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Abstract—Big data analytics and knowledge management 
is becoming a hot topic with the emerging techniques of cloud 
computing and big data computing model such as 
MapReduce. However, large-scale adoption of MapReduce 
applications on public clouds is hindered by the lack of trust 
on the participating virtual machines deployed on the public 
cloud. In this paper, we extend the existing hybrid cloud 
MapReduce architecture to multiple public clouds. Based on 
such architecture, we propose IntegrityMR, an integrity 
assurance framework for big data analytics and management 
applications. We explore the result integrity check techniques 
at two alternative software layers: the MapReduce task layer 
and the applications layer. We design and implement the 
system at both layers based on Apache Hadoop MapReduce 
and Pig Latin, and perform a series of experiments with 
popular big data analytics and management applications such 
as Apache Mahout and Pig on commercial public clouds 
(Amazon EC2 and Microsoft Azure) and local cluster 
environment. The experimental result of the task layer 
approach shows high integrity (98% with a credit threshold of 
5) with non-negligible performance overhead (18% to 82% 
extra running time compared to original MapReduce). The 
experimental result of the application layer approach shows 
better performance compared with the task layer approach 
(less than 35% of extra running time compared with the 
original MapReduce). 

Keywords—Big Data; MapReduce; Integrity Assurance; 
Cloud Computing 

I. INTRODUCTION 
Big data analytics and knowledge management is 

becoming a hot topic in recent years when MapReduce [1] 
and cloud computing techniques are getting mature. 
However, when the public cloud venders offer big data 
analytics and management as public services, new 
challenges appear when retrospection is performed from 
the security perspective. MapReduce, the fundamental 
infrastructure of such a service, when deployed on the 
public cloud, suffers the integrity vulnerability problem. 
Given the distributed architecture of MapReduce, merely 
one malicious participant can render the overall 
computation result useless. This is because the cloud 
vendor is not responsible for the integrity of computations 
inside each virtual machine that runs MapReduce tasks. 
Specifically, due to the openness of public cloud 
architecture, customers have the freedom to choose virtual 
machine image provided by anybody, including the 
malicious provider. [20] and [21] point out a security 

vulnerability that Amazon EC2 suffers from: any member 
of the EC2 community can create and upload Amazon 
Machine Images (AMIs), which can be used by any EC2 
user. If the AMIs are malicious and are widely used, it 
could flood the whole EC2 community with malicious 
applications, including MapReduce. 

In this paper, we propose a novel architecture that 
combines the benefits of private clouds and public clouds. 
Our solution, named IntegrityMR, overlays the MapReduce 
framework on top of  hybrid cloud. The master and a small 
number of workers called verifiers are deployed on the 
private cloud, while other workers are deployed on multiple 
public clouds. The workers on public clouds finish the 
majority of work. While the master and verifiers on the 
trusted private cloud control the correctness. The key 
rationale of our solution is to retain control “at home”, 
while delegating the more resource-intensive computations 
to the public cloud. Such hybrid cloud architecture is 
enlightened by [22]. However, we extend the idea into 
multiple public clouds environment. Since IntegrityMR 
assigns tasks to multiple public clouds, it raises a bar for 
the attackers who have to construct collusive malicious 
workers across multiple public clouds that can collude with 
each other to commit more stealthy cheat. 

We explore the design space of result integrity checking 
in two alternative layers of the MapReduce application 
software stack: the MapReduce task layer (we call it task 
layer in the following sections for brevity.) and the 
application layer. At the task layer, we resort to the 
techniques proposed in [18] and [22] and extend the 
techniques to multiple public clouds environment. We build 
a prototype system that can support most big data analytics 
and management applications. At the application layer, we 
make a case study on Pig Latin [8], a popular MapReduce 
based big data management application. We propose a 
technique to transform Pig Latin scripts to introduce 
invariant to map tasks and the invariant check to the 
succeeding reduce tasks.  

To the best of our knowledge, this is the first paper 
proposing multiple public clouds architecture for 
MapReduce computation. Moreover, this is the first paper 
proposing to introduce invariant to the MapReduce job to 
guarantee result integrity. Specifically, our contributions 
are as follows. 



