
MOSE: Live Migration Based On-the-Fly Software 
Emulation 

Jinpeng Wei 
Florida International University 

11200 SW 8th Street 
Miami, FL 33199 
1-305-348-4038 

weijp@cs.fiu.edu 

Lok K. Yan 
Air Force Research Lab / RIGA 

525 Brooks Road 
Rome, NY 13441 
1-315-330-2756 

lok.yan@us.af.mil 

Muhammad Azizul Hakim 
Florida International University 

11200 SW 8th Street 
Miami, FL 33199 
1-305-348-6250 

mhaki005@fiu.edu 
 

ABSTRACT 

Software emulation has been proven useful in many scenarios, 
such as software testing, malware analysis, and intrusion response. 
However, fine-grained software emulation (e.g., at the instruction 
level) incurs considerable execution overhead (about 8x 
performance degradation), which hampers its use in production 
settings. In this paper, we propose MOSE (Live Migration based 
On-the-fly Software Emulation) that combines the performance 
advantages of hardware virtualization and the fine-grained 
analysis capability (comprehensiveness) of whole-system software 
emulation. Namely, a system can run as normal on a hardware-
virtualized platform at near native speed, but when needed, it can 
be live-migrated to an emulator, not necessarily running on the 
same physical system, for in-depth analysis and triage; when the 
analysis is complete, the virtual machine can be migrated back to 
benefit from full hardware-virtualization again. In this way, the 
performance degradation is only experienced during analysis and 
triage. To demonstrate this new capability, we built a proof of 
concept on-the-fly software emulation system, based on 
QEMU/KVM and DECAF, the Dynamic Executable Code 
Analysis Framework. We also perform three case studies: 
automated kernel panic triage, live-patching a security 
vulnerability, and on-demand symbolic execution, to illustrate on-
demand instruction level analysis. 

Categories and Subject Descriptors 

D.2.5 [Testing and Debugging]: Error handling and recovery, 
Symbolic execution.  

General Terms 

Design, Reliability, Experimentation, Security, Theory. 

Keywords 

Demand emulation, live migration, software analysis, symbolic 
execution. 

1. INTRODUCTION 
Software emulation has demonstrated its strength in many 
scenarios, such as software testing, profiling, malware analysis, 
and intrusion response. However, fine-grained software emulation 

(e.g., at the instruction level) incurs considerable execution 
overhead (about 8x performance degradation [5]), which hampers 
its use in production settings. To address this issue, demand 
emulation has been proposed to dynamically switch a running 
system between virtualized and emulated executions [6]. This 
way, expensive software emulation is used only when there is a 
need for analysis; otherwise, virtualization gives performance 
guarantees.  

However, existing work in demand emulation is analysis-rigid, 
cannot support closed source guest OSes, and does not support 
modern virtualization extensions. For example, Ho’s architecture 
[6] used Xen with para-virtualization for efficient execution of 
guest VMs and QEMU for emulation and taint analysis. It is not 
an ideal solution though. First, due to the reliance on para-
virtualization, it cannot support closed source OSes such as 
Windows; Second, it is designed for only one type of analysis: 
taint analysis, but there are many other types of analysis that are 
also useful (e.g., tracing, instrumentation and symbolic analysis); 
Third, it forces virtualized execution and emulated execution to 
run on top of the same hypervisor (i.e., Xen) on the same physical 
host, which may not be practical for production systems that do 
not have enough resources (e.g., battery power) to run emulation-
based analysis. For these reasons, we call Ho’s architecture in-

host demand emulation. 

In this paper, we propose an out-host demand emulation 

architecture, Live Migration based On-the-fly Software 

Emulation (MOSE for short). The idea is to live-migrate a 
running virtual machine between a platform with full hardware 
virtualization and another platform that is based on machine 
emulation.  In doing that, a system can run as normal on the 
hardware-virtualized platform at near native speed, but when 
needed, it can be live-migrated to an emulator for in-depth 
behavioral analysis. Once the analysis is complete, the virtual 
machine can be migrated back to benefit from full hardware-
virtualization once more. 

Compared with existing work on demand emulation, our 
architecture has the following advantages: it can support closed 
source OSes because it uses full hardware virtualization (For 
example, our prototype of MOSE can migrate a Windows VM 
from QEMU/KVM to S2E in Section 7.2); it can take advantage 
of hardware virtualization extensions; it is analysis-flexible 
because multiple types of program analysis modules (e.g., 
instruction tracing, taint analysis, and virtual machine 
introspection) can be added to the emulation-based platform as 
plugins; it can support the analysis of systems with limited 
resources (e.g., battery power) in their normal execution 
environment (e.g., embedded systems) because expensive 
software emulation is performed on a separate platform. 
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The problem of heterogeneous live-migration can be summarized 
as the problem of ensuring that a software system (the Operating 
System kernel in particular) that was initialized for and has 
executed on one hardware configuration (e.g., hardware 
virtualization) remains correct and consistent when executing in a 
different hardware configuration (e.g., software emulation) 
without the initialization step. This requirement can then be 
separated into three sub-requirements: hardware device 
equivalence, hardware state equivalence and software state 
equivalence (See Section 2). We have designed and built MOSE 
to satisfy these three sub-requirements. We identified and 
overcame the technical challenges in live migration between a 
fully virtualized platform (i.e., QEMU/KVM) and an emulated 
platform (i.e., DECAF). We found mismatches between the 
representations of guest VM states by QEMU/KVM and DECAF, 
such as VGA ram size and network interface card.  

To demonstrate the efficacy of our approach, we constructed three 
use cases on top of the prototype implementation. In the first one 
(Section 5), we developed a kernel panic triage tool that detects 
kernel panics in the guest virtual machine (VM) from the 
hypervisor (QEMU/KVM) and automatically live-migrates the 
guest into DECAF for analysis and recovery. This used a light-
weight kernel panic detection tool in KVM, and a more 
heavyweight triage tool built into DECAF. This separation of 
duties demonstrates the motivations behind MOSE. 

