
MOSE: Live Migration Based On-the-Fly Software
Emulation

Jinpeng Wei
Florida International University

11200 SW 8th Street
Miami, FL 33199
1-305-348-4038

weijp@cs.fiu.edu

Lok K. Yan
Air Force Research Lab / RIGA

525 Brooks Road
Rome, NY 13441
1-315-330-2756

lok.yan@us.af.mil

Muhammad Azizul Hakim
Florida International University

11200 SW 8th Street
Miami, FL 33199
1-305-348-6250

mhaki005@fiu.edu

ABSTRACT

Software emulation has been proven useful in many scenarios,
such as software testing, malware analysis, and intrusion response.
However, fine-grained software emulation (e.g., at the instruction
level) incurs considerable execution overhead (about 8x
performance degradation), which hampers its use in production
settings. In this paper, we propose MOSE (Live Migration based
On-the-fly Software Emulation) that combines the performance
advantages of hardware virtualization and the fine-grained
analysis capability (comprehensiveness) of whole-system software
emulation. Namely, a system can run as normal on a hardware-
virtualized platform at near native speed, but when needed, it can
be live-migrated to an emulator, not necessarily running on the
same physical system, for in-depth analysis and triage; when the
analysis is complete, the virtual machine can be migrated back to
benefit from full hardware-virtualization again. In this way, the
performance degradation is only experienced during analysis and
triage. To demonstrate this new capability, we built a proof of
concept on-the-fly software emulation system, based on
QEMU/KVM and DECAF, the Dynamic Executable Code
Analysis Framework. We also perform three case studies:
automated kernel panic triage, live-patching a security
vulnerability, and on-demand symbolic execution, to illustrate on-
demand instruction level analysis.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Error handling and recovery,
Symbolic execution.

General Terms

Design, Reliability, Experimentation, Security, Theory.

Keywords

Demand emulation, live migration, software analysis, symbolic
execution.

1. INTRODUCTION
Software emulation has demonstrated its strength in many
scenarios, such as software testing, profiling, malware analysis,
and intrusion response. However, fine-grained software emulation

(e.g., at the instruction level) incurs considerable execution
overhead (about 8x performance degradation [5]), which hampers
its use in production settings. To address this issue, demand
emulation has been proposed to dynamically switch a running
system between virtualized and emulated executions [6]. This
way, expensive software emulation is used only when there is a
need for analysis; otherwise, virtualization gives performance
guarantees.

However, existing work in demand emulation is analysis-rigid,
cannot support closed source guest OSes, and does not support
modern virtualization extensions. For example, Ho’s architecture
[6] used Xen with para-virtualization for efficient execution of
guest VMs and QEMU for emulation and taint analysis. It is not
an ideal solution though. First, due to the reliance on para-
virtualization, it cannot support closed source OSes such as
Windows; Second, it is designed for only one type of analysis:
taint analysis, but there are many other types of analysis that are
also useful (e.g., tracing, instrumentation and symbolic analysis);
Third, it forces virtualized execution and emulated execution to
run on top of the same hypervisor (i.e., Xen) on the same physical
host, which may not be practical for production systems that do
not have enough resources (e.g., battery power) to run emulation-
based analysis. For these reasons, we call Ho’s architecture in-

host demand emulation.

In this paper, we propose an out-host demand emulation

architecture, Live Migration based On-the-fly Software

Emulation (MOSE for short). The idea is to live-migrate a
running virtual machine between a platform with full hardware
virtualization and another platform that is based on machine
emulation. In doing that, a system can run as normal on the
hardware-virtualized platform at near native speed, but when
needed, it can be live-migrated to an emulator for in-depth
behavioral analysis. Once the analysis is complete, the virtual
machine can be migrated back to benefit from full hardware-
virtualization once more.

Compared with existing work on demand emulation, our
architecture has the following advantages: it can support closed
source OSes because it uses full hardware virtualization (For
example, our prototype of MOSE can migrate a Windows VM
from QEMU/KVM to S2E in Section 7.2); it can take advantage
of hardware virtualization extensions; it is analysis-flexible
because multiple types of program analysis modules (e.g.,
instruction tracing, taint analysis, and virtual machine
introspection) can be added to the emulation-based platform as
plugins; it can support the analysis of systems with limited
resources (e.g., battery power) in their normal execution
environment (e.g., embedded systems) because expensive
software emulation is performed on a separate platform.

© 2015 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee,
contractor or affiliate of the United States government. As such, the
United States Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for
Government purposes only.

ACSAC '15, December 07-11, 2015, Los Angeles, CA, USA
© 2015 ACM. ISBN 978-1-4503-3682-6/15/12…$15.00
DOI: http://dx.doi.org/10.1145/2818000.2818022

The problem of heterogeneous live-migration can be summarized
as the problem of ensuring that a software system (the Operating
System kernel in particular) that was initialized for and has
executed on one hardware configuration (e.g., hardware
virtualization) remains correct and consistent when executing in a
different hardware configuration (e.g., software emulation)
without the initialization step. This requirement can then be
separated into three sub-requirements: hardware device
equivalence, hardware state equivalence and software state
equivalence (See Section 2). We have designed and built MOSE
to satisfy these three sub-requirements. We identified and
overcame the technical challenges in live migration between a
fully virtualized platform (i.e., QEMU/KVM) and an emulated
platform (i.e., DECAF). We found mismatches between the
representations of guest VM states by QEMU/KVM and DECAF,
such as VGA ram size and network interface card.

To demonstrate the efficacy of our approach, we constructed three
use cases on top of the prototype implementation. In the first one
(Section 5), we developed a kernel panic triage tool that detects
kernel panics in the guest virtual machine (VM) from the
hypervisor (QEMU/KVM) and automatically live-migrates the
guest into DECAF for analysis and recovery. This used a light-
weight kernel panic detection tool in KVM, and a more
heavyweight triage tool built into DECAF. This separation of
duties demonstrates the motivations behind MOSE.

In the second use case (Section 6), we demonstrate the potential
for MOSE to be used as a Software Clinic service. In this
scenario, a Heartbleed vulnerable server that is executing on a
heterogeneous migration enabled KVM instance is live-migrated
to a DECAF to be patched. Once patched, it is live-migrated back
to KVM for high performance execution. The server continues to
serve requests throughout this period with minimal downtime.