 

• We propose a new hybrid cloud MapReduce 
architecture, IntegrityMR, which gains control at the 
private cloud and utilizes the computation capability 
from multiple public clouds. 

• We explore task layer result integrity check technique 
by extending the techniques proposed in [18] and [22] 
to the multiple public clouds environment. 

• We study the Pig Latin, and propose an application 
layer result integrity checking technique based on a 
script transformation technique.  

• We make a prototype implementation of IntegrityMR 
on Apache Hadoop [7] and Pig Latin, and perform 
experiments on commercial public cloud (Amazon 
EC2 [2] and Microsoft Azure [3]) and local cluster to 
test the efficacy of both layer solutions.  
 

The rest of this paper is organized as follows. Section II 
declares the system assumptions and attacker model. 
Section III presents the design, implementation, and 
evaluation of task layer result integrity checking approach. 
Section IV describes the application layer result integrity 
checking approach using the Apache Pig as a case study. 
Section V discusses related work, and Section VI concludes 
the paper. 

II. BACKGROUND AND SYSTEM ASSUMPTIONS 

A. System Assumptions 
IntegrityMR overlays MapReduce on multiple clouds: 

one private cloud and multiple public clouds. We assume 
the private cloud is trusted since it is deployed in the user’s 
organization. Hence the master and the verifiers that are 
deployed on the private cloud are trusted. We assume the 
public clouds are not trusted. Hence the workers that are 
deployed on the public clouds are not trusted. Since the 
integrity of the Distributed File System (DFS) can be 
guaranteed with the techniques proposed in [5] and [6], we 
assume DFS is trusted. Finally, we assume the 
infrastructures provided by the cloud provider such as 
virtualized hardware and network are trusted, although the 
virtual machine instances can be compromised. Overall, 
from the MapReduce’s perspective, the only untrusted 
entities in the IntegrityMR environment are the workers 
deployed on public clouds.  
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Fig. 1. Architecture of IntegrityMR 

B. Attacker Model 
We model the attacker as a “powerful adversary” that 

controls a set of malicious nodes in each public cloud. It 
receives and shares information collected from malicious 
nodes and instructs a selected subset of malicious nodes to 
return incorrect result at the coordinated time in order to 
introduce as many errors as possible while not being 
detected. In other words, if two malicious workers are 
assigned to execute the same task, they can collude with 
each other. We call such malicious workers collusive 
workers.  

III. TASK LAYER RESULT INTEGRITY CHECK 
We explore the task layer integrity check technique in 

this section.  

A. System Design 
IntegrityMR redefines the architecture of MapReduce: 

the master and verifiers, the trusted slave workers are 
deployed on the trusted private cloud within the customer’s 
organization. The remaining slave workers are deployed on 
multiple public clouds. The verifiers are used to re-compute 
tasks to arbitrate inconsistent results and detect non-
collusive workers, or to verify consistent results in a 
probabilistic manner to detect collusive workers. The 
master is responsible for assigning tasks and checking the 
consistency of the task results.  Since the DFS is trusted, 
we deploy DFS across the multiple public clouds. The 
system architecture is shown in Fig. 1 

We adapt the techniques proposed in [22] to meet the 
requirement of IntegrityMR. In [22], the authors propose 
CCMR, a single private cloud and single public cloud 
architecture. CCMR employs random replication, random 
verification and credit based management techniques on 
such MapReduce. We extend these techniques to the 
multiple public clouds architecture.  

In task assignment, instead of picking a worker from the 
single public cloud, IntegrityMR can randomly choose a 
public cloud and pick a worker from the chosen cloud. 
However, complete randomized task assignment would 
bear significant performance loss due to the existence of 
shuffle phase, where the mappers send their intermediate 
results to the reducer. If the mappers and the reducers are 
not in the same cloud, the data transmission would 
slowdown the overall computation. We solve this problem 
by having the master assign the original map tasks and 
reduce tasks to the same cloud, and the replicated map 
tasks and reduce tasks to another cloud. Since the reducer 
only accepts map results from the same cloud, shuffle 
would only happen inside a cloud.  