In the second use case (Section 6), we demonstrate the potential 
for MOSE to be used as a Software Clinic service. In this 
scenario, a Heartbleed vulnerable server that is executing on a 
heterogeneous migration enabled KVM instance is live-migrated 
to a DECAF to be patched. Once patched, it is live-migrated back 
to KVM for high performance execution. The server continues to 
serve requests throughout this period with minimal downtime. 

In the third use case (Section 7), we demonstrate that MOSE is 
not analysis platform dependent. We show that we can improve 
the performance of S2E, a symbolic execution platform, by 
allowing the virtual machine to execute in KVM and only 
migrating the state over to S2E when one of S2E’s special 
instructions are detected. This is an extension of S2E’s 
experimental capability where a virtual machine’s state can be 
saved in KVM and restored in S2E. 

This paper makes the following contributions: 

• We propose live migration based on-the-fly software emulation 
that (1) combines the performance advantages of hardware 
virtualization and the fine-grained analysis capability 
(comprehensiveness) of whole-system software emulators, and 
(2) decouples the production environment from the analysis 
environment. 

• We validate the feasibility of our approach by building a 
prototype of live migration based on-the-fly software 
emulation, based on QEMU/KVM shipped with Ubuntu Linux 
and the DECAF analysis framework. 

• We perform three case studies that demonstrate the application 
of our approach in kernel panic triage, security vulnerability 
patching, and on-demand symbolic execution. 

• We evaluate the performance implication of our prototype and 
kernel panic triage tool on normal applications, by comparing 
the throughput of an Apache web server in different scenarios. 

The rest of this paper is organized as follows. Section 2 discusses 
technical background and related work. Section 3 presents the 

architecture of live migration based on-the-fly software emulation. 
Section 4 describes the implementation of a prototype system. 
Section 5 presents the kernel panic triage case study, Section 6 
presents the security vulnerability patching case study, and 
Section 7 discusses the on-demand symbolic execution case study. 
Section 8 reports the results of an experimental evaluation of our 
prototype. Section 9 discusses possible future directions, and 
Section 10 concludes the paper. 

2. BACKGROUND 

2.1 Emulation-based Software Analysis 
Software emulation is the translation of software written for a 
different hardware or OS into software that can run on the current 
platform.  For example: QEMU [12] can emulate a SPARC 
architecture on top of Linux using the x86 instruction set to run 
Solaris applications. Inside an emulator, each instruction of the 
guest application is intercepted and translated into the instruction 
set of the host system and then executed. Modern emulators like 
QEMU can run an entire guest virtual machine (including the 
Operating System and applications) as if it is running on the real 
target computer.  

Because of their visibility and control over the execution of guest 
applications (e.g., emulation of each guest instruction), software 
emulators have been employed to create powerful software 
analysis platforms that can monitor, analyze, or change the 
execution of target OS or applications. For example, QEMU has 
been extended into multiple analysis platforms, such as S2E [2], 
PANDA [4], and DECAF [5]. For this project, we choose DECAF 
and S2E because they have very useful capabilities for our 
purpose (e.g., live-patching of vulnerable system processes): 
DECAF supports virtual machine introspection, guest memory 
access, plugins for instruction tracing and process listing, and 
customized plugins, and S2E supports symbolic execution and 
customized plugins. However, the general technique presented in 
this paper is not limited to any particular analysis platform. 

2.2 Live migration 
Live migration is a technique that moves a running virtual 
machine (VM) or application between different physical hosts 
without disconnecting the client or application. During live 
migration, the memory, storage, and network connectivity of the 
VM are transferred from the original host machine to the 
destination machine. Because of its benefits such as improved 
performance, manageability, and fault tolerance, live migration 
has become a feature supported by almost all major virtual 
machine managers (e.g., VMware VMotion [15], KVM [9], Xen 
[16], Hyper-V [10], and OpenVZ [11]).  

In this paper, we rely on heterogeneous live migration, which is 
the live-migration of machines between systems of differing 
architectures and/or hardware configurations. For an abstract 
software system, heterogeneous live migration can be performed 
as long as all external dependencies and interfaces remain 
consistent across the heterogeneous systems. For example, the 
instruction set architecture of the two systems must be equivalent 
because otherwise the software instructions will not execute 
correctly. As another example, the two systems must also have 
equivalent Application Programming Interfaces (APIs) and 
Application Binary Interfaces (ABIs). Since the software system 
in question is an entire virtual machine, the external dependencies 
include hardware such as the real CPU, memory and even video 
and network card states. 



We have identified three requirements in total: hardware 

equivalence, hardware state equivalence, and software state 

equivalence. Hardware equivalence requires that the hardware 
(CPU, memory architecture, network devices, etc.) on both the 
source and destination systems must have the same input/output 
behavior. It is important to note that x86 KVM and x86 QEMU 
are not strictly hardware equivalent because QEMU does not 
support all of the hardware extensions and model specific features 
of the many different CPU models. However, this does not pose 
too much of a problem since most software programs do not use 
features that are not supported by QEMU. 

Hardware state equivalence requires that the internal state of 
hardware devices (e.g. network interface card buffers) of the 
source and destination machines must be equivalent (not equal) 
such that given the same input the same output results.  

Software state equivalence requires that the state information for 
the software being live-migrated must exhibit the same behavior 
given the same exact inputs in the same exact order and timing 
despite the fact that they are executing on different machines. We 
do not require software equivalence (similar to hardware 
equivalence) since software state is included in the hardware state 
(e.g., CPU registers, memory, disk, etc.). 

In most cases, software state equivalence can be guaranteed by 
ensuring that the CPU and memory states of the system are 
equivalent. This is not the case for whole-system live-migration 
though because some of the internal kernel state has external 
dependencies on the hardware.  

