
KQguard: Binary-Centric Defense against

Kernel Queue Injection Attacks

Jinpeng Wei, Feng Zhu

Florida International University

Miami, Florida, USA

Calton Pu

Georgia Institute of Technology

Atlanta, Georgia, USA

18th European Symposium on Research in Computer Security (ESORICS)

Egham, United Kingdom, September 2013

Motivation

• Kernel level malware (e.g., rootkits) is among the most
dangerous threats to systems security
– e.g., hiding malicious processes and files, key logging, attacking

security products, etc

• Existing defenses are effective at detecting malware that • Existing defenses are effective at detecting malware that
tampers with legitimate kernel code or data (e.g., function
pointers)

• But they fall short of malware that creates malicious data
(e.g., function pointers) in dynamic kernel data structures
– This paper presents a case study of such malware: Kernel Queue

Injection (KQI) attacks and defense

Kernel Queues (KQ)

• A mechanism of choice for handling events in

modern kernels

• A kind of data structure that supports the callback of

programmer-defined event handlers by the core programmer-defined event handlers by the core

kernel when the event of interest happens

Example KQ: the Soft Timer Queue in Linux

function 1

data 1

expires 1

timer->function 1. schedule

3. callback

Soft Timer
Queue
Engine

4. run

2. wait

function 2

data 2

expires 2

function 3

data 3

expires 3

4

timer->function
(timer->data)
{ ...

}

1. schedule

Legitimate

Driver
… Legitimate

Driver

4. run

…Legitimate

Driver

• Common properties of KQs

– Polymorphic: multiple handlers can exist for the same event type (in the

same KQ)

– Dynamic: event handlers can be registered or deregistered at runtime

KQ Injection Malware

• Kernel-level malware can abuse KQs to achieve malicious
goals

– by inserting malicious event handlers in an KQ

– without modifying kernel code or static data structures (non-
invasive)

– without interfering with other installed kernel modules

Abuses of KQs by Real-world Malware

K-Queue

Malware Timer/DPC
Worker

Thread

Load

Image

Notify

Create

Process

Notify

APC
FsRegistration

Change

RegistryOp

Callback

Rustock.J √ √ √

Pushdo / Cutwail √ √ √ √ √

Storm / Peacomm √ √

Allows malware to

track process

creation or

deletion events

Srizbi √ √

TDSS √ √ √

Duqu √ √

ZeroAccess √ √ √ √

Koutodoor √ √

Pandex √

Mebroot √

6

• Hide better against discovery

• Carry out covert operations

• Attack security products

Need for a New Defense

• Unique and more stealthy than existing kernel level attacks

• Therefore, it can evade detection of state-of-the-art anti-

malware tools

Attacks Action Target Stealth Defense

Code

modification

Inject Code Invasive SecVisor, NICKLE

Kernel Object

Hooking

Modify Legitimate

control data

Invasive CFI, SBCFI,

HookSafe

Direct Kernel

Object

Manipulation

Modify Legitimate non-

control data

Invasive Gibraltar, Semantic

Integrity Checker

KQ Injection Insert New control or

non-control data

Non-

invasive

KQguard

Defense Idea

• Insert a guard into each KQ, which checks whether a

KQ request is a legitimate event handler or a

malicious KQ injection attack

• Legitimacy is defined by a policy specification called

EH-Signature Collection

Design Goals of the Defense

Goal Design Decision

Allow future legitimate

device drivers to work

properly

Isolate the knowledge of legitimate event

handlers in a table (EH-Signature Collection) that

is extensible

Support closed source

device drivers

Employ dynamic analysis to gather EH-

Signatures for closed source legitimate driversdevice drivers Signatures for closed source legitimate drivers

Guard all KQs against

abuse

Automatic KQ detection tool based on source

code analysis (when source code is available)

Kernel
Source
Code

KQguard Architecture

Source Code
Merger

MalwareClosed-source
drivers

Merger

Merged
Kernel
Source

KQ
Analyzer

KQ
Specification

Kernel
Source
Code

KQguard Architecture

Source Code
Merger

MalwareClosed-source
drivers

Merger

Merged
Kernel
Source

KQ
Analyzer

KQ
Specification

Instrument functions

that initialize, insert,

dispatch KQ requests

Kernel
Source
Code

KQguard Architecture

Source Code
Merger

MalwareClosed-source
drivers

Merger

Merged
Kernel
Source

KQ
Analyzer

KQ
Specification

Instrument functions

that initialize, insert,

dispatch KQ requests Instrument functions that

dispatch KQ requests

EH-Signatures

• A specification that contains the right amount of
information to identify a legitimate event handler
– Our chosen specification: (callback function, relevant

parameters, insertion path, allocation)

• Therefore, an EH-Signature specifies rules in
terms of the KQ request data structure
– Example rule: if callback function equals
nt!VdmpQueueIntApcRoutine, param_1 equals
nt!VdmpApc, request is inserted by acpi.sys+0x2c0,
and the request data is a global variable at
acpi.sys+0x4a00, the request is legitimate.