The control flow of IntegrityMR is depicted in Fig. 2. 
Cloud A and cloud B are two clouds randomly picked from 
the available public clouds in the IntegrityMR environment. 
W1 and W2 are two slave workers randomly picked from 
cloud A and B respectively. The “Arbitrate task” and 
“Verify task” steps are executed by the verifier. Other 
components in the figure, including the Task Queue and the 
History Caches for the worker W1, are all maintained in the 
master. Whenever the Task Queue is not empty, the master 



 

will pick one task (e.g., t2) from the Task Queue and assign 
it (step 1) to two workers randomly picked from any two 
clouds among all the public clouds (W1 and W2 in cloud A 
and B, respectively). According to the hold-and-test 
strategy proposed in [22], the task is first assigned to W1. 
Only when the result R1 (hash value) is returned (step 2), 
the replicated task is assigned to W2 (step 3). By doing 
this, if the first worker W1 is a malicious worker, it cannot 
determine whether it is safe to cheat because it does not 
know whether W2 assigned in the future is a collusive 
worker or not. W1 stores the actual task result in its local 
storage and return the hash value of result R1 to the master, 
which is stored in the history cache of W1. When the result 
R2 is returned by W2 (step 4), the master will compare R1 
and R2 to detect the malicious workers. If R1 and R2 are 
consistent, the master increments the credit of the first 
worker W1; otherwise, the task is arbitrate by the master 
(i.e., by asking a verifier to re-compute it) to identify which 
worker is malicious. If R1 and R2 are consistent, the 
consistent result is still verified with certain probability v 
(verification probability). If the verified result is different 
from R1/R2, both W1 and W2 are determined to be 
malicious workers. If the verified result is the same as 
R1/R2, the master increments the credit of worker W1. If 
the credit of W1 exceeds a certain value N (credit 
threshold), the task results buffered in W1’s local storage 
are accepted by the master in one result batch. Meanwhile, 
its history cache is cleared and its credit is reset to 0.  

A detected malicious worker will be added to the 
blacklist. And the tasks buffered in its history cache will be 
rescheduled. (i.e., putting the tasks back to the Task Queue) 

B. Security Analysis 
IntegrityMR has two lines of defense against the 

attacker. The multiple public clouds architecture raises the 
bar for the attackers. Since each task is replicated and 
assigned to two (or more) workers from different cloud 
service providers, successfully breaking in multiple public 
clouds is already non-trivial challenge for the attacker. 
Figuring out which virtual instance corresponds to a 
specific MapReduce job in each cloud and compromising 
them to construct collusion is even more difficult for the 
attackers. 

Even if the first line of defense is breached, 
IntegrityMR can still protect the accuracy of computations 
by the techniques such as hold-and-test, verification and 
credit based trust management. Even though IntegrityMR 
includes multiple public clouds, the task assignment design 
is similar to the map phase integrity assurance design of 
CCMR [22]. Therefore, we can straightforwardly adapt the 
theoretical analysis result (Theorem 1) of CCMR. Given 
the space limit, we skip the theoretical accuracy and 
overhead analysis of IntegrityMR, and refer readers to [22]. 

C. Experiment Environment 
We implement the IntegrityMR based on the Apache 

Hadoop and deploy it on the environment consisting of one 
private cloud and two public clouds. 

1) Environment Configuration 
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Fig. 2. Control flow of IntegrityMR 

Our experiment environment consists of the following 
entities: a Linux server (2.93 GHz, 8-core Intel Xeon CPU 
and 16 GB of RAM) is deployed on the private cloud, 
running both the master and the verifier. 6 slave workers 
are running on  Microsoft Azure extra small instances 
(Windows Server 2008 32-bit, 1 core@ 1GHz, 768MB 
Memory). Another 6 slave workers are deployed on the 
Amazon EC2 small instances (Amazon Linux AMI 32-bit, 
1 ECU, 1 core, 1.7GB Memory). Since each Azure instance 
runs Windows system, we install Cygwin on each Azure 
instance so that Hadoop required SSHD service can work 
on it. Since the cloud provider assigns each virtual instance 
a unique URL, IntegrityMR uses such URL to identify 
different worker on public cloud. The topological 
information such as which worker is deployed on which 
cloud is statically configured in Hadoop configuration file 
(mapred-site.xml). In addition, the mapred-site.xml of 
IntegrityMR also configures the verification probability v 
and credit threshold N. 