That is, one of the first operations that an operating system kernel 
performs during boot is hardware discovery and initialization. 
During this process, all of the connected hardware devices are 
enumerated and annotated in internal data structures. 
Additionally, any devices that are to be used are also initialized 
(e.g., interrupt vectors and memory addresses agreed upon) and 
this information is also stored within the internal data structures. 
Therefore, the operating system has a certain expectation of what 
the underlying hardware is and how it behaves. This expectation 
is encapsulated into the hardware equivalence and hardware state 
equivalence requirements. Please note that these requirements are 
also present in normal live-migration, but modern hardware 
virtualization technologies such as VT-d and SR-IOV have made 
these easier to meet. These remain problematic for heterogeneous 
live-migration. 

2.3 Related work 
Although emulation-based analysis is very useful, it has one major 
drawback, i.e., it can incur considerable execution overhead (e.g., 
8x performance degradation when emulating at the instruction 
level [5]), which hampers its use in production settings. 

In order to address this shortcoming, Aftersight [3] decouples 
analysis from normal execution by recording nondeterministic 
VM inputs in the production environment and then replaying 
them on a separate analysis platform. Aftersight reduces the 
slowdown to the production system because a copy of the 
program under analysis is run on a separate platform. However, 
Aftersight can be evaded by malware because the emulated 
analysis environment can be detected by malware. To address his 
issue, V2E [17] records malware execution using hardware 
virtualization for transparency, and then replays and analyzes the 
malware’s execution using dynamic binary translation for 
flexibility and efficiency of in-depth analysis. 

Another approach to reduce the overhead of emulation-based 
analysis is demand emulation, which dynamically switches a 
running system between virtualized and emulated executions, so 
that expensive software emulation is used only when there is a 
need for analysis; otherwise, virtualization gives performance 
guarantees. One prime example of demand emulation (in-host 
demand emulation) is developed by Alex Ho et al. [6]. This 
architecture used Xen and para-virtualization for efficient 
execution of guest VMs and QEMU for emulation and taint 
analysis. However, [6] has several limitations, as we discussed in 
Section 1. 

S2E [14] has an experimental feature that supports saving the 
guest VM states in KVM and later loading them in QEMU, which 
shares the same goal with us: to improve the guest’s performance. 
However, the S2E saving/loading process is manual while ours is 
automatic, and we use live migration while S2E does not. 

Shadow driver [13] is an operating system mechanism that 
monitors device drivers and transparently recovers from transient 
and fail-stop driver failures; as a result, it enables the system to 
continue to run correctly when device drivers fail. Our kernel 
panic triage tool (Section 5) differs from Shadow driver in two 
ways. First, it can recover the guest OS from not only driver 
failures but also panics caused by bugs in the core kernel. Second, 
Shadow driver can only handle transient driver failures caused by 
the environment, but our kernel panic recovery can handle both 
transient failures and deterministic failures, irrespective of the 
cause of the failure.  

3. THE DESIGN OF LIVE MIGRATION 

BASED ON-THE-FLY SOFTWARE 

EMULATION 
The architecture for MOSE is illustrated in Figure 1. Our idea is 
to live-migrate a running virtual machine between a platform with 
full hardware virtualization (e.g., QEMU/KVM [8]) and another 
platform that is based on machine emulation (e.g., DECAF [5]).  
Figure 2 shows a typical flow diagram of live migration based on-
the-fly software emulation. A guest VM initially runs on 
QEMU/KVM, and when it encounters a trigger (e.g., a NULL 
pointer dereference) during its execution (Step 1), it is live-
migrated (Step 2) into DECAF for an analysis and perhaps a 
repair (Step 3); once these are done, the guest VM is live-
migrated back to QEMU/KVM (Step 4) to continue normal 
execution (Step 5). 

4. PROTOTYPE IMPLEMENTATION 
In this section, we present the implementation of a prototype of 
live migration based on-the-fly software emulation (Section 3). 
Our prototype implementation instantiates  the architecture shown  

 

Figure 1. Overall Architecture of Live Migration Based On-

the-fly Software Emulation 



 

     

 

 

     

Figure 2. Flow Diagram of a Typical Application of Our 

Approach using QEMU/KVM and DECAF 

in Figure 1. We build the full hardware virtualization platform 
based on QEMU/KVM [8], and we build the emulation and 
analysis platform based on DECAF (Dynamic Executable Code 
Analysis Framework) [5]. Both QEMU/KVM and DECAF are 
based on QEMU, which reduces the number of possible 
discrepancies between them and thus eases the live-migration of 
guest virtual machines between them. 

4.1 Overview of challenges 
The biggest challenge of a heterogeneous migration presented in 
Figure 1 is to ensure that the guest VM can continue to execute 
after it has been initialized for a different environment. For 
example, both QEMU/KVM and DECAF can handle guest SMIs 
(System Management Interrupts) if the guest OS is initialized (i.e., 
booted) from scratch; however, if the guest OS is initialized in 
QEMU/KVM and then migrated into DECAF, its SMIs cannot be 
correctly handled because DECAF’s handlers for such SMIs are 
not completely created. This is a fundamental limitation of our 
approach. In this paper, we discovered and resolved 16 
discrepancies to enable live migration between specific versions 
of QEMU/KVM and DECAF (See Table 1); the relatively short 
list is partly due to the fact that QEMU/KVM and DECAF are 
both based on QEMU, which significantly reduces possible 
discrepancies. 

4.2 Internals of normal live migration 
To understand the technical challenges, it is helpful to review how 
live migration works nominally (real implementations migrate part 
of the VM state prior to suspend stage to minimize downtime). 
When the source platform and the destination platform run the 
same software (e.g., QEMU/KVM), a live migration happens in 
four steps (see Figure 3): 

• Suspend: execution of the guest VM is suspended or blocked 
on the source platform 

• Save: the in-memory states of the guest VM are serialized into 
logical sections to transfer over the network. For example, in 
QEMU/KVM, the migration state of the guest VM is contained 
in several sections named “timer”, “cpu”, etc. (See Figure 3). 
Details of the “cpu_common” section are also given in (1) the 
sequence of bytes transferred on the wire, and (2) the type 
definition of this section. We can see that this section has two 
fields: one is a 32-bit unsigned integer representing the 
“halted” field of a memory structure of type “CPUState”, and 
the other a 32-bit unsigned integer representing the 
“interrupt_request” field of a memory structure of type 
“CPUState”. 