Practical Challenges of Robust EH-

Signatures
• Symbol information (e.g., nt!VdmpQueueIntApcRoutine) is not

available for closed source device drivers. Instead, only low-
level information (e.g., 0xbe07d0ac) can be observed by the KQ
guards

• The training environment is different from the production • The training environment is different from the production
environment at the low level

• Dynamically allocated memory objects (on the heap or stack)
have unpredictable low level addresses

• Solution: the EH-Signatures must be specified at a higher level
that can tolerate variations at the low level -> delinking

Example: Delinking the Pointer to a

Global Variable

Driver 1

foo {…}

87028
87000

87028

88000

Legitimate

Event

Handler

Absolute value (e.g., 87028) is not a robust representation of a pointer to foo

that can carry over from training to production, while Driver 1_start + 28 is.

Driver 1

foo {…}

67028
67000

67028

68000

Kernel address space in the
training environment

Kernel address space in the
production environment

Legitimate

Event

Handler

Types of KQ Request Data Fields that

Need Delinking

(a) Pointer to a

heap variable

(b) Pointer to a

global variable

(c) Pointer to a

local variable

Invariant Representation of KQ

Request Data Fields

Type Representation after delinking

Pointer to a global

variable

(Driver ID, offset), e.g., (Driver 1, 28)

Pointer to a heap

variable

Allocation call stack: (Driver ID1, offset1)

…

Pointer to a local

variable

(, local_variable_offset)

Not a pointer Actual value

(Driver ID1, offset1)

…

(Driver IDn-1, offsetn-1)

(Driver IDn, offsetn)

(Driver IDn-1, offsetn-1)

(Driver IDn, offsetn)

Automated Detection of KQs by

Analyzing Source Code
/* linux-2.4.32/kernel/pm.c */

int pm_send_all (pm_request_t rqst, void *data)

{ ……

entry = pm_devs.next;

while (entry != &pm_devs) {

struct pm_dev *dev=list_entry(entry, struct pm_dev, entry);

if (dev->callback) {

Detect a loop that iterates through a

candidate data structure

Check whether a queue

element is derived and acted

upon inside the loopif (dev->callback) {

int status = pm_send(dev, rqst, data);

……}

entry = entry->next; }

……}

int pm_send(struct pm_dev *dev, pm_request_t rqst, void *data)

{……

status = (*dev->callback)(dev, rqst, data);

……}

upon inside the loop

Automated Detection of KQs by

Analyzing Source Code
/* linux-2.4.32/kernel/pm.c */

int pm_send_all (pm_request_t rqst, void *data)

{ ……

entry = pm_devs.next;

while (entry != &pm_devs) {

struct pm_dev *dev=list_entry(entry, struct pm_dev, entry);

if (dev->callback) {

Detect a loop that iterates through a

candidate data structure

Check whether a queue

element is derived and acted

upon inside the loopif (dev->callback) {

int status = pm_send(dev, rqst, data);

……}

entry = entry->next; }

……}

int pm_send(struct pm_dev *dev, pm_request_t rqst, void *data)

{……

status = (*dev->callback)(dev, rqst, data);

……}

upon inside the loop

Performs a flow-sensitive

taint propagation through the

rest of the loop body

Automated Detection of KQs by

Analyzing Source Code
/* linux-2.4.32/kernel/pm.c */

int pm_send_all (pm_request_t rqst, void *data)

{ ……

entry = pm_devs.next;

while (entry != &pm_devs) {

struct pm_dev *dev=list_entry(entry, struct pm_dev, entry);

if (dev->callback) {

Detect a loop that iterates through a

candidate data structure

Check whether a queue

element is derived and acted

upon inside the loopif (dev->callback) {

int status = pm_send(dev, rqst, data);

……}

entry = entry->next; }

……}

int pm_send(struct pm_dev *dev, pm_request_t rqst, void *data)

{……

status = (*dev->callback)(dev, rqst, data);