2) Collusive Worker Implementation 

To test the effectiveness of IntegrityMR, we implement 
the collusive workers according to the analysis in [22]: 
Since hold-and-test is applied, the collusive worker can 
only work as follows: when it receives a task, it first 
queries the adversary whether the same task (replicated 
one) has been executed previously by another malicious 
worker. If yes, the adversary will instruct the current 
malicious worker return the same result as the previous 
one. Otherwise, the current worker has to decide whether to 
cheat and send the decision back to the adversary. Our 
implementation assumes that the worker cheats with 
probability p when the adversary fails to give an 
instruction. We therefore define p as the cheat probability. 

D. Experiment Result 
Using the environment described in Section III.C.1), we 

run a set of experiments to evaluate the effectiveness of 
IntegrityMR in terms of accuracy, overhead and 
performance overhead. Our test applications include not 
only example application such as Hadoop Word Count but 
also popular big data analytics application such as Mahout 
[23]. Specifically, our experiment tests the following 
Mahout applications: Mahout Bayes Classification, Canopy 
Clustering, K-means Clustering, Fuzzy K-means 
Clustering, and Dirlchlet Process Clustering. And all of 



 

these applications can run successfully under the 
IntegrityMR framework, showing a wide range of support 
for the big data analytical and management applications. 

1) Accuracy and Overhead 

We measure both the computation accuracy and the 
overhead of the IntegrityMR in the task layer. Since in 
IntegrityMR, the map and reduce design share the same 
technique, our measurement only consider the map tasks. 
The reduce task measurement should have a similar result. 
We define the following metrics to measure the accuracy 
and overhead. 

Error rate: The percentage of incorrect map task 
results accepted by the master in one job execution. 

Worker overhead: The percentage of extra number of 
map tasks executed on the workers on public cloud in one 
job execution.  

Verifier overhead: The percentage of map tasks 
executed by the verifiers on the private cloud in one job 
execution.    

We assume that each execution of the same task 
consumes the same amount of resource (e.g., CPU time, 
memory, disk space, etc). Therefore, the worker overhead 
and the verifier overhead below represent the overhead of 
IntegrityMR across all resources. Comparatively, the 
performance overhead reported in section III.D.2) covers 
only the end-to-end execution time of the entire job. 

We use Hadoop word count application to test the 
accuracy and overhead. The word count job computes the 
occurrences of each word in a batch of text input. In our 
experiment, each word count job consists of 100 map tasks 
and one reduce task. We introduce several collusive 
workers whose behavior is described in Section III.C.2). In 
each job, we adjust the malicious node fraction n, cheat 
probability of malicious worker p, and credit threshold N. 
We set the verification probability v as constant value of 
0.15 . 

We introduce the same number of malicious nodes in 
each public cloud. We vary the number of malicious 
workers from 1 to 3. Therefore, the values of n can be 0.15, 
0.3 or 0.5. We pick four different environment 

configurations with different value of n and p, and test the 
effectiveness of IntegrityMR with different value of credit 
threshold N (1, 3, 5, 7, and 9).  

Fig. 3 shows the error rate with different value of 
threshold under different environment configurations. In 
the figure, we learn that when N is increased from 1 to 9, 
the error rate in different environments decreases under all 
configurations. We also observe that when n is a constant 
(e.g., n=0.3) and N is small (e.g., N=1), a higher value of p 
(e.g., p=1.0) would bring a higher error rate (e.g., 12%) 
than an environment with a smaller value of p (e.g., p=0.5, 
7% of error rate). However, with the increase of N, the 
error rate with a higher value of p decreases faster than the 
one with a smaller value of p. (e.g., when N=9, p=1.0, the 
error rate is 0%. When N=9, p =0.5, the error rate is 1%). 
Such changing trend is consistent with theorem 1 in [22]. 