• Load: once a section is received by the destination platform, its 
content is deserialized  to  restore  states  of  the  guest  VM  in  

 

Figure 3. Live migration and guest VM states 

memory. For example, the last four bytes of the 
“cpu_common” section are used to restore the 
“interrupt_request” field of a guest structure. When all sections 
are received and loaded, the guest VM’s states are completely 
restored. 

• Resume: when the guest VM’s states are fully restored at the 
destination platform, its execution is resumed. 

4.3 Possible points of failure when live 

migrating between different platforms 
A migration between QEMU/KVM and DECAF may fail because 
of two kinds of reasons due to implementation: 

There exist discrepancies between their representations of VM 

states, which cause the “load” step to fail. First, they may 
support different sets of sections. For example, QEMU/KVM’s 
guest VM state includes a section named “kvmclock”, but 
DECAF does not support such a section, so it aborts the migration 
with an error message. Second, they may have different type 
definitions for the same section. Notice in Figure 3 that names of 
the fields (e.g., “halted”) are not included in the transferred bytes, 
which means that the destination platform must have the same 
structure definition as the source platform; otherwise, errors may 
happen. For example, if the destination platform’s definition of 
the “interrupt_request” field is 16-bit unsigned integer, it will 
restore “interrupt_request” as 0000 instead of 00000040. At a 
higher level, such discrepancies may be caused by configuration 
differences, such as supported network interface cards. 

There exist discrepancies between their handling of VM states, 

which cause the “resume” step to fail. Even if the guest VM 
states are restored successfully, there are differences in how 
QEMU/KVM and DECAF handle these states because 
fundamentally QEMU/KVM and DECAF run the guest VM in 
different ways: QEMU/KVM mainly sets up the environment for 
the real CPU to run guest code, but DECAF (based on QEMU) 
directly runs guest code in an emulated CPU. However, an 
emulated CPU is not exactly the same as a real CPU. For 
example, DECAF does not emulate the “accessed” bit in the CS 
descriptor's “Type” field [7], but a real CPU requires that this bit 
be set, so QEMU/KVM would refuse to run the guest code if this 
bit in its state is not set. This kind of discrepancy has caused the 
live migration to fail in our experience. 

4.4 Summary of results 
Through a careful study and numerous experiments, we identify 
and resolve 16 discrepancies between QEMU/KVM and DECAF. 
As a result, we successfully build a prototype of live migration 
based on-the-fly software emulation. The details of these 
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X
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Step 1 Step 2
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Table 1. Discrepancies between QEMU/KVM and DECAF 

Discrepancy Cate

gory 

QEMU/KVM DECAF Resolution 

VM state includes the 
'kvmclock' section? 

HE2 Yes No  Modify DECAF so that it ignores the 'kvmclock' section when accepting a 
migration 

VM state includes the 
'kvm-tpr-opt' section? 

HE2 Yes No Modify DECAF so that it ignores the 'kvm-tpr-opt' section when 
accepting a migration 

Handle SMI? SSE1 No, but  
maintains a 
spurious SMI flag 

Yes Modify DECAF so that it clears the SMI flag when accepting a migration. 
Modify QEMU/KVM so that it sets the SMI flag when accepting a 
migration. 

Support the 
'conforming' and 
'readable' bits? 

HSE3 Yes No Modify DECAF so that it clears the 'conforming' and 'readable' bits in the 
Task Register's Type field when accepting a migration. Modify 
QEMU/KVM so that it sets the 'readable' bit when accepting a migration. 

Support the 'accessed' 
bit? 

HSE3 Yes No Modify QEMU/KVM so that it sets the 'accessed' bit in the CS 
descriptor's Type field when accepting a migration. 

PIIX4 PM state 
includes 'gpe_cpu'? 

HSE3 Yes No Modify DECAF to include 'gpe_cpu' in the PIIX4 PM State 

Size of the PIIX4 
GPE arrays 

HSE3 1 4 Change the size in DECAF to 1. GPE: General Purpose Status and Enable 
arrays 

PIT and device 
assignment support 

HE2 Yes No Configure QEMU/KVM source code to disable PIT and device 
assignment support 

PIT state includes the 
'flags' field? 

HSE3 Yes No Modify DECAF so that it ignores the 'flags' field in PIT state when 
accepting a migration 

VGA ram size HE2 16384 * 1024 8192 * 1024 Change the VGA ram size of DECAF to 16384 * 1024 

VM state includes the 
'DECAF' section? 

HE2 No Yes Modify DECAF so that it does not generate the 'DECAF' section when it 
starts a migration 

VM state includes the 
'funmap' section? 

HE2 No Yes Modify DECAF so that it does not generate the 'funmap' section when it 
starts a migration 

VM state includes the 
'hookapi' section? 

HE2 No Yes Modify DECAF so that it does not generate the 'hookapi' section when it 
starts a migration 

Needs APIC timer? SSE1 No Yes, to keep 
TCG engine 
alive 

Modify QEMU/KVM so that it removes the APIC timer when accepting a 
migration 

Support 'rtl8139' 
device? 

HE2 Yes No Modify QEMU/KVM so that it uses 'e1000' device, which DECAF 
supports 

Default guest clock 
source is 'kvm-clock'? 

HE2 Yes No Configure the guest clock source to 'hpet' 

Supported clock 
sources for the guest 

HE2 kvm-clock, tsc, 
hpet, acpi_pm 

hpet, 
acpi_pm 

1SSE: software state equivalence; 2HE: hardware equivalence; 3HSE: hardware state equivalence 

discrepancies, which equivalence requirement was violated and 
our resolution methods are shown in Table 1. The version of 
QEMU/KVM is qemu-kvm 1.0 shipped with Ubuntu 12.04 LTS, 
and the version of DECAF is 1.8. 

It is important to note that the list of discrepancies in Table 1 may 
not be exhaustive; there may be other discrepancies but we did not 
have to address them because QEMU/KVM and DECAF are 
based on the same QEMU. However, this list is good enough for 
our tests.  