……}

upon inside the loop

Performs a flow-sensitive

taint propagation through the

rest of the loop body

If any tainted function pointer is

invoked during the propagation,

report a candidate KQ

Automated Detection of KQs by

Analyzing Source Code
/* linux-2.4.32/kernel/pm.c */

int pm_send_all (pm_request_t rqst, void *data)

{ ……

entry = pm_devs.next;

while (entry != &pm_devs) {

struct pm_dev *dev=list_entry(entry, struct pm_dev, entry);

if (dev->callback) {

Detect a loop that iterates through a

candidate data structure

Check whether a queue

element is derived and acted

upon inside the loopif (dev->callback) {

int status = pm_send(dev, rqst, data);

……}

entry = entry->next; }

……}

int pm_send(struct pm_dev *dev, pm_request_t rqst, void *data)

{……

status = (*dev->callback)(dev, rqst, data);

……}

upon inside the loop

Performs a flow-sensitive

taint propagation through the

rest of the loop body

If any tainted function pointer is

invoked during the propagation,

report a candidate KQ

Implementation

• KQ Analyzer: ~2,000 lines of Objective Caml code, based
on C Intermediate Language (CIL)

• Windows Research Kernel instrumentation• Windows Research Kernel instrumentation

– KQ Logger: ~600 lines of C code

– Callback Signature collection: ~2,200 lines of C code

– Heap Object Tracker: ~800 lines of C code

– KQguards: ~300 lines of C code

• Linux kernel implementation (similar to Windows)

Experimental Evaluation of KQguard

on Windows

• False negatives

• False positives

• Overhead

23

False Negatives of KQguard on

Windows
• Test cases: 125 KQ injection malware samples from

the top 20 malware families and the top 10 botnet

families, plus 9 synthetic malware

• Result: detected known KQ injection in 123 malware

samples, and all synthetic malware

KQ name Asynchronous

Procedure Call

(APC)

Timer/DPC Load

Image

Notify

Create

Process

Notify

FsRegistration

Change

RegistryOp

Callback

System

Worker

Thread

of malware

samples

98 34 32 20 4 4 2

Detection of KQ Injection Attacks by

Rustock.J on Windows Research Kernel

Suspicious callback WRK

with

25

with

KQguard

False Negatives of KQguard on

Windows
• Test cases: 125 malware samples from the top 20

malware families and the top 10 botnet families, plus

9 synthetic malware

• Result: detected known KQ injection in 123 malware

samples, and all synthetic malwaresamples, and all synthetic malware

• Undetected ones: Duqu on load image notification

queue, Storm on the APC queue

KQ name Asynchronous

Procedure Call

(APC)

Timer/DPC Load

Image

Notify

Create

Process

Notify

FsRegistration

Change

RegistryOp

Callback

System

Worker

Thread

of malware

samples

98 34 32 20 4 4 2

Experimental Evaluation of KQguard

on Windows

• False negatives: able to detect known KQ abuses in 123
out of 125 real world malware, plus unreported ones

• False positives: zero after proper training
– Tested with Acrobat Reader, Windows Driver Kit, Firefox, Windows Media Player, – Tested with Acrobat Reader, Windows Driver Kit, Firefox, Windows Media Player,

Easy Media Player, and several games.

• Overhead

– Micro benchmarks: ~3.4%

• Fraction of time spent in KQ validation

– Macro benchmarks: 2.8% - 5.6% slowdown

27

Overhead of KQguard on WRK

(Macro benchmarks)

Workload Original (sec) KQ Guarding (sec) Slowdown

Super PI 2,108±41 2,213±37 5.0%

Copy directory (1.5 GB) 231±9.0 244±15.9 5.6%Copy directory (1.5 GB) 231±9.0 244±15.9 5.6%

Compress directory (1.5 GB) 1,113±24 1,145±16 2.9%

Decompress directory (1.5 GB) 181±4.1 186±5.1 2.8%

Download file (160 MB) 145±11 151±11 4.1%

Conclusion

• KQ Injection is a significant attack

• KQguard uses static analysis of kernel source code to
detect KQ instances

• KQguard uses dynamic analysis of kernel and device • KQguard uses dynamic analysis of kernel and device
drivers to learn the legitimate KQ event handlers without
source code

• Evaluation on the WRK shows that KQ guarding is
effective (very low false negative rate and false positive
rate) and efficient (up to ~5% overhead)

Thank you!

Questions?

Jinpeng Wei

Assistant Professor

Florida International University

Miami, Florida, USA

Email: weijp@cs.fiu.edu

