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Motivation

• Kernel level malware (e.g., rootkits) is among the most 
dangerous threats to systems security
– e.g., hiding malicious processes and files, key logging, attacking 

security products, etc

• Existing defenses are effective at detecting malware that • Existing defenses are effective at detecting malware that 
tampers with legitimate kernel code or data (e.g., function 
pointers)

• But they fall short of malware that creates malicious data 
(e.g., function pointers) in dynamic kernel data structures
– This paper presents a case study of such malware: Kernel Queue 

Injection (KQI) attacks and defense



Kernel Queues (KQ)

• A mechanism of choice for handling events in 

modern kernels

• A kind of data structure that supports the callback of 

programmer-defined event handlers by the core programmer-defined event handlers by the core 

kernel when the event of interest happens



Example KQ: the Soft Timer Queue in Linux
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• Common properties of KQs

– Polymorphic: multiple handlers can exist for the same event type (in the 

same KQ)

– Dynamic: event handlers can be registered or deregistered at runtime



KQ Injection Malware

• Kernel-level malware can abuse KQs to achieve malicious 
goals

– by inserting malicious event handlers in an KQ

– without modifying kernel code or static data structures (non-
invasive)

– without interfering with other installed kernel modules



Abuses of KQs by Real-world Malware

K-Queue

Malware Timer/DPC
Worker 

Thread 

Load

Image

Notify
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Process

Notify

APC
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Change

RegistryOp

Callback

Rustock.J √ √ √

Pushdo / Cutwail √ √ √ √ √

Storm / Peacomm √ √

Allows malware to 

track process 

creation or 

deletion events 

Srizbi √ √

TDSS √ √ √

Duqu √ √

ZeroAccess √ √ √ √

Koutodoor √ √

Pandex √

Mebroot √
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• Hide better against discovery

• Carry out covert operations

• Attack security products



Need for a New Defense

• Unique and more stealthy than existing kernel level attacks

• Therefore, it can evade detection of state-of-the-art anti-

malware tools

Attacks Action Target Stealth Defense
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modification

Inject Code Invasive SecVisor, NICKLE

Kernel Object 

Hooking

Modify Legitimate 

control data

Invasive CFI, SBCFI, 

HookSafe

Direct Kernel 

Object 

Manipulation 

Modify Legitimate non-

control data

Invasive Gibraltar, Semantic 

Integrity Checker

KQ Injection Insert New control or 

non-control data 

Non-

invasive

KQguard



Defense Idea

• Insert a guard into each KQ, which checks whether a 

KQ request is a legitimate event handler or a 

malicious KQ injection attack

• Legitimacy is defined by a policy specification called 

EH-Signature Collection



Design Goals of the Defense

Goal Design Decision

Allow future legitimate 

device drivers to work 

properly

Isolate the knowledge of legitimate event 

handlers in a table (EH-Signature Collection) that 

is extensible

Support closed source 

device drivers

Employ dynamic analysis to gather EH-

Signatures for closed source legitimate driversdevice drivers Signatures for closed source legitimate drivers

Guard all KQs against 

abuse

Automatic KQ detection tool based on source 

code analysis (when source code is available)
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EH-Signatures

• A specification that contains the right amount of 
information to identify a legitimate event handler
– Our chosen specification: (callback function, relevant 

parameters, insertion path, allocation)

• Therefore, an EH-Signature specifies rules in 
terms of the KQ request data structure
– Example rule: if callback function equals 
nt!VdmpQueueIntApcRoutine, param_1 equals 
nt!VdmpApc, request is inserted by acpi.sys+0x2c0, 
and the request data is a global variable at 
acpi.sys+0x4a00,  the request is legitimate.



Practical Challenges of Robust EH-

Signatures
• Symbol information (e.g., nt!VdmpQueueIntApcRoutine) is not 

available for closed source device drivers. Instead, only low-
level information (e.g., 0xbe07d0ac) can be observed by the KQ 
guards

• The training environment is different from the production • The training environment is different from the production 
environment at the low level

• Dynamically allocated memory objects (on the heap or stack) 
have unpredictable low level addresses

• Solution: the EH-Signatures must be specified at a higher level 
that can tolerate variations at the low level -> delinking



Example: Delinking the Pointer to a 

Global Variable

Driver 1

foo {…}

87028
87000

87028

88000

Legitimate 

Event 

Handler
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Driver 1

foo {…}

67028
67000

67028

68000

Kernel address space in the 
training environment

Kernel address space in the 
production environment

Legitimate 

Event 

Handler



Types of KQ Request Data Fields that 

Need Delinking

(a) Pointer to a 

heap variable

(b) Pointer to a 

global variable

(c) Pointer to a 

local variable



Invariant Representation of KQ 

Request Data Fields

Type Representation after delinking

Pointer to a global 

variable

(Driver ID, offset), e.g., (Driver 1, 28)