In the third use case (Section 7), we demonstrate that MOSE is
not analysis platform dependent. We show that we can improve
the performance of S2E, a symbolic execution platform, by
allowing the virtual machine to execute in KVM and only
migrating the state over to S2E when one of S2E’s special
instructions are detected. This is an extension of S2E’s
experimental capability where a virtual machine’s state can be
saved in KVM and restored in S2E.

This paper makes the following contributions:

• We propose live migration based on-the-fly software emulation
that (1) combines the performance advantages of hardware
virtualization and the fine-grained analysis capability
(comprehensiveness) of whole-system software emulators, and
(2) decouples the production environment from the analysis
environment.

• We validate the feasibility of our approach by building a
prototype of live migration based on-the-fly software
emulation, based on QEMU/KVM shipped with Ubuntu Linux
and the DECAF analysis framework.

• We perform three case studies that demonstrate the application
of our approach in kernel panic triage, security vulnerability
patching, and on-demand symbolic execution.

• We evaluate the performance implication of our prototype and
kernel panic triage tool on normal applications, by comparing
the throughput of an Apache web server in different scenarios.

The rest of this paper is organized as follows. Section 2 discusses
technical background and related work. Section 3 presents the

architecture of live migration based on-the-fly software emulation.
Section 4 describes the implementation of a prototype system.
Section 5 presents the kernel panic triage case study, Section 6
presents the security vulnerability patching case study, and
Section 7 discusses the on-demand symbolic execution case study.
Section 8 reports the results of an experimental evaluation of our
prototype. Section 9 discusses possible future directions, and
Section 10 concludes the paper.

2. BACKGROUND

2.1 Emulation-based Software Analysis
Software emulation is the translation of software written for a
different hardware or OS into software that can run on the current
platform. For example: QEMU [12] can emulate a SPARC
architecture on top of Linux using the x86 instruction set to run
Solaris applications. Inside an emulator, each instruction of the
guest application is intercepted and translated into the instruction
set of the host system and then executed. Modern emulators like
QEMU can run an entire guest virtual machine (including the
Operating System and applications) as if it is running on the real
target computer.

Because of their visibility and control over the execution of guest
applications (e.g., emulation of each guest instruction), software
emulators have been employed to create powerful software
analysis platforms that can monitor, analyze, or change the
execution of target OS or applications. For example, QEMU has
been extended into multiple analysis platforms, such as S2E [2],
PANDA [4], and DECAF [5]. For this project, we choose DECAF
and S2E because they have very useful capabilities for our
purpose (e.g., live-patching of vulnerable system processes):
DECAF supports virtual machine introspection, guest memory
access, plugins for instruction tracing and process listing, and
customized plugins, and S2E supports symbolic execution and
customized plugins. However, the general technique presented in
this paper is not limited to any particular analysis platform.

2.2 Live migration
Live migration is a technique that moves a running virtual
machine (VM) or application between different physical hosts
without disconnecting the client or application. During live
migration, the memory, storage, and network connectivity of the
VM are transferred from the original host machine to the
destination machine. Because of its benefits such as improved
performance, manageability, and fault tolerance, live migration
has become a feature supported by almost all major virtual
machine managers (e.g., VMware VMotion [15], KVM [9], Xen
[16], Hyper-V [10], and OpenVZ [11]).

In this paper, we rely on heterogeneous live migration, which is
the live-migration of machines between systems of differing
architectures and/or hardware configurations. For an abstract
software system, heterogeneous live migration can be performed
as long as all external dependencies and interfaces remain
consistent across the heterogeneous systems. For example, the
instruction set architecture of the two systems must be equivalent
because otherwise the software instructions will not execute
correctly. As another example, the two systems must also have
equivalent Application Programming Interfaces (APIs) and
Application Binary Interfaces (ABIs). Since the software system
in question is an entire virtual machine, the external dependencies
include hardware such as the real CPU, memory and even video
and network card states.

We have identified three requirements in total: hardware

equivalence, hardware state equivalence, and software state

equivalence. Hardware equivalence requires that the hardware
(CPU, memory architecture, network devices, etc.) on both the
source and destination systems must have the same input/output
behavior. It is important to note that x86 KVM and x86 QEMU
are not strictly hardware equivalent because QEMU does not
support all of the hardware extensions and model specific features
of the many different CPU models. However, this does not pose
too much of a problem since most software programs do not use
features that are not supported by QEMU.

Hardware state equivalence requires that the internal state of
hardware devices (e.g. network interface card buffers) of the
source and destination machines must be equivalent (not equal)
such that given the same input the same output results.

Software state equivalence requires that the state information for
the software being live-migrated must exhibit the same behavior
given the same exact inputs in the same exact order and timing
despite the fact that they are executing on different machines. We
do not require software equivalence (similar to hardware
equivalence) since software state is included in the hardware state
(e.g., CPU registers, memory, disk, etc.).

In most cases, software state equivalence can be guaranteed by
ensuring that the CPU and memory states of the system are
equivalent. This is not the case for whole-system live-migration
though because some of the internal kernel state has external
dependencies on the hardware.

That is, one of the first operations that an operating system kernel
performs during boot is hardware discovery and initialization.
During this process, all of the connected hardware devices are
enumerated and annotated in internal data structures.
Additionally, any devices that are to be used are also initialized
(e.g., interrupt vectors and memory addresses agreed upon) and
this information is also stored within the internal data structures.
Therefore, the operating system has a certain expectation of what
the underlying hardware is and how it behaves. This expectation
is encapsulated into the hardware equivalence and hardware state
equivalence requirements. Please note that these requirements are
also present in normal live-migration, but modern hardware
virtualization technologies such as VT-d and SR-IOV have made
these easier to meet. These remain problematic for heterogeneous
live-migration.

2.3 Related work
Although emulation-based analysis is very useful, it has one major
drawback, i.e., it can incur considerable execution overhead (e.g.,
8x performance degradation when emulating at the instruction
level [5]), which hampers its use in production settings.