Fig. 4 shows the worker overhead under different 
environment configurations. Under each environment 
configuration, the overhead increases with the increase of 
credit threshold N. Overall, the worker overhead ranges 
from 100% to 120%. Since each task is replicated, the 
100% of overhead should be attributed to the replication. 
The remaining overhead should be attributed to the task 
reschedule due to the detection of malicious worker. 
Intuitively, a higher credit threshold means more task 
results are buffered in each worker, thus incurring more 
task reschedules if the worker is determined as malicious. 
We have to point out that the overhead will not grow 
unchecked with the increase of N. According to the 
analysis in [22], when N is big enough, the overhead will 
achieve its upper bound.  

Fig. 5 shows that the verifier overhead ranges from 0% 
to 30% in different environments. Similarly, according to 
the analysis in [22], the verifier overhead will also achieve 
its upper bound when N is big enough. 

2) End-to-end Performance Overhead 

Our performance experiment does not contain malicious 
slave workers since the customers often feel it worthy to 
pay extra running time to detect errors. However, they are 
reluctant to pay more if the system does not contain error. 

We use Mahout 20 newsgroup example [11] to evaluate 
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Fig. 3. Error rate of 100-map-task job 
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Fig. 4. Worker overhead of 100-map-task job.  
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Fig. 5. Verifier overhead of 100-map-task job  



 

TABLE I.  ENVIRONMENT COMPOSITION OF PERFORMANCE TEST 

Name Environment Composition Cloud  Map 
Reduce 

Private-
EC2-
Azure 

Private cloud with a Linux server, EC2 
cloud with 6 small instances, Azure 
cloud with 6 extra small instances 

Cross 
Cloud 

Integrity
MR 

Private-
Azure 

Private cloud with a Linux server, 
Azure cloud with 6 extra small 
instances. 

Cross 
Cloud 

Map 
Reduce 

Azure-
only 

Azure cloud with 6 extra small 
instances 

Inside 
Cloud 

Map 
Reduce 

 

the performance of IntegrityMR. It classifies 20,000 news-
group documents into 20 categories using naive Bayes 
classification. The classification algorithm is implemented 
in MapReduce. We compare the execution time of such a 
job under three different environment settings shown as 
TABLE I.  The Private-EC2-Azure environment is using 
IntegrityMR. The other two are using the traditional 
MapReduce.  In terms of the cloud environment, the Azure-
only platform uses a single cloud, while the other two use 
multiple clouds(cross-cloud environment).  

In this set of experiments, we fix the value of N as 5, 
and set value of v as 0.15. We run the same job 5 times on 
each environment. The running time is shown in Fig. 6.  

In the Azure-only environment where the traditional 
MapReduce is applied and the homogeneous cloud 
environment is used for communication inside of the cloud, 
the running time is the shortest (588s for the training job 
and 112s for the testing job). However, in the Private-
Azure environment, where IntegrityMR is not yet used but 
the heterogeneous environment requires the cross-cloud 
communication, the running time increases to 1439s and 
310s respectively. The increase percentages from the 
homogenous environment to the heterogeneous 
environment are 145% and 177%, respectively. When 
IntegrityMR is applied to the Private-EC2-Azure 
environment, the running times increase to 1694s and 567s, 
respectively. Compared with the Private-Azure 
environment, the increase of running time in the Private-
EC2-Azure is 18% for the training time and 82% for the 
testing time.  

Our analysis shows that data storage in the Distributed 
File System (DFS) becomes a bottleneck in the cross-cloud 
environment due to the synchronization of storage data. 
Specifically, since each job result will be saved back to the 
DFS, synchronization of job result among multiple clouds 
would slow down the performance. By carefully assigning 
the task so that the synchronization would not hinder the 
following task execution, we would speed up the whole 
computation. This will be our future work. 

IV. APPLICATION LAYER RESULT INTEGRITY CHECK: 
THE PIG CASE STUDY 

The accuracy of task layer integrity assurance is 
probabilistically determined by the credit threshold N. The 
small value of error rate is guaranteed when N is big 
enough. For example, in Fig. 3, when N is set to 1, the error  
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Fig. 6. Running time of Mahout 20 Newsgroup Classification Example 

rate can be as high as 12%. Besides, the overhead of task 
layer integrity checking is non-negligible. We propose to 
transform the MapReduce application to introduce 
invariants to the map tasks. By checking invariants during 
the job execution, we can indirectly infer whether the 
participating nodes are cheating or not.  