Pointer to a heap 

variable

Allocation call stack: (Driver ID1, offset1)

…

Pointer to a local 

variable

(                            , local_variable_offset)

Not a pointer Actual value

(Driver ID1, offset1)

…

(Driver IDn-1, offsetn-1)

(Driver IDn, offsetn)

(Driver IDn-1, offsetn-1)

(Driver IDn, offsetn)



Automated Detection of KQs by 

Analyzing Source Code
/* linux-2.4.32/kernel/pm.c */

int pm_send_all (pm_request_t rqst, void *data)

{      ……

entry = pm_devs.next;

while (entry != &pm_devs) {

struct pm_dev *dev=list_entry(entry, struct pm_dev, entry);

if (dev->callback) {

Detect a loop that iterates through a 

candidate data structure

Check whether a queue 

element is derived and acted 

upon inside the loopif (dev->callback) {

int status = pm_send(dev, rqst, data);

……}

entry = entry->next;   }

……}

int pm_send(struct pm_dev *dev, pm_request_t rqst, void *data)

{……

status = (*dev->callback)(dev, rqst, data);

……}

upon inside the loop
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Implementation

• KQ Analyzer: ~2,000 lines of Objective Caml code, based 
on C Intermediate Language (CIL)

• Windows Research Kernel instrumentation• Windows Research Kernel instrumentation

– KQ Logger: ~600 lines of C code

– Callback Signature collection: ~2,200 lines of C code

– Heap Object Tracker: ~800 lines of C code

– KQguards: ~300 lines of C code

• Linux kernel implementation (similar to Windows)



Experimental Evaluation of KQguard 

on Windows

• False negatives

• False positives

• Overhead
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False Negatives of KQguard on 

Windows
• Test cases: 125 KQ injection malware samples from 

the top 20 malware families and the top 10 botnet 

families, plus 9 synthetic malware

• Result: detected known KQ injection in 123 malware 

samples, and all synthetic malware

KQ name Asynchronous 

Procedure Call 

(APC)

Timer/DPC Load

Image

Notify

Create

Process

Notify

FsRegistration

Change

RegistryOp

Callback

System 

Worker 

Thread

# of malware 

samples

98 34 32 20 4 4 2



Detection of KQ Injection Attacks by 

Rustock.J on Windows Research Kernel

Suspicious callback WRK 

with 
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False Negatives of KQguard on 

Windows
• Test cases: 125 malware samples from the top 20 

malware families and the top 10 botnet families, plus 

9 synthetic malware

• Result: detected known KQ injection in 123 malware 

samples, and all synthetic malwaresamples, and all synthetic malware

• Undetected ones: Duqu on load image notification 

queue, Storm on the APC queue

KQ name Asynchronous 

Procedure Call 

(APC)

Timer/DPC Load

Image

Notify

Create

Process

Notify

FsRegistration

Change

RegistryOp

Callback

System 

Worker 

Thread

# of malware 

samples

98 34 32 20 4 4 2



Experimental Evaluation of KQguard 

on Windows

• False negatives: able to detect known KQ abuses in 123 
out of 125 real world malware, plus unreported ones

• False positives: zero after proper training
– Tested with Acrobat Reader, Windows Driver Kit, Firefox, Windows Media Player, – Tested with Acrobat Reader, Windows Driver Kit, Firefox, Windows Media Player, 

Easy Media Player, and several games.

• Overhead

– Micro benchmarks: ~3.4%

• Fraction of time spent in KQ validation

– Macro benchmarks: 2.8% - 5.6% slowdown
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Overhead of KQguard on WRK 

(Macro benchmarks)

Workload Original (sec) KQ Guarding (sec) Slowdown

Super PI 2,108±41 2,213±37 5.0%

Copy directory (1.5 GB) 231±9.0 244±15.9 5.6%Copy directory (1.5 GB) 231±9.0 244±15.9 5.6%

Compress directory (1.5 GB) 1,113±24 1,145±16 2.9%

Decompress directory (1.5 GB) 181±4.1 186±5.1 2.8%

Download file (160 MB) 145±11 151±11 4.1%



Conclusion

• KQ Injection is a significant attack

• KQguard uses static analysis of kernel source code to 
detect KQ instances

• KQguard uses dynamic analysis of kernel and device • KQguard uses dynamic analysis of kernel and device 
drivers to learn the legitimate KQ event handlers without 
source code

• Evaluation on the WRK shows that KQ guarding is 
effective (very low false negative rate and false positive 
rate) and efficient (up to ~5% overhead)
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