In order to address this shortcoming, Aftersight [3] decouples
analysis from normal execution by recording nondeterministic
VM inputs in the production environment and then replaying
them on a separate analysis platform. Aftersight reduces the
slowdown to the production system because a copy of the
program under analysis is run on a separate platform. However,
Aftersight can be evaded by malware because the emulated
analysis environment can be detected by malware. To address his
issue, V2E [17] records malware execution using hardware
virtualization for transparency, and then replays and analyzes the
malware’s execution using dynamic binary translation for
flexibility and efficiency of in-depth analysis.

Another approach to reduce the overhead of emulation-based
analysis is demand emulation, which dynamically switches a
running system between virtualized and emulated executions, so
that expensive software emulation is used only when there is a
need for analysis; otherwise, virtualization gives performance
guarantees. One prime example of demand emulation (in-host
demand emulation) is developed by Alex Ho et al. [6]. This
architecture used Xen and para-virtualization for efficient
execution of guest VMs and QEMU for emulation and taint
analysis. However, [6] has several limitations, as we discussed in
Section 1.

S2E [14] has an experimental feature that supports saving the
guest VM states in KVM and later loading them in QEMU, which
shares the same goal with us: to improve the guest’s performance.
However, the S2E saving/loading process is manual while ours is
automatic, and we use live migration while S2E does not.

Shadow driver [13] is an operating system mechanism that
monitors device drivers and transparently recovers from transient
and fail-stop driver failures; as a result, it enables the system to
continue to run correctly when device drivers fail. Our kernel
panic triage tool (Section 5) differs from Shadow driver in two
ways. First, it can recover the guest OS from not only driver
failures but also panics caused by bugs in the core kernel. Second,
Shadow driver can only handle transient driver failures caused by
the environment, but our kernel panic recovery can handle both
transient failures and deterministic failures, irrespective of the
cause of the failure.

3. THE DESIGN OF LIVE MIGRATION

BASED ON-THE-FLY SOFTWARE

EMULATION
The architecture for MOSE is illustrated in Figure 1. Our idea is
to live-migrate a running virtual machine between a platform with
full hardware virtualization (e.g., QEMU/KVM [8]) and another
platform that is based on machine emulation (e.g., DECAF [5]).
Figure 2 shows a typical flow diagram of live migration based on-
the-fly software emulation. A guest VM initially runs on
QEMU/KVM, and when it encounters a trigger (e.g., a NULL
pointer dereference) during its execution (Step 1), it is live-
migrated (Step 2) into DECAF for an analysis and perhaps a
repair (Step 3); once these are done, the guest VM is live-
migrated back to QEMU/KVM (Step 4) to continue normal
execution (Step 5).

4. PROTOTYPE IMPLEMENTATION
In this section, we present the implementation of a prototype of
live migration based on-the-fly software emulation (Section 3).
Our prototype implementation instantiates the architecture shown

Figure 1. Overall Architecture of Live Migration Based On-

the-fly Software Emulation

Figure 2. Flow Diagram of a Typical Application of Our

Approach using QEMU/KVM and DECAF

in Figure 1. We build the full hardware virtualization platform
based on QEMU/KVM [8], and we build the emulation and
analysis platform based on DECAF (Dynamic Executable Code
Analysis Framework) [5]. Both QEMU/KVM and DECAF are
based on QEMU, which reduces the number of possible
discrepancies between them and thus eases the live-migration of
guest virtual machines between them.

4.1 Overview of challenges
The biggest challenge of a heterogeneous migration presented in
Figure 1 is to ensure that the guest VM can continue to execute
after it has been initialized for a different environment. For
example, both QEMU/KVM and DECAF can handle guest SMIs
(System Management Interrupts) if the guest OS is initialized (i.e.,
booted) from scratch; however, if the guest OS is initialized in
QEMU/KVM and then migrated into DECAF, its SMIs cannot be
correctly handled because DECAF’s handlers for such SMIs are
not completely created. This is a fundamental limitation of our
approach. In this paper, we discovered and resolved 16
discrepancies to enable live migration between specific versions
of QEMU/KVM and DECAF (See Table 1); the relatively short
list is partly due to the fact that QEMU/KVM and DECAF are
both based on QEMU, which significantly reduces possible
discrepancies.

4.2 Internals of normal live migration
To understand the technical challenges, it is helpful to review how
live migration works nominally (real implementations migrate part
of the VM state prior to suspend stage to minimize downtime).
When the source platform and the destination platform run the
same software (e.g., QEMU/KVM), a live migration happens in
four steps (see Figure 3):

• Suspend: execution of the guest VM is suspended or blocked
on the source platform

• Save: the in-memory states of the guest VM are serialized into
logical sections to transfer over the network. For example, in
QEMU/KVM, the migration state of the guest VM is contained
in several sections named “timer”, “cpu”, etc. (See Figure 3).
Details of the “cpu_common” section are also given in (1) the
sequence of bytes transferred on the wire, and (2) the type
definition of this section. We can see that this section has two
fields: one is a 32-bit unsigned integer representing the
“halted” field of a memory structure of type “CPUState”, and
the other a 32-bit unsigned integer representing the
“interrupt_request” field of a memory structure of type
“CPUState”.

• Load: once a section is received by the destination platform, its
content is deserialized to restore states of the guest VM in

Figure 3. Live migration and guest VM states

memory. For example, the last four bytes of the
“cpu_common” section are used to restore the
“interrupt_request” field of a guest structure. When all sections
are received and loaded, the guest VM’s states are completely
restored.

• Resume: when the guest VM’s states are fully restored at the
destination platform, its execution is resumed.

4.3 Possible points of failure when live

migrating between different platforms
A migration between QEMU/KVM and DECAF may fail because
of two kinds of reasons due to implementation:

There exist discrepancies between their representations of VM

states, which cause the “load” step to fail. First, they may
support different sets of sections. For example, QEMU/KVM’s
guest VM state includes a section named “kvmclock”, but
DECAF does not support such a section, so it aborts the migration
with an error message. Second, they may have different type
definitions for the same section. Notice in Figure 3 that names of
the fields (e.g., “halted”) are not included in the transferred bytes,
which means that the destination platform must have the same
structure definition as the source platform; otherwise, errors may
happen. For example, if the destination platform’s definition of
the “interrupt_request” field is 16-bit unsigned integer, it will
restore “interrupt_request” as 0000 instead of 00000040. At a
higher level, such discrepancies may be caused by configuration
differences, such as supported network interface cards.