Unfortunately, different MapReduce applications have 
different characteristics. Thus it is difficult to define a 
universal technique for the invariant insertion that is 
suitable for every application. Therefore, we narrow down 
our exploration to the major classes of MapReduce 
applications. One particularly interesting and widely used 
class is big data management application. Apache Pig [8] is 
one of such application widely used in both academia and 
industry for applications such as log analysis and data 
management. We choose Apache Pig as a case study to 
show that by transforming the Pig script, we can construct 
invariant in the map tasks and introduce the invariant check 
in the reduce tasks with minimum effort.  

A. Background 
Pig Latin is a scripting language designed to mimic the 

declarative style of SQL. The accompanying system, Pig,  
can compile Pig Latin script into physical plans that are 
executed over Hadoop [9].  

In Pig Latin, a user specifies a sequence of steps via a 
Pig Latin script, where each step specifies only a single, 
high-level data transformation. The data organization in Pig 
consists of four data types: atom, atomic value such as 
string or number; tuple, a sequence of fields, equivalent to 
data record in traditional database; bag, a collection of 
tuples; map, a collection of data items where each item has 
a key with the type of atom and a value with the type of 
data bag. Pig Latin has ample and flexible keywords and 
operators that can meet most data manipulation 
requirements. Here we pick some relational operators 
related with our discussion and list them in TABLE II. The 
full version of grammar manual can be found at [10]. 

The execution of Pig Latin script is a series of 
transformations of execution plans. Pig parses a Pig Latin 
script and translates it into a logical plan. Based on the 
logical plan, it translates it into a physical plan. And 
finally, it translates the physical plan to a MapReduce job  



 

TABLE II.  SELECTED OPERATORS IN PIG LATIN 

Command Explanation 

LOAD Load data from the file system. Return a data 
bag, each tuple is in a format as specified. 

FOREACH 
GENERATE 

Projection and aggregate each tuple in the bag, 
remove unspecified field and aggregate field 
data (which is usually built by the previous 
GROUP command) as specified.  

FILTER BY Drop tuples in the bag that does not satisfy the 
condition. 

GROUP Equivalent of SQL GROUP BY command. It 
will return tuples. Each tuple represents a 
distinct group. In each tuple, the first field is the 
group value, the second is a bag with all the 
input tuples in that group. 

COGROUP Group multiple data sets with common field. 
Suppose N data sets 1,2,…N are COGROUPed, 
it will return a bag, each tuple in the bag 
represents distinct group. In each tuple, the first 
field is the group value, followed by N bags. In 
the N bags, the ith bag contains tuples from the 
ith data set, but belonging to that group. 

DUMP/STORE Display the result/Store the result to the file 
system.  

plan. All the plan translations are finished on the master.  
After that, the master assigns the tasks in the job plan to the 
workers.  

B. Invariant construction and check 
We propose an invariant constructing and checking 

method for applications written in Pig Latin. Our method is 
to transform the original Pig Latin script into another 
equivalent script. By equivalent, we mean the two scripts 
will generate the same results. However, the job plans 
corresponding to the two scripts are different. In the 
transformed script, each original map plan will be 
substituted by two map plans. The two map plans will 
operate on some “overlapped” input data. In other words, a 
portion input of the two substituting map plans will be the 
same. As a result, when the two map plans are executed, 
their results should agree on the part corresponding to the 
overlapped input. This is the invariant the map task output 
should obey. Meanwhile, the original reduce plan is 
transformed to introduce the invariant check. The reduce 
task will not only check if the invariant is violated, but also 
restore the output data so that the reduce task result will be 
the same as the original script result. If any invariant 
violation is detected during the reduce task execution, the 
reduce task will throw an exception indicating that some 
map task outputs contain errors. 

Since we rely on the reduce task to check the invariant, 
we assume that the reduce task is trusted. To achieve high 
assurance of the reduce task, IntegrityMR can assign the 
reduce task to the verifiers on the private cloud. 
Alternatively, IntegrityMR can apply the task layer 
checking techniques in section III to each reduce task.  