5. CASE STUDY ONE: KERNEL PANIC 

TRIAGE 
In this section, we present the development and evaluation of our 
kernel panic triage built on live migration based on-the-fly 
software emulation. 

5.1 Motivation 
Operating system kernels are designed to be extremely robust 
against potential errors. Despite the kernel developer's efforts, this 
robustness can still be compromised by third party software such 
as device drivers and kernel modules which might not be under 



the purview of the kernel developers. Erroneous or buggy drivers 
can at best lead to kernel panics and at worst lead to privilege 
escalation vulnerabilities. In a security context, such kernel panics 
or privilege escalation are advantageous for kernel level malware: 
for example, kernel panics can be used in a Denial of Service 
attack. Furthermore, these kinds of errors are difficult to analyze 
and debug because kernel debuggers can be performance intensive 
and the rarity of kernel panics makes it even more difficult. 

Live migration based demand emulation is well suited for kernel 
panic debugging because expensive triage (diagnosis or repair) is 
performed only when there is a kernel panic and in a dedicated 
analysis environment. Since the triage is not done in the 
production environment, the production environment can be 
optimized for the normal (not buggy) case.  Therefore, in this 
section we build a use case of kernel panic triage using live 
migration based on-the-fly software emulation. 

Note that we do not conceal kernel panics from the OS and the 
applications. Instead, we prevent the system from hanging; we 
keep the system alive so that important data can be saved (in other 
words, we let the system survive an otherwise fatal crash). See 
[13] for a discussion of different kinds of driver errors / faults. 

5.2 Design 
Figure 4 shows the normal flow of a kernel panic like a NULL 
pointer dereference. When the kernel execution encounters such 
an error, the hardware generates an exception, and the exception 
handler of the kernel is invoked. If the exception handler can fix 
the problem, it logs debug information by calling printk and such 
information is later flushed to the disk, and then the kernel 
continues normal execution. On the other hand, if the exception 
cannot be fixed, the kernel logs debug information by calling 
printk and then stops execution (e.g., panic). In this case, the 
kernel does not have a chance to flush the debug message to the 
disk and the only hope is that a human user can see the debug 
message on the monitor. However, this (i.e. the debug message is 
visible on the virtual machine’s monitor window) may not work 
when the kernel runs inside a virtual machine.  

Motivated by the above basic principle, our kernel panic triage 
consists of the following steps. We introduce a small and efficient 
kernel fault detector in QEMU/KVM. When a fault is detected, 
QEMU/KVM live-migrates the virtual machine into DECAF for 
further analysis and attempt a repair. For example, when a NULL 
pointer dereference is detected in QEMU/KVM, we live migrate 
the VM to DECAF for two kinds of treatments. First, we diagnose 
the problem by analyzing the kernel’s instruction trace and 
introducing a new plugin that captures the kernel’s debug 
messages (Section 5.3.2). Second, we recover the guest kernel 
from the panic, by clearing the null-pointer exception state from 
the VM and cleanly removing the offending kernel module by 
redirecting guest execution (Section 5.3.3). If the recovery is 
successful, we live-migrate the virtual machine back to 
QEMU/KVM for continued operation. The overall design of our 
kernel panic triage is shown in Figure 6. 

5.3 Implementation and Evaluation 
In the evaluation of our kernel panic triage, we create a buggy 
loadable kernel module that under certain conditions writes to 
virtual address 0, thus triggering a null pointer dereference. We 
load this buggy kernel module in the guest VM on top of 
QEMU/KVM to trigger a kernel panic in the guest. 
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5.3.1 QEMU/KVM Fault Detector 
We modify the exception handler of the KVM kernel module, so 
that it passes control back to QEMU with 
KVM_EXIT_INTERNAL_ERROR when a null pointer 
dereference happens in the guest VM. 

More specifically, a null pointer dereference in the guest kernel 
will trigger a page fault that is caught by the KVM kernel module. 
Then the KVM exception handler (i.e., handle_exception) checks 
the faulting memory address in CR2. If the address is 0, the 
exception handler passes control back to QEMU, setting the exit 
reason as KVM_EXIT_INTERNAL_ERROR and the sub-error 
code as 4, and including the value of CR2 in the internal data area 
of the VCPU's status structure (a data structure used by QEMU 
and KVM kernel module to exchange information). 

We also modified the main loop of QEMU/KVM's execution 
engine (kvm_cpu_exec), such that a live-migration is initiated 
when KVM_EXIT_INTERNAL_ERROR is seen. 

5.3.2 Diagnosis in DECAF 
After DECAF receives the guest VM migrated from 
QEMU/KVM, the first thing an analyst can do is to diagnose the 
kernel panic. We utilize an existing DECAF plugin to collect the 
instructions executed by the guest kernel after it is resumed, then 
we do an offline analysis of the instruction trace to understand the 
control flow in the guest kernel, which gives us some insight 
about what actually happened in  the  guest  following  the  kernel 

 

Figure 6. Overall Design of Kernel Panic Triage Using Live 

Migration Bafsed on-the-fly Software Emulation 

 

async_page_fault 

do_async_page_fault 

do_page_fault 

bad_area_nosemaphor

no_context 

show_fault_oops 

__die 

oops_end 

Figure 5. Control Flow 

of Kernel Oops 

Handling 



panic. However, instruction trace analysis alone is not sufficient 
because it does not give information about kernel data (e.g., the 
content of a buffer that is passed as input to printk). In order to 
retrieve such kernel data, we also developed a new DECAF 
plugin. 

5.3.2.1 Recover the Control Flow  
To locate the source of the kernel panic, we first save the state of 
the virtual machine and then load the tracecap plugin in DECAF 
to obtain an instruction trace of the guest kernel. Once setup, we 
then allow the virtual machine to continue execution so as to 
obtain the instruction trace. Based on the instruction trace, and 
combining it with kernel symbol information (e.g., /proc/kallsyms 
and system.map), we conclude the guest kernel encountered a 
kernel oops, and the kernel is trying to handle it as depicted in 
Figure 5.  