There exist discrepancies between their handling of VM states,

which cause the “resume” step to fail. Even if the guest VM
states are restored successfully, there are differences in how
QEMU/KVM and DECAF handle these states because
fundamentally QEMU/KVM and DECAF run the guest VM in
different ways: QEMU/KVM mainly sets up the environment for
the real CPU to run guest code, but DECAF (based on QEMU)
directly runs guest code in an emulated CPU. However, an
emulated CPU is not exactly the same as a real CPU. For
example, DECAF does not emulate the “accessed” bit in the CS
descriptor's “Type” field [7], but a real CPU requires that this bit
be set, so QEMU/KVM would refuse to run the guest code if this
bit in its state is not set. This kind of discrepancy has caused the
live migration to fail in our experience.

4.4 Summary of results
Through a careful study and numerous experiments, we identify
and resolve 16 discrepancies between QEMU/KVM and DECAF.
As a result, we successfully build a prototype of live migration
based on-the-fly software emulation. The details of these

QEMU/KVM
(Host 1)

DECAF
(Host 2)

X
Analysis

(e.g., tracecap)

Patch

Step 1 Step 2
Step 3

Step 4

Step 5

Table 1. Discrepancies between QEMU/KVM and DECAF

Discrepancy Cate

gory

QEMU/KVM DECAF Resolution

VM state includes the
'kvmclock' section?

HE2 Yes No Modify DECAF so that it ignores the 'kvmclock' section when accepting a
migration

VM state includes the
'kvm-tpr-opt' section?

HE2 Yes No Modify DECAF so that it ignores the 'kvm-tpr-opt' section when
accepting a migration

Handle SMI? SSE1 No, but
maintains a
spurious SMI flag

Yes Modify DECAF so that it clears the SMI flag when accepting a migration.
Modify QEMU/KVM so that it sets the SMI flag when accepting a
migration.

Support the
'conforming' and
'readable' bits?

HSE3 Yes No Modify DECAF so that it clears the 'conforming' and 'readable' bits in the
Task Register's Type field when accepting a migration. Modify
QEMU/KVM so that it sets the 'readable' bit when accepting a migration.

Support the 'accessed'
bit?

HSE3 Yes No Modify QEMU/KVM so that it sets the 'accessed' bit in the CS
descriptor's Type field when accepting a migration.

PIIX4 PM state
includes 'gpe_cpu'?

HSE3 Yes No Modify DECAF to include 'gpe_cpu' in the PIIX4 PM State

Size of the PIIX4
GPE arrays

HSE3 1 4 Change the size in DECAF to 1. GPE: General Purpose Status and Enable
arrays

PIT and device
assignment support

HE2 Yes No Configure QEMU/KVM source code to disable PIT and device
assignment support

PIT state includes the
'flags' field?

HSE3 Yes No Modify DECAF so that it ignores the 'flags' field in PIT state when
accepting a migration

VGA ram size HE2 16384 * 1024 8192 * 1024 Change the VGA ram size of DECAF to 16384 * 1024

VM state includes the
'DECAF' section?

HE2 No Yes Modify DECAF so that it does not generate the 'DECAF' section when it
starts a migration

VM state includes the
'funmap' section?

HE2 No Yes Modify DECAF so that it does not generate the 'funmap' section when it
starts a migration

VM state includes the
'hookapi' section?

HE2 No Yes Modify DECAF so that it does not generate the 'hookapi' section when it
starts a migration

Needs APIC timer? SSE1 No Yes, to keep
TCG engine
alive

Modify QEMU/KVM so that it removes the APIC timer when accepting a
migration

Support 'rtl8139'
device?

HE2 Yes No Modify QEMU/KVM so that it uses 'e1000' device, which DECAF
supports

Default guest clock
source is 'kvm-clock'?

HE2 Yes No Configure the guest clock source to 'hpet'

Supported clock
sources for the guest

HE2 kvm-clock, tsc,
hpet, acpi_pm

hpet,
acpi_pm

1SSE: software state equivalence; 2HE: hardware equivalence; 3HSE: hardware state equivalence

discrepancies, which equivalence requirement was violated and
our resolution methods are shown in Table 1. The version of
QEMU/KVM is qemu-kvm 1.0 shipped with Ubuntu 12.04 LTS,
and the version of DECAF is 1.8.

It is important to note that the list of discrepancies in Table 1 may
not be exhaustive; there may be other discrepancies but we did not
have to address them because QEMU/KVM and DECAF are
based on the same QEMU. However, this list is good enough for
our tests.

5. CASE STUDY ONE: KERNEL PANIC

TRIAGE
In this section, we present the development and evaluation of our
kernel panic triage built on live migration based on-the-fly
software emulation.

5.1 Motivation
Operating system kernels are designed to be extremely robust
against potential errors. Despite the kernel developer's efforts, this
robustness can still be compromised by third party software such
as device drivers and kernel modules which might not be under

the purview of the kernel developers. Erroneous or buggy drivers
can at best lead to kernel panics and at worst lead to privilege
escalation vulnerabilities. In a security context, such kernel panics
or privilege escalation are advantageous for kernel level malware:
for example, kernel panics can be used in a Denial of Service
attack. Furthermore, these kinds of errors are difficult to analyze
and debug because kernel debuggers can be performance intensive
and the rarity of kernel panics makes it even more difficult.

Live migration based demand emulation is well suited for kernel
panic debugging because expensive triage (diagnosis or repair) is
performed only when there is a kernel panic and in a dedicated
analysis environment. Since the triage is not done in the
production environment, the production environment can be
optimized for the normal (not buggy) case. Therefore, in this
section we build a use case of kernel panic triage using live
migration based on-the-fly software emulation.

Note that we do not conceal kernel panics from the OS and the
applications. Instead, we prevent the system from hanging; we
keep the system alive so that important data can be saved (in other
words, we let the system survive an otherwise fatal crash). See
[13] for a discussion of different kinds of driver errors / faults.

