar to the Multiple Small IOVMs configuration, but it is more efficient. So the Hybrid 
configuration is the best configuration in terms of scalability and efficiency. 
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Table 3. Combining Static Core Assignment 
and Credit-based Scheduler Yields Better 
Performance 

 Throughput 
(Mbits/sec) 

Efficiency 
(bits/Hz) 

Default 2,106 0.72 

Core 
Pinning 

2,271 0.82 
 

4.5   Further Improve the Efficiency of the Hybrid IOVM Configuration 

The previous section shows that a Hybrid IOVM configuration combined with Credit-
based scheduling can give us a scalable network virtualization solution. However, as 
can be seen from Fig. 13, the efficiency of a Hybrid configuration (0.7bits/Hz) is still 
not as good as that of a Monolithic configuration (1.1 bits/Hz). This section tries to 
address this problem. Specifically, we found that combining static core assignment 
and Credit-based scheduling can give a Hybrid configuration better efficiency. 

In this experiment, we have 4 NICs and we use a Hybrid configuration where 2 
network IOVMs are assigned 2 NICs each. We first run 4 test loads under the Credit-
based scheduling and measure the throughput and efficiency. We call this test result 
“Default” in Table 3. Then we change the core scheduling a little bit: instead of let-
ting the Credit-based scheduler schedule all the domains on the 4 cores, we manually 
pin the first IOVM to core 3 and the second IOVM to core 2, and let the Credit-based 
scheduler schedule the other domains on the remaining cores. We do the 4 guest  
experiment again and put the result in Table 3 denoted as “Core Pinning”. As we 
compare the two sets of results, we can see that using limited core pinning (or static 
assignment) results in improved efficiency as well as higher throughput (a pleasant 
side effect). This result suggests that it is not efficient to move the IOVMs across dif-
ferent cores. So it is more efficient to combine static core assignment (for the IOVMs) 
and Credit-based scheduling when using a Hybrid configuration for scalable network 
virtualization. 



 Towards Scalable and High Performance I/O Virtualization – A Case Study 597 

5   Related Work 

I/O virtualization can be carried out in the VMM [3][4], or the host OS [12], in addi-
tion to dedicated guest domains [1][5][8][10]. VMM-based I/O virtualization requires 
nontrivial engineering effort to develop device drivers in the VMM, provides inade-
quate fault-isolation, and is not flexible for driver optimization. HostOS-based I/O 
virtualization takes a further step by reusing existing device drivers, but does not sup-
port fault isolation and is still inflexible in terms of driver optimization. The IOVM 
approach supports driver reuse, fault isolation, and flexible driver optimization at the 
same time. 

There has been some related work in improving the performance of I/O virtualiza-
tion. For example, VMM-bypass IO [9] achieves high performance I/O virtualization 
by removing the hypervisor and the driver domain from the normal I/O critical path. 
But this approach heavily relies on the intelligent support provided by the device 
hardware to ensure isolation and safety, and it does not address the scalability issue. 
The IOVM approach that we proposed does not rely on such hardware support, and 
we have put much emphasis on scalability. In another work, Menon [11] proposes 
three optimizations for high performance network virtualization in Xen: high-level 
network offload, data copying instead of page remapping, and advanced virtual mem-
ory features in the guest OS. These optimizations are orthogonal to what we are doing 
in this paper, since our main concern is scalability, and incorporating such optimiza-
tions into our implementation may further improve the efficiency. Wiegert [14] has 
explored the scale-up solution by increasing an IOVMs compute resources to improve 
scalability. 

Utility Computing has been a hot research area in recent years. From a service pro-
vider point of view, one of the goals is to achieve optimal overall resource utilization. 
Our work addresses the problem of optimizing the utilization of core (CPU) re-
sources. Concerns about other resources (such as memory and disks) have not been a 
problem for us, but they can be added into our future work. 

6   Conclusions and Future Work 

Scalable I/O virtualization is very important in a server consolidation environment. 
This paper proposes IOVMs as a software solution to this problem. An IOVM is a 
guest OS dedicated to and optimized for the virtualization of a certain device. IOVMs 
are good for scalability and flexible for high performance. 

The first contribution of this paper is a novel way of using a hybrid configuration 
of IOVMs to achieve scalable and high-performance I/O virtualization. It makes the 
scalability and efficiency tradeoff: the scalability is achieved by spawning more 
IOVMs to utilize more core resources, and the efficiency is achieved by making full 
use of the core resource within each IOVM.  

The second contribution of this paper is a comprehensive set of experiments to 
evaluate the performance of network IOVMs. They show that IOVMs result in higher 
throughput and better efficiency compared to the centralized IO virtualization archi-
tecture, that a combination of static assignment and credit-based scheduling offers 
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better efficiency, and that a hybrid configuration of IOVMs is a choice for scalable 
network virtualization.  

Future work: The physical constraint of the multi-core platform nowadays limits the 
scope of our experiments. For example, if we could have a platform with 32 cores, we 
can gather more data points to do a more comprehensive analysis. Second, we have 
studied network virtualization only as a starting point; applying IOVM architecture to 
other kinds of devices (e.g., storage devices) may further test the validity of IOVM 
approach. Finally, we plan to use other kinds of work load besides iperf to further 
evaluate the network IOVMs. 
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