5.3.2.2 Recover the Panic Message 
Although the recovered kernel control flow confirms a kernel 
panic in the guest, it does not give further information about the 
cause of the kernel panic, e.g., which kernel component triggers 
the null pointer dereference, what the offending instruction is, and 
where this instruction is located. From the source code of the 
guest kernel, the function show_fault_oops would print "Unable 
to handle kernel NULL pointer ..." and the function __die would 
print contextual information of the kernel panic, including stack 
frame and value of the registers. Unfortunately, such useful 
information is not visible on the monitor of the guest VM before 
the guest OS hangs indefinitely. It should be written into 
/var/log/syslog of the guest, but since the guest hangs, it is not 
flushed to the guest's hard disk, which means that once the guest 
is rebooted, such information cannot be found in /var/log/syslog. 

Therefore, we utilize the DECAF support for guest function 
hooking to retrieve such information. Both show_fault_oops and 
__die above invoke printk to dump the messages. Therefore, we 
can hook printk, which means that we will intercept the guest 
kernel execution at the entrance of printk, and then we can access 
information that is passed to printk as input parameters, such as 
the string “Unable to handle kernel NULL pointer ...”  

However, directly hooking printk has one practical issue: the hook 
handler has to parse the input to printk, which is a non-trivial job 
(e.g., to interpret the semantic of format strings like "%x"). 
Therefore, we look into the source code of printk and find a 
function cont_add that is invoked by printk and handles already 
formatted output. Hooking cont_add can directly give us a pointer 
to the printk output buffer with already formatted message, which 
is much more convenient than hooking printk. Specifically, the 
type definition of cont_add is:  

static bool cont_add (int facility, int level, const char 
*text, size_t len) 

wherein text points to the formatted output buffer, and len is the 
number of bytes in the buffer. 

Based on the above analysis, we develop a DECAF plugin that 
hooks cont_add and retrieved the error messages from the guest 
memory and logs it to the user. This entire process illustrates the 
advantages of using emulation for in depth analysis. 

5.3.3 Recovery from Guest Kernel Error in DECAF 
A second thing that an analyst can do after receiving a guest VM 
with a kernel panic is to recover the guest kernel from the error 

before resuming its execution. In our case, the initial saved state 
from Section 5.3.2.1 is now restored for triage. In other words, we 
saved the state at the beginning of analysis so we could learn more 
about the problem at hand by allowing the virtual machine to 
continue execution until it hangs. We then devised a resolution 
strategy based on what we have learned and restored the machine 
to the previous state so that we can remediate the issue. 

In the case of a buggy kernel module, the goal is to undo all the 
impact that the module has to the rest of the system, e.g., cleanly 
unload the kernel module. An analyst may try two options: the 
first one is to abort the faulting function (i.e., causing it to return 
immediately to the caller, as if the faulty instruction is return) and 
leave to the user to unload the buggy module; and the second 
option is to abort the faulting function and then force the kernel 
execution to a path that unloads the buggy kernel module.  

5.3.3.1 Aborting the Execution of a Faulting 

Function 
Since a kernel panic occurs in the middle of execution, a function 
is partially executed. A partial execution of a function can have 
two kinds of impact: global impact and local impact. Global 
impact is the change to things like global variables, the heap, and 
the file system, and local impact includes change to CPU registers 
and the stack.  

Therefore, the impact analysis of a partial function execution 
would process a sequence of instructions between the entrance of 
the function to the faulting instruction, and for each instruction in 
the sequence, it will calculate the instruction's impact, whether 
global or local. Then a recovery plan would consist of operations 
that undo the impact such as reverse execution. For example, the 
undo operation for a malloc function call is free, and the undo 
operation for a push instruction is a pop instruction. In general, 
not every instruction can be undone. For example, a modification 
to a global variable cannot be undone unless the original value of 
the global variable is known. Therefore, whether the impact of a 
partial function execution can be undone is case specific. 

For demonstration purposes, we ensured that our buggy module 
represents a case that can be undone. The reason is that the buggy 
function has no global impact before it performs the null pointer 
dereference, and it does not invoke any other function that may 
have side effects.  

5.3.3.2 System Recovery 
To recover the system, we first obtained a backwards instruction 
trace by using the debug information obtained from cont_add as a 
guide to where the current function resides in memory. We then 
proceeded to reverse execute each instruction in the offending 
function so as to restore the state of the virtual machine to before 
the function with the null pointer exception is called. We also 
patched the offending function so that it returns immediately 
thereby preventing future kernel panics. Once the exception state 
has been cleaned up, the virtual machine is live migrated back to 
KVM for continued execution. 

As an additional test, we also performed an experiment where 
execution resumes at the beginning of a kernel module removal 
routine. We implemented such a routine by creating a variant of 
an existing kernel function sys_delete_module. The main 
difference between our implementation and that of the original 
function is that our routine does not take parameters from the user 
space (sys_delete_module does because it is a system call 



handler); moreover, it schedules a delayed work item that will 
carry out the main operations of sys_delete_module at a later time. 
This is needed because kernel panics are handled in an “interrupt 
handling context” where code executions must be brief so further 
interrupts are not blocked. Removing the offending module 
should be executed in a normal process context instead, which is 
why a delayed work item is used. (Currently, the new function is 
implemented as a kernel module that has to be loaded in the guest 
VM). 

A video demonstration of this can be seen at: 
http://www.cs.fiu.edu/~weijp/MOSE/demo1.html. 

6. CASE STUDY TWO: PROBING AND 

PATCHING OF SECURITY 

VULNERABILITIES 

6.1 Motivation 
Latent vulnerabilities are constantly discovered in complex and 
mission-critical systems. For example, the SSL Heartbleed bug 
disclosed in 2014 called for immediate patching of this 
vulnerability in many mission-critical systems (e.g., SCADA 
systems). However, patching of such vulnerabilities is 
challenging. First, one has to confirm the existence of such bugs 
by probing the system, but probing on the spot is expensive, e.g., 
we need instruction-level taint analysis to understand whether 
malicious input can reach the malloc size variable of an SSL 
server [1] and if sensitive data in memory reaches the network 
through the buffer over read. Second, probing on the spot is risky, 
e.g., anecdotal evidence has shown that it may cause a SCADA 
control system to crash. Lastly, guaranteeing the correctness of the 
patch (e.g., it will not trigger other vulnerabilities) is hard. 