5.2 Design
Figure 4 shows the normal flow of a kernel panic like a NULL
pointer dereference. When the kernel execution encounters such
an error, the hardware generates an exception, and the exception
handler of the kernel is invoked. If the exception handler can fix
the problem, it logs debug information by calling printk and such
information is later flushed to the disk, and then the kernel
continues normal execution. On the other hand, if the exception
cannot be fixed, the kernel logs debug information by calling
printk and then stops execution (e.g., panic). In this case, the
kernel does not have a chance to flush the debug message to the
disk and the only hope is that a human user can see the debug
message on the monitor. However, this (i.e. the debug message is
visible on the virtual machine’s monitor window) may not work
when the kernel runs inside a virtual machine.

Motivated by the above basic principle, our kernel panic triage
consists of the following steps. We introduce a small and efficient
kernel fault detector in QEMU/KVM. When a fault is detected,
QEMU/KVM live-migrates the virtual machine into DECAF for
further analysis and attempt a repair. For example, when a NULL
pointer dereference is detected in QEMU/KVM, we live migrate
the VM to DECAF for two kinds of treatments. First, we diagnose
the problem by analyzing the kernel’s instruction trace and
introducing a new plugin that captures the kernel’s debug
messages (Section 5.3.2). Second, we recover the guest kernel
from the panic, by clearing the null-pointer exception state from
the VM and cleanly removing the offending kernel module by
redirecting guest execution (Section 5.3.3). If the recovery is
successful, we live-migrate the virtual machine back to
QEMU/KVM for continued operation. The overall design of our
kernel panic triage is shown in Figure 6.

5.3 Implementation and Evaluation
In the evaluation of our kernel panic triage, we create a buggy
loadable kernel module that under certain conditions writes to
virtual address 0, thus triggering a null pointer dereference. We
load this buggy kernel module in the guest VM on top of
QEMU/KVM to trigger a kernel panic in the guest.

Figure 4. Normal Flow for a NULL

Pointer Dereference Exception

5.3.1 QEMU/KVM Fault Detector
We modify the exception handler of the KVM kernel module, so
that it passes control back to QEMU with
KVM_EXIT_INTERNAL_ERROR when a null pointer
dereference happens in the guest VM.

More specifically, a null pointer dereference in the guest kernel
will trigger a page fault that is caught by the KVM kernel module.
Then the KVM exception handler (i.e., handle_exception) checks
the faulting memory address in CR2. If the address is 0, the
exception handler passes control back to QEMU, setting the exit
reason as KVM_EXIT_INTERNAL_ERROR and the sub-error
code as 4, and including the value of CR2 in the internal data area
of the VCPU's status structure (a data structure used by QEMU
and KVM kernel module to exchange information).

We also modified the main loop of QEMU/KVM's execution
engine (kvm_cpu_exec), such that a live-migration is initiated
when KVM_EXIT_INTERNAL_ERROR is seen.

5.3.2 Diagnosis in DECAF
After DECAF receives the guest VM migrated from
QEMU/KVM, the first thing an analyst can do is to diagnose the
kernel panic. We utilize an existing DECAF plugin to collect the
instructions executed by the guest kernel after it is resumed, then
we do an offline analysis of the instruction trace to understand the
control flow in the guest kernel, which gives us some insight
about what actually happened in the guest following the kernel

Figure 6. Overall Design of Kernel Panic Triage Using Live

Migration Bafsed on-the-fly Software Emulation

async_page_fault

do_async_page_fault

do_page_fault

bad_area_nosemaphor

no_context

show_fault_oops

__die

oops_end

Figure 5. Control Flow

of Kernel Oops

Handling

panic. However, instruction trace analysis alone is not sufficient
because it does not give information about kernel data (e.g., the
content of a buffer that is passed as input to printk). In order to
retrieve such kernel data, we also developed a new DECAF
plugin.

5.3.2.1 Recover the Control Flow
To locate the source of the kernel panic, we first save the state of
the virtual machine and then load the tracecap plugin in DECAF
to obtain an instruction trace of the guest kernel. Once setup, we
then allow the virtual machine to continue execution so as to
obtain the instruction trace. Based on the instruction trace, and
combining it with kernel symbol information (e.g., /proc/kallsyms
and system.map), we conclude the guest kernel encountered a
kernel oops, and the kernel is trying to handle it as depicted in
Figure 5.

5.3.2.2 Recover the Panic Message
Although the recovered kernel control flow confirms a kernel
panic in the guest, it does not give further information about the
cause of the kernel panic, e.g., which kernel component triggers
the null pointer dereference, what the offending instruction is, and
where this instruction is located. From the source code of the
guest kernel, the function show_fault_oops would print "Unable
to handle kernel NULL pointer ..." and the function __die would
print contextual information of the kernel panic, including stack
frame and value of the registers. Unfortunately, such useful
information is not visible on the monitor of the guest VM before
the guest OS hangs indefinitely. It should be written into
/var/log/syslog of the guest, but since the guest hangs, it is not
flushed to the guest's hard disk, which means that once the guest
is rebooted, such information cannot be found in /var/log/syslog.

Therefore, we utilize the DECAF support for guest function
hooking to retrieve such information. Both show_fault_oops and
__die above invoke printk to dump the messages. Therefore, we
can hook printk, which means that we will intercept the guest
kernel execution at the entrance of printk, and then we can access
information that is passed to printk as input parameters, such as
the string “Unable to handle kernel NULL pointer ...”

However, directly hooking printk has one practical issue: the hook
handler has to parse the input to printk, which is a non-trivial job
(e.g., to interpret the semantic of format strings like "%x").
Therefore, we look into the source code of printk and find a
function cont_add that is invoked by printk and handles already
formatted output. Hooking cont_add can directly give us a pointer
to the printk output buffer with already formatted message, which
is much more convenient than hooking printk. Specifically, the
type definition of cont_add is:

static bool cont_add (int facility, int level, const char
*text, size_t len)

wherein text points to the formatted output buffer, and len is the
number of bytes in the buffer.

Based on the above analysis, we develop a DECAF plugin that
hooks cont_add and retrieved the error messages from the guest
memory and logs it to the user. This entire process illustrates the
advantages of using emulation for in depth analysis.