We create overlapped input data for the two new map 
plans by inserting an FILTER statement to each map plan, 
and having the conditions of the two FILTER statements  

-- Script 1: GROUP data in houred.txt by hour
raw_data = LOAD './houred.txt' USING PigStorage('\t') 

                  AS (user, hour, query);
result = GROUP raw_data BY hour;
dump result;

 

Fig. 7. Script1: Group data in houred.txt by hour 
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Fig. 8. Execution process of Script 1.  

-- Script 2: invariant check is enforced 
register ./tutorial.jar;
raw_data = LOAD './houred.txt' USING PigStorage('\t') 
                   AS (user, hour, query);
part1 = FILTER raw_data BY hour>=12;
part2 = FILTER raw_data BY hour<=12;
result = COGRUP part1 BY hour, part2 BY hour;
group_result=FOREACH result GENERATE 
                   group, org.apache.pig.tutorial.CheckInvariant($1,$2);

 

Fig. 9. Script 2: Script with invariant check 
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Fig. 10. Execution process of Script 2. 



 

overlapped. For the invariant check, we develop a function 
and add an FOREACH statement to the script to invoke 
such a function for each record. Pig will automatically 
generate reduce plan to execute such FOREACH statement. 

As a concrete illustration, we show how our method 
transforms a Pig Latin script (Script 1) in Fig. 7, which 
contains the relation operator GROUP, into another form 
(Script 2 in Fig. 9) to enforce invariant check. We use a text 
file hour.txt in Fig. 8 (c) as a running example of input file, 
which contains records about which users at which hour 
access what websites. The information is recorded in the 
fields “user”, “hour”, and “query” of a table. Our example 
Pig application aggregates the data in houred.txt by the 
field “hour” so that we can know the web access record for 
each specific hour. 

As we can see from Fig. 7, Script 1 uses the GROUP 
command to implement the job. We show the logical and 
MapReduce plans of Script 1 in Fig. 8 (Since the physical 
plan is irrelevant to our discussion, we omit it to save 
space). The transformation from Script 1 to the logical plan 
is straightforward: each statement in Script 1 corresponds 
to one step in the logical plan. However, in the MapReduce 
plan, the GROUP statement is broken down into 3 steps: 
local rearrange, global rearrange, and package. The 
MapReduce plan also indicates whether each step should be 
processed in the map phase or the reduce phase: In our 
example, the local rearrange is executed by the mapper, and 
the package is executed by the reducer. The global 
rearrange is automatically carried out in the shuffle phase. 
Suppose the data contained in houred.txt is as Fig. 8 (c), 
after the local rearrange and the global rearrange, the data 
is transformed as shown in Fig. 8 (d). In the package step, 
the data is aggregated into different groups according to the 
field “hour”. Therefore, the final output is shown as in Fig. 
8 (e). 

In order to introduce invariant checks, we transform 
Script 1 into Script 2 (Fig. 9) that will generate an 
equivalent result. In Script 2, the raw_data is first split into 
two parts by applying two FILTER operations with 
different conditions (hour>=12 and. hour<=12, 
respectively). Since the conditions of the two FILTERs are 
overlapped at hour=12, part1 and part2 both contain the 
records with “hour” equal to 12 (highlighted records in Fig. 
10 (c) and Fig. 10 (d)). Since part1 and part2 overlapped in 
the records with hour=12, the invariant of the map task 
output is that the records with “hour” as 12 should be the 
same. Then by applying COGROUP on part1 and part2 in 
Script 2, Pig will generate the result as in Fig. 10 (e). The 
COGROUP takes three steps to finish: Local rearrange, 
global rearrange and package. (Gray boxes in Fig. 10 (a).) 
After the package step of COGROUP, the result map 
should have duplicate bags when the key is 12. After that, 
each COGROUP result bag is processed by the 
CheckInvariant function in the FOREACH statement. The 
CheckInvariant function processes each record in Fig. 
10(e). If the key is 12, it will check if the bags inside the 
record are the same. If yes, it will delete one duplicated 
bag. If not, it will throw an exception. If the key is not 12, it 
will remove the empty bag. By doing this, the data is 

changed to Fig. 10 (f), which is the same as the original 
script result. 