6.2 Probing and patching of an Heartbleed 

bug using live migration based on-the-fly 

emulation 
Leveraging the prototype described in Section 4, we built a simple 
use case. We first run a buggy OpenSSL server in a VM on top of 
QEMU/KVM that only has our heterogeneous migration patches. 
This is used to represent a normal user who does not have any 
specialized analysis capabilities built into the hypervisor. Next, 
we migrate the guest VM into DECAF and verify that the 
OpenSSL server continues to run. Then we load the tracecap 
plugin into DECAF to obtain an instruction trace of the OpenSSL 
process. Using this instruction trace and virtual machine 
introspection (built into DECAF), we locate the Heartbleed bug in 
the OpenSSL server and implement a binary patch. Then we 
implemented a binary patching plugin for DECAF that uses 
DECAF's virtual machine introspection support to locate the 
library of interest (e.g. libssl) and then live patch the library 
instructions in memory. Finally, we migrate the OpanSSL server 
back to QEMU/KVM and confirm that the Heartbleed 
vulnerability has been eliminated. A video demonstration of this 
can be seen at: http://www.cs.fiu.edu/~weijp/MOSE/demo2.html. 

7. CASE STUDY THREE: ON-DEMAND 

SYMBOLIC EXECUTION 

7.1 Motivation 
DSLab's S2E is a platform for analyzing the properties and 
behavior of software systems [2], and one of its key capabilities is 
selective symbolic execution. Since this capability is built on top 

of QEMU, it inherits the slowness of the dynamic binary 
translation that QEMU normally uses. To improve user 
experience especially when large guest VMs are analyzed, S2E 
introduces an experimental feature that supports taking snapshots 
in KVM and later resuming them in QEMU to carry out symbolic 
execution [14]. However, the switching from KVM to S2E is still 
inconvenient: a user is expected to know when a guest VM is 
ready for symbolic execution and manually take the snapshot 
beforehand, which is problematic when the symbolic execution 
starts in the middle of a running application because the user may 
not be able to suspend the VM right before the symbolic 
execution starts. Therefore, we propose an enhancement to S2E 
that detects the need for symbolic execution in KVM and 
automatically live migrate the guest VM to S2E for continued 
symbolic execution. 

7.2 Design and Implementation 
S2E introduces custom instructions as the programming interface 
between applications and the S2E platform: when such 
instructions are emulated by the S2E execution engine, they are 
interpreted as requests for symbolic execution. On non-S2E 
systems, however, such instructions trigger invalid instruction 
exceptions and cause the applications to crash. 

We note that the exceptions caused by S2E custom instructions 
are a good hint that the application needs symbolic execution. 
Therefore, we extend the KVM kernel module to capture such 
exceptions and initiate a live migration from QEMU/KVM to 
S2E. The overall design is similar to Figure 6 except for some 
technical details. For example, we check invalid opcode 
exceptions instead of page fault exceptions, and when an invalid 
opcode exception is encountered we further verify that it is indeed 
caused by an S2E custom instruction (i.e., the opcode of the 
faulting instruction is 0x0f,0x3f), by inspecting the guest 
emulation context. When a S2E instruction is confirmed, we pass 
control back to QEMU, setting the exit reason as 
KVM_EXIT_INTERNAL_ERROR and the sub-error code as 5. 
We also extended QEMU/KVM’s execution engine accordingly 
to initiate a live migration to a S2E platform. 

We have confirmed the feasibility of our approach in two 
experiments. In the first experiment, we ran a simple program (on 
a Windows Virtual Machine) that is instrumented in the source 
code with S2E instructions to inject symbolic values (e.g., by 
calling s2e_make_symbolic).  In the second experiment, we use 
the S2E init_env library and the s2ecmd tool to symbolically (or 
concolically) execute an existing Linux program echo. In both 
cases, we were able to automatically migrate the applications 
(along with the guest VM) from QEMU/KVM to S2E and then 
begin symbolic analysis in S2E. A video demonstration of this as 
well as the source code can be found at: 
http://www.cs.fiu.edu/~weijp/MOSE/demo3.html. 

8. PERFORMANCE EVALUATION 

8.1 Experimental Setup 
For experimental setup we ran QEMU/KVM and DECAF on two 
different computers: QEMU/KVM was on an Intel Core 2 Duo 
running at 2.5 GHz with 1GB of memory, and DECAF was on an 
Intel Core 2 Duo running at 3.0 GHz with 4GB of memory. Each 
computer has an Intel PRO/1000 PCI Express network interface 
card, connected to a common switch. The virtual machine image 
file was stored in a CIFS (Common Internet File System) network 
share mounted in both machines. Therefore, during migration we 



only had to transfer the states of the VM, not the entire image file. 
We installed an Apache web server in the virtual machine, and we 
configured the virtual machine to use DHCP so that during 
migration its IP address does not change, which ensures that after 
migration the web client can reach the Apache server at the same 
IP address, so it does not have to be restarted.  

We adapted a web server benchmark tool 'weighttp' to measure 
the liveness of the Apache server, by continuously downloading a 
1-KB text file from the server and reporting the throughput (in 
KByte/s) every 30 milliseconds. The intuition is that a non-zero 
measurement of the throughput indicates that the server is 
available, while a throughout of zero indicates that the server is 
not available due to migration or server crash. Our main focus was 
to show that our proposed method can recover from server crash 
and take care of existing client connections after the recovery. 