5.3.3 Recovery from Guest Kernel Error in DECAF
A second thing that an analyst can do after receiving a guest VM
with a kernel panic is to recover the guest kernel from the error

before resuming its execution. In our case, the initial saved state
from Section 5.3.2.1 is now restored for triage. In other words, we
saved the state at the beginning of analysis so we could learn more
about the problem at hand by allowing the virtual machine to
continue execution until it hangs. We then devised a resolution
strategy based on what we have learned and restored the machine
to the previous state so that we can remediate the issue.

In the case of a buggy kernel module, the goal is to undo all the
impact that the module has to the rest of the system, e.g., cleanly
unload the kernel module. An analyst may try two options: the
first one is to abort the faulting function (i.e., causing it to return
immediately to the caller, as if the faulty instruction is return) and
leave to the user to unload the buggy module; and the second
option is to abort the faulting function and then force the kernel
execution to a path that unloads the buggy kernel module.

5.3.3.1 Aborting the Execution of a Faulting

Function
Since a kernel panic occurs in the middle of execution, a function
is partially executed. A partial execution of a function can have
two kinds of impact: global impact and local impact. Global
impact is the change to things like global variables, the heap, and
the file system, and local impact includes change to CPU registers
and the stack.

Therefore, the impact analysis of a partial function execution
would process a sequence of instructions between the entrance of
the function to the faulting instruction, and for each instruction in
the sequence, it will calculate the instruction's impact, whether
global or local. Then a recovery plan would consist of operations
that undo the impact such as reverse execution. For example, the
undo operation for a malloc function call is free, and the undo
operation for a push instruction is a pop instruction. In general,
not every instruction can be undone. For example, a modification
to a global variable cannot be undone unless the original value of
the global variable is known. Therefore, whether the impact of a
partial function execution can be undone is case specific.

For demonstration purposes, we ensured that our buggy module
represents a case that can be undone. The reason is that the buggy
function has no global impact before it performs the null pointer
dereference, and it does not invoke any other function that may
have side effects.

5.3.3.2 System Recovery
To recover the system, we first obtained a backwards instruction
trace by using the debug information obtained from cont_add as a
guide to where the current function resides in memory. We then
proceeded to reverse execute each instruction in the offending
function so as to restore the state of the virtual machine to before
the function with the null pointer exception is called. We also
patched the offending function so that it returns immediately
thereby preventing future kernel panics. Once the exception state
has been cleaned up, the virtual machine is live migrated back to
KVM for continued execution.

As an additional test, we also performed an experiment where
execution resumes at the beginning of a kernel module removal
routine. We implemented such a routine by creating a variant of
an existing kernel function sys_delete_module. The main
difference between our implementation and that of the original
function is that our routine does not take parameters from the user
space (sys_delete_module does because it is a system call

handler); moreover, it schedules a delayed work item that will
carry out the main operations of sys_delete_module at a later time.
This is needed because kernel panics are handled in an “interrupt
handling context” where code executions must be brief so further
interrupts are not blocked. Removing the offending module
should be executed in a normal process context instead, which is
why a delayed work item is used. (Currently, the new function is
implemented as a kernel module that has to be loaded in the guest
VM).

A video demonstration of this can be seen at:
http://www.cs.fiu.edu/~weijp/MOSE/demo1.html.

6. CASE STUDY TWO: PROBING AND

PATCHING OF SECURITY

VULNERABILITIES

6.1 Motivation
Latent vulnerabilities are constantly discovered in complex and
mission-critical systems. For example, the SSL Heartbleed bug
disclosed in 2014 called for immediate patching of this
vulnerability in many mission-critical systems (e.g., SCADA
systems). However, patching of such vulnerabilities is
challenging. First, one has to confirm the existence of such bugs
by probing the system, but probing on the spot is expensive, e.g.,
we need instruction-level taint analysis to understand whether
malicious input can reach the malloc size variable of an SSL
server [1] and if sensitive data in memory reaches the network
through the buffer over read. Second, probing on the spot is risky,
e.g., anecdotal evidence has shown that it may cause a SCADA
control system to crash. Lastly, guaranteeing the correctness of the
patch (e.g., it will not trigger other vulnerabilities) is hard.

6.2 Probing and patching of an Heartbleed

bug using live migration based on-the-fly

emulation
Leveraging the prototype described in Section 4, we built a simple
use case. We first run a buggy OpenSSL server in a VM on top of
QEMU/KVM that only has our heterogeneous migration patches.
This is used to represent a normal user who does not have any
specialized analysis capabilities built into the hypervisor. Next,
we migrate the guest VM into DECAF and verify that the
OpenSSL server continues to run. Then we load the tracecap
plugin into DECAF to obtain an instruction trace of the OpenSSL
process. Using this instruction trace and virtual machine
introspection (built into DECAF), we locate the Heartbleed bug in
the OpenSSL server and implement a binary patch. Then we
implemented a binary patching plugin for DECAF that uses
DECAF's virtual machine introspection support to locate the
library of interest (e.g. libssl) and then live patch the library
instructions in memory. Finally, we migrate the OpanSSL server
back to QEMU/KVM and confirm that the Heartbleed
vulnerability has been eliminated. A video demonstration of this
can be seen at: http://www.cs.fiu.edu/~weijp/MOSE/demo2.html.

7. CASE STUDY THREE: ON-DEMAND

SYMBOLIC EXECUTION

7.1 Motivation
DSLab's S2E is a platform for analyzing the properties and
behavior of software systems [2], and one of its key capabilities is
selective symbolic execution. Since this capability is built on top

of QEMU, it inherits the slowness of the dynamic binary
translation that QEMU normally uses. To improve user
experience especially when large guest VMs are analyzed, S2E
introduces an experimental feature that supports taking snapshots
in KVM and later resuming them in QEMU to carry out symbolic
execution [14]. However, the switching from KVM to S2E is still
inconvenient: a user is expected to know when a guest VM is
ready for symbolic execution and manually take the snapshot
beforehand, which is problematic when the symbolic execution
starts in the middle of a running application because the user may
not be able to suspend the VM right before the symbolic
execution starts. Therefore, we propose an enhancement to S2E
that detects the need for symbolic execution in KVM and
automatically live migrate the guest VM to S2E for continued
symbolic execution.