The above example shows the transformation of Pig 
script as a promising direction. Currently, we perform the 
transformation manually. Automating such process should 
resort to compiler techniques and will be our future work. 

C. Security Analysis 
In this section, we give an informal argument about 

how effective our method can defeat malicious mappers.  
The invariant property injected to the script involves the 
application domain knowledge. Since the worker on the 
public clouds only works on the MapReduce layer, the 
attacker needs to translate the MapReduce layer semantic 
into Pig script layer semantic and infer the invariant, which 
is a very challenging job. Furthermore, if the invariant 
check (reduce task) is performed on the trusted worker, the 
malicious workers have no way to access the invariant 
check logic. Therefore, they can only guess the checking 
logic from the transformed map tasks. Finally, if the map 
tasks passed to the worker is obfuscated byte code, the 
attacker has to perform online reverse engineering, which is 
even difficult for the attacker. 

D. Performance measurement 
We implement a prototype system based on Hadoop 

and test the performance slowdown between Script 1 and 
Script 2. We launch our experiment on a Linux Server with 
2.93 GHz, 8-core Intel Xeon CPU and 16 GB of RAM. We 
deploy 3 virtual machines (512MB of RAM and 40GB of 
disk each) on VMware Workstation 7.11 to construct a 
MapReduce environment. Each machine runs on Debian 
5.0.6 “lenny”. Out of the 3 nodes, one is running as both a 
master and a trusted worker; the other two are running as 
untrusted workers. We compare the execution time of Scrip 
1 and Scrip 2 with different input size.  The result is shown 
in Fig. 11. We can see that when the input size is small 
(e.g., 31MB), the slowdown is negligible. When the input 
data size increases towards 372MB, the slowdown also 
increases to about 35%. The reason for such a slowdown is 
that the number of map tasks is doubled and each reduce 
task has to check the invariant on the overlapping part. 
However, since in Script 2, each map task only processes 
partial data, the slowdown is moderate. 
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Fig. 11. Performance comparison between Script 1 and Script 2. 



 

V. RELATED WORK 
Result integrity assurance of distributed system has 

been discussed for decades. Several existing techniques 
such as replication, sampling, and verification solution 
have been proposed to address integrity issue in various 
distributed environments such as P2P Systems and Grid 
Computing [12-17]. 

Result integrity assurance of MapReduce is becoming 
popular in recent years. Wei et al. [4] proposed an integrity 
assurance framework SecureMR to enforce the commitment 
protocol and the verification protocol. By using non-
deterministic duplication, it is effective of defeating 
malicious worker only when the malicious worker ratio is 
very small. Wang et al. proposed two MapReduce integrity 
assurance frameworks: VIAF [18] and CCMR [22]. The 
latter tried to solve the problem in a practical cloud 
environment with hybrid clouds. Moreover, CCMR [22] 
proposed different design to the map and the reduce phase 
given the different characteristic of different phases. 

Compared with [18] and [22], this paper proposes a new 
architecture which employs multiple public clouds to 
further enhance the security. Moreover, to the best of our 
knowledge, this paper is the first paper proposing the idea 
of application layer MapReduce integrity assurance.  

VI. CONCLUSION AND FUTURE WORK 
We present the design, implementation, and evaluation 

of IntegrityMR, an integrity assurance framework for big 
data analytics and management applications. It overlays 
MapReduce on top of hybrid clouds which consists of one 
trusted private cloud and multiple public clouds. In order to 
perform result integrity check, we have explored the design 
space in two layers of the MapReduce software stack: the 
task layer and the application layer. Our experimental result 
in the task layer approach shows high integrity (98% with a 
credit threshold of 5) with non-negligible performance 
overhead (18% to 82% extra running time compared to 
original MapReduce). Our experimental result in the 
application layer approach shows improved performance 
compared with the task layer approach (less than 35% extra 
running time compared with the original MapReduce). 

Our future work lies on the following two directions. In 
the task layer check, we will improve system performance 
by reducing cross-cloud communication and alleviate the 
DFS bottleneck. In the application layer check, we will 
work on the automating of the Pig script transformation. 
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