IntegrityMR: Integrity Assurance Framework for Big Data Analytics and Management Applications

Yongzhi Wang, Jinpeng Wei Florida International University Mudhakar Srivatsa IBM T.J. Watson Research Center Yucong Duan, Wencai Du Hainan University

Agenda

- Problem Statement
- MapReduce Task Layer Solution
- Application Layer Solution
- Conclusion & Future Work

Agenda

- Problem Statement
- MapReduce Task Layer Solution
- Application Layer Solution
- Conclusion & Future Work

Big Data Analytics & Cloud

Security Problem

How do we construct big data analytics infrastructure on cloud that can provide high integrity assurance?

Big Data Infrastructure

- Problem Statement
- MapReduce Task Layer Solution
- Application Layer Solution
- Conclusion & Future Work

Related Works

- Wei Wei, Juan Du, Ting Yu, Xiaohui Gu, "SecureMR: A Service Integrity Assurance Framework for MapReduce", in Proceedings of the 2009 Annual Computer Applications Conference. (ACSAC2009)
- Yongzhi Wang, Jinpeng Wei, "VIAF: Verification-based Integrity Assurance Framework for MapReduce", in the 4thIEEE International Conference on Cloud Computing (CLOUD 2011).
- Yongzhi Wang, Jinpeng Wei, Mudhakar Srivatsa, "Result Integrity Check for MapReduce Computation on Hybrid Clouds" in the 6th IEEE International Conference on Cloud Computing (CLOUD 2013).

Architecture Design

- Trusted private cloud + Untrusted public clouds
- Trusted private cloud
 - Master controls the computation.
 - Verifier offers the trusted result verification.
- Untrusted public clouds
 - Offers the computation capacity.
 - Multiple clouds raise the bar for the attacker

Control Flow

Experiment setup

- Environment
 - Private cloud:
 - a local Linux server (2.93GHz, 8-core Intel Xeon CPU, 16GB Ram)
 - Public clouds:
 - 6 Microsoft Azure extra small instances (1core @1GHz, 768MB Ram)
 - 6 Amazon EC2 small instances (1ECU, 1core, 1.7GB).
- Application
 - Word count (100 map task) for accuracy test
 - Mahout 20 Newsgroup Classification for performance test

Metrics of Accuracy and Overhead

- **Error rate**: The percentage of incorrect map task results accepted by the master in one job execution.
- Worker overhead: The percentage of extra number of map tasks executed on the workers on public cloud in one job execution.
- Verifier overhead: The percentage of map tasks executed by the verifiers on the private cloud in one job execution.

Accuracy

Error Rate vs Credit Threshold

Overhead and Verifier Overhead

Execution time

Name	Environment Composition	Cloud	Map Reduce
Private-EC2-	Linux server on Private Cloud, 6 small instances on EC2,	Cross Cloud	IntegrityMR
Azure	6 extra small instances on Azure		
Private-	Linux server on Private Cloud, 6 extra small instances on	Cross Cloud	Map Reduce
Azure	Azure.		
Azure-only	6 extra small instances on Azure	Inside Cloud	Map Reduce

- Problem Statement
- MapReduce Task Layer Solution
- Application Layer Solution
- Conclusion & Future Work

Big Data Infrastructure

Application Layer Integrity

MapReduce Task Layer Integrity

Storage Integrity: [5] [6]

Apache Pig

-- Script 1: GROUP data in houred.txt by hour raw_data = LOAD './houred.txt' USING PigStorage('\t') AS (user, hour, query); result = GROUP raw_data BY hour; dump result;

How Pig Works

Intuition

- Transform the script so that to change the plan
 - Split the map task into two/more different tasks.
 - The output of different map tasks, although different, should obey the constructed invariant.
 - The reduce task is transformed to check the invariant.

Transformation Example

Security Argument

- Check is performed on reduce, which is executed by a trusted worker. The check logic cannot be leaked to the mapper.
- The map/reduce task can be obfuscated to hide the invariant.

Performance evaluation

3 virtual machines in local cluster:

- 1 as master and trusted worker.
- 2 as untrusted workers.

- Problem Statement
- MapReduce Task Layer Solution
- Application Layer Solution
- Conclusion & Future Work

Conclusion

- IntegrityMR explores Big Data analytic integrity from two alternative layers
 - Task layer:
 - Trusted private cloud + untrusted multiple public clouds architecture.
 - Replication, verification, credit-based management.
 - Experiment result: high integrity with non-negligible overhead
 - Application layer(Apache Pig):
 - Transform original script to introduce invariant in the map tasks
 - Check the invariant in the reduce task
 - Practice the idea by manually transform the script.

Future Works

- MapReduce task layer
 - Improve system performance by reducing crosscloud communication and alleviate the DFS bottle neck.
- Application layer
 - Automating pig script transformation