7.2 Design and Implementation
S2E introduces custom instructions as the programming interface
between applications and the S2E platform: when such
instructions are emulated by the S2E execution engine, they are
interpreted as requests for symbolic execution. On non-S2E
systems, however, such instructions trigger invalid instruction
exceptions and cause the applications to crash.

We note that the exceptions caused by S2E custom instructions
are a good hint that the application needs symbolic execution.
Therefore, we extend the KVM kernel module to capture such
exceptions and initiate a live migration from QEMU/KVM to
S2E. The overall design is similar to Figure 6 except for some
technical details. For example, we check invalid opcode
exceptions instead of page fault exceptions, and when an invalid
opcode exception is encountered we further verify that it is indeed
caused by an S2E custom instruction (i.e., the opcode of the
faulting instruction is 0x0f,0x3f), by inspecting the guest
emulation context. When a S2E instruction is confirmed, we pass
control back to QEMU, setting the exit reason as
KVM_EXIT_INTERNAL_ERROR and the sub-error code as 5.
We also extended QEMU/KVM’s execution engine accordingly
to initiate a live migration to a S2E platform.

We have confirmed the feasibility of our approach in two
experiments. In the first experiment, we ran a simple program (on
a Windows Virtual Machine) that is instrumented in the source
code with S2E instructions to inject symbolic values (e.g., by
calling s2e_make_symbolic). In the second experiment, we use
the S2E init_env library and the s2ecmd tool to symbolically (or
concolically) execute an existing Linux program echo. In both
cases, we were able to automatically migrate the applications
(along with the guest VM) from QEMU/KVM to S2E and then
begin symbolic analysis in S2E. A video demonstration of this as
well as the source code can be found at:
http://www.cs.fiu.edu/~weijp/MOSE/demo3.html.

8. PERFORMANCE EVALUATION

8.1 Experimental Setup
For experimental setup we ran QEMU/KVM and DECAF on two
different computers: QEMU/KVM was on an Intel Core 2 Duo
running at 2.5 GHz with 1GB of memory, and DECAF was on an
Intel Core 2 Duo running at 3.0 GHz with 4GB of memory. Each
computer has an Intel PRO/1000 PCI Express network interface
card, connected to a common switch. The virtual machine image
file was stored in a CIFS (Common Internet File System) network
share mounted in both machines. Therefore, during migration we

only had to transfer the states of the VM, not the entire image file.
We installed an Apache web server in the virtual machine, and we
configured the virtual machine to use DHCP so that during
migration its IP address does not change, which ensures that after
migration the web client can reach the Apache server at the same
IP address, so it does not have to be restarted.

We adapted a web server benchmark tool 'weighttp' to measure
the liveness of the Apache server, by continuously downloading a
1-KB text file from the server and reporting the throughput (in
KByte/s) every 30 milliseconds. The intuition is that a non-zero
measurement of the throughput indicates that the server is
available, while a throughout of zero indicates that the server is
not available due to migration or server crash. Our main focus was
to show that our proposed method can recover from server crash
and take care of existing client connections after the recovery.

8.2 Downtime during a Normal Migration
We began our evaluation by measuring the downtime of the
Apache web server during a normal migration, which indicates
how fast a virtual machine can be migrated between QEMU/KVM
and DECAF that run on different hosts. As Figure 7(a) shows, the
throughput dropped a little when we initiated a migration around
the 30th second in QEMU/KVM, but it became zero only for
about 300 ms around the 33rd second and it quickly ramped up
after the Apache server is resumed in DECAF. The migration
back to QEMU/KVM shows a similar pattern in terms of the
throughput.

8.3 Downtime during a Kernel Panic
Next we evaluated the effectiveness of our kernel panic recovery
on the Apache web service. Figure 7(b) shows the throughput
measurement without our kernel panic recovery. We can see that
the throughput dropped to zero after the 30th second, when the
kernel panic was triggered in the virtual machine running on top
of QEMU/KVM. Figure 7(c) shows the throughput measurement
with our kernel panic recovery. As we can see, the throughput
dropped to zero around the 30th second, when the kernel panic
was triggered in QEMU/KVM. However, the throughput started
to increase around the 33rd second because our recovery tool had
automatically migrated the crashed VM to DECAF, recovered it
from the crash, and resumed its execution, including that of the
Apache server. Around the 45th second, we migrated the
recovered VM back to QEMU/KVM. The comparison between
Figure 7(b) and Figure 7(c) clearly demonstrates the impact of our
kernel panic recovery on applications like Apache.

From Figure 7(a) and Figure 7(c), we can see some interesting
difference surrounding the migration from QEMU/KVM to
DECAF (i.e., the time window marked “M1”) with respect to the
Apache's server's throughput. First, in a normal migration, the
Apache throughput fluctuated below its peak level and dropped to
zero in 3 seconds, but during a kernel panic recovery, its
throughput dropped to zero right away. This is because during a
normal migration, the guest VM's state is first transmitted to the
destination machine before its execution is fully suspended, which
means that the Apache server kept servicing the client during the
VM state transmission but the network traffic due to the VM
states reduced the available bandwidth to Apache, resulting in
dropped throughput. On the other hand, when a kernel panic was
triggered in Figure 7(c), the Apache server immediately stopped
execution, which caused its throughput to drop to zero. The
second difference is that the downtime of the Apache server is

longer during a kernel crash recovery (about 3 seconds) than in a
normal case (about 300 ms). This is because during the crash
recovery, the Apache server is suspended during the entire
migration, whereas it can run at a reduced capacity during a
normal migration.

From Figure 7(a) and Figure 7(c) we can also note that the
Apache server has a higher throughput in DECAF than in
QEMU/KVM. To verify whether this is true in general, we ran
netcat [18] in the guest VM to compare the network throughput
offered by DECAF and QEMU/KVM on the same host (Intel
Core 2 Duo running at 3.0 GHz with 4GB of memory), and we
got a send rate of 17.8 Mbps for DECAF and 4.4 Mbps for
QEMU/KVM, and a receive rate of 27.1 Mbps for DECAF and
7.1 Mbps for QEMU/KVM. We believe that the lower network
performance of QEMU/KVM is caused by a large number of VM
Exits due to network device emulation. VM Exists trigger
expensive context switches between QEMU/KVM and the host
kernel. For example, when netcat was run to receive data, the rate
of VM Exit increased by 34 times (from 725 per second to 25,344
per second), and when netcat was run to send data, the rate of VM
Exit increased by 268 times (from 725 per second to 194,725 per
second). Comparatively, pinging an external host from inside the
guest VM incurred only a 2.2 fold increase in VM Exit rate (from
725 per second to 1,613 per second). Therefore, there seems to be
a strong correlation between the guest VM’s network activities
and the VM Exit events, and we know that VM Exits incur
performance overhead.