8.2 Downtime during a Normal Migration 
We began our evaluation by measuring the downtime of the 
Apache web server during a normal migration, which indicates 
how fast a virtual machine can be migrated between QEMU/KVM 
and DECAF that run on different hosts. As Figure 7(a) shows, the 
throughput dropped a little when we initiated a migration around 
the 30th second in QEMU/KVM, but it became zero only for 
about 300 ms around the 33rd second and it quickly ramped up 
after the Apache server is resumed in DECAF. The migration 
back to QEMU/KVM shows a similar pattern in terms of the 
throughput. 

8.3 Downtime during a Kernel Panic 
Next we evaluated the effectiveness of our kernel panic recovery 
on the Apache web service. Figure 7(b) shows the throughput 
measurement without our kernel panic recovery. We can see that 
the throughput dropped to zero after the 30th second, when the 
kernel panic was triggered in the virtual machine running on top 
of QEMU/KVM. Figure 7(c) shows the throughput measurement 
with our kernel panic recovery. As we can see, the throughput 
dropped to zero around the 30th second, when the kernel panic 
was triggered in QEMU/KVM. However, the throughput started 
to increase around the 33rd second because our recovery tool had 
automatically migrated the crashed VM to DECAF, recovered it 
from the crash, and resumed its execution, including that of the 
Apache server. Around the 45th second, we migrated the 
recovered VM back to QEMU/KVM. The comparison between 
Figure 7(b) and Figure 7(c) clearly demonstrates the impact of our 
kernel panic recovery on applications like Apache. 

From Figure 7(a) and Figure 7(c), we can see some interesting 
difference surrounding the migration from QEMU/KVM to 
DECAF (i.e., the time window marked “M1”) with respect to the 
Apache's server's throughput. First, in a normal migration, the 
Apache throughput fluctuated below its peak level and dropped to 
zero in 3 seconds, but during a kernel panic recovery, its 
throughput dropped to zero right away. This is because during a 
normal migration, the guest VM's state is first transmitted to the 
destination machine before its execution is fully suspended, which 
means that the Apache server kept servicing the client during the 
VM state transmission but the network traffic due to the VM 
states reduced the available bandwidth to Apache, resulting in 
dropped throughput. On the other hand, when a kernel panic was 
triggered in Figure 7(c), the Apache server immediately stopped 
execution, which caused its throughput to drop to zero. The 
second difference is that the downtime of the Apache server is 

longer during a kernel crash recovery (about 3 seconds) than in a 
normal case (about 300 ms). This is because during the crash 
recovery, the Apache server is suspended during the entire 
migration, whereas it can run at a reduced capacity during a 
normal migration. 

From Figure 7(a) and Figure 7(c) we can also note that the 
Apache server has a higher throughput in DECAF than in 
QEMU/KVM. To verify whether this is true in general, we ran 
netcat [18] in the guest VM to compare the network throughput 
offered by DECAF and QEMU/KVM on the same host (Intel 
Core 2 Duo running at 3.0 GHz with 4GB of memory), and we 
got a send rate of 17.8 Mbps for DECAF and 4.4 Mbps for 
QEMU/KVM, and a receive rate of 27.1 Mbps for DECAF and 
7.1 Mbps for QEMU/KVM. We believe that the lower network 
performance of QEMU/KVM is caused by a large number of VM 
Exits due to network device emulation. VM Exists trigger 
expensive context switches between QEMU/KVM and the host 
kernel. For example, when netcat was run to receive data, the rate 
of VM Exit increased by 34 times (from 725 per second to 25,344 
per second), and when netcat was run to send data, the rate of VM 
Exit increased by 268 times (from 725 per second to 194,725 per 
second). Comparatively, pinging an external host from inside the 
guest VM incurred only a 2.2 fold increase in VM Exit rate (from 
725 per second to 1,613 per second). Therefore, there seems to be 
a strong correlation between the guest VM’s network activities 
and the VM Exit events, and we know that VM Exits incur 
performance overhead. 

9. FUTURE DIRECTIONS 
The successful development of a prototype for live migration 
based demand emulation opens the ground for many useful 
applications. We can apply our architecture to the following usage 
scenarios: 

Scenario 1: Analysis of exploits against a server. When we detect 
the abnormal behavior of a server, it is important to understand 
whether some kind of exploit has happened, especially when a 
zero-day vulnerability is exploited. Using our architecture, we can 
take periodic snapshots and record network traffic (e.g., client 
requests) in QEMU/KVM; when an anomaly is detected, we can 
revert the server to a previous snapshot, live migrate the server to 
DECAF, and replay the network traffic since that snapshot to 
analyze the server’s execution. By doing this, we can perform 
detailed analysis of real exploitations. 

Scenario 2:  Analysis of emulation-resistant malware. Advanced 
malware (e.g., botnets) is capable of detecting whether it is 
running inside an emulator and if so changing its behavior to 
evade detection. Using our architecture, we can live-migrate the 
clone of a potentially compromised server to DECAF, but let the 
original server continue to run in parallel with its clone. In the 
meantime, we can record the network traffic in the original server 
and use it to guide the emulated execution of the server clone in 
DECAF. Since malware in QEMU/KVM is likely to reveal its real 
behavior, the recorded network traffic can contain useful 
information about malware’s logic (e.g., the command and control 
message from a bot master). By replaying such network traffic in 
DECAF, we can trigger the malicious logic in malware and then 
be able to analyze its behavior. 

Another future work is migration across WAN (wide area 
network). We have performed experiments with live-migration 
across WANs. While feasible, the total migration took over one



 

hour of time. How to improve the performance is an area of future 
exploration. 

10. CONCLUSION 
We have proposed the idea of live migration based on-the-fly 
software emulation, which significantly advances the state of the 
art: it is analysis-flexible, supports closed source OSes, and uses 
modern hardware virtualization extensions. We have built a 
prototype based on QEMU/KVM and DECAF. Based on the 
prototype, we construct three use cases (kernel panic triage, 
patching of security vulnerabilities, and on-demand symbolic 
execution) to demonstrate the benefits of our idea. We also 
compare the performance (throughput and downtime) of a web 
server on top of our prototype and with/without the kernel panic 
triage, which shows sub-second interruption of service during live 
migration. 
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