9. FUTURE DIRECTIONS
The successful development of a prototype for live migration
based demand emulation opens the ground for many useful
applications. We can apply our architecture to the following usage
scenarios:

Scenario 1: Analysis of exploits against a server. When we detect
the abnormal behavior of a server, it is important to understand
whether some kind of exploit has happened, especially when a
zero-day vulnerability is exploited. Using our architecture, we can
take periodic snapshots and record network traffic (e.g., client
requests) in QEMU/KVM; when an anomaly is detected, we can
revert the server to a previous snapshot, live migrate the server to
DECAF, and replay the network traffic since that snapshot to
analyze the server’s execution. By doing this, we can perform
detailed analysis of real exploitations.

Scenario 2: Analysis of emulation-resistant malware. Advanced
malware (e.g., botnets) is capable of detecting whether it is
running inside an emulator and if so changing its behavior to
evade detection. Using our architecture, we can live-migrate the
clone of a potentially compromised server to DECAF, but let the
original server continue to run in parallel with its clone. In the
meantime, we can record the network traffic in the original server
and use it to guide the emulated execution of the server clone in
DECAF. Since malware in QEMU/KVM is likely to reveal its real
behavior, the recorded network traffic can contain useful
information about malware’s logic (e.g., the command and control
message from a bot master). By replaying such network traffic in
DECAF, we can trigger the malicious logic in malware and then
be able to analyze its behavior.

Another future work is migration across WAN (wide area
network). We have performed experiments with live-migration
across WANs. While feasible, the total migration took over one

hour of time. How to improve the performance is an area of future
exploration.

10. CONCLUSION
We have proposed the idea of live migration based on-the-fly
software emulation, which significantly advances the state of the
art: it is analysis-flexible, supports closed source OSes, and uses
modern hardware virtualization extensions. We have built a
prototype based on QEMU/KVM and DECAF. Based on the
prototype, we construct three use cases (kernel panic triage,
patching of security vulnerabilities, and on-demand symbolic
execution) to demonstrate the benefits of our idea. We also
compare the performance (throughput and downtime) of a web
server on top of our prototype and with/without the kernel panic
triage, which shows sub-second interruption of service during live
migration.

11. ACKNOWLEDGEMENTS
This work was supported by the United States Air Force Research
Laboratory (AFRL) Visiting Faculty Research Program (VFRP)
and its extension grant. The views and conclusions contained in
this paper are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or
implied, of the United States Air Force Research Laboratory.

12. REFERENCES
[1] Sean Cassidy. Diagnosis of the OpenSSL Heartbleed Bug.

http://www.seancassidy.me/diagnosis-of-the-openssl-
heartbleed-bug.html. Accessed May 17, 2015.

[2] Vitaly Chipounov, Volodymyr Kuznetsov,
and George Candea. The S2E Platform:
Design, Implementation, and
Applications. ACM Transactions on
Computer Systems, February 2012.

[3] Chow, J., Garfinkel, T., & Chen, P.
Decoupling dynamic program analysis
from execution in virtual environments.
USENIX 2008 Annual Technical
Conference, pp. 1–14.

[4] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T.
Leek, R. Whelan. Repeatable Reverse
Engineering for the Greater Good with
PANDA. Columbia University Technical
Report, CUCS-023-14, October, 2014.

[5] Andrew Henderson, Aravind Prakash, Lok
Kwong Yan, Xunchao Hu, Xujiewen
Wang, Rundong Zhou, and Heng Yin.
Make it work, make it right, make it fast:
building a platform-neutral whole-system
dynamic binary analysis platform.
Proceedings of ISSTA'14.

[6] Alex Ho, Michael Fetterman, Christopher
Clark, Andrew Warfield, and Steven
Hand. Practical taint-based protection
using demand emulation. Proceedings of
EuroSys '06.

[7] Intel Corporation. Intel 64 and IA-32 Architectures: Software
Developer's Manual, Volume 3A.

[8] Kernel-based Virtual Machine. http://www.linux-
kvm.org/page/Main_Page

[9] Live migration in KVM. http://www.linux-
kvm.org/page/Migration

[10] Microsoft: Step by Step Guide for live migration.
http://technet.microsoft.com/en-us/library/dd446679.aspx

[11] OpenVZ checkpointing and live migration.
http://wiki.openvz.org/Checkpointing_and_live_migration

[12] QEMU. http://wiki.qemu.org/Main_Page
[13] Swift, M. M., Annamalai, M., Bershad, B. N., & Levy, H. M.

(2006). Recovering device drivers. ACM Transactions on
Computer Systems, 24(4), 333–360.

[14] s2e Team. Experimental KVM Snapshot Support.
https://github.com/dslab-
epfl/s2e/blob/master/docs/ImageInstallation.rst#experimental
-kvm-snapshot-support

[15] VMware vMotion: Virtual Machine Live Migration.
http://www.vmware.com/products/vsphere/features/vmotion

[16] HOWTO Article about Xen migration.
http://www.linux.com/archive/feature/55773

[17] Yan, L., Jayachandra, M., Zhang, M., & Yin, H. (2012).
V2e: combining hardware virtualization and software
emulation for transparent and extensible malware analysis.
VEE (pp. 227–237).

[18] netcat – Linux man page, at http://linux.die.net/man/1/nc.

a. Normal system
with migration
and then
migration back

b. Normal system
with a kernel
panic in the
guest

c. Our prototype
system with a
kernel panic in
the guest

Figure 7: Throughput of an Apache Server in Three Scenarios (∆t is the Time to

Triage)

∆t

QEMU/KVM DECAF QEMU/KVMM2M1

