Matcash Family Report

Feng Zhu (fzhu001 @fiu.edu), Jinpeng Wei (weijp @cs.fiu.edu)

1 Malware General Information

Malware Name: Matcash (named by ThreatExpert)

Malware Type: Adware (Adware is any software package which automatically renders advertisements in
order to generate revenue for its author).

File type: PE32 executable (GUI) Intel 80386, for MS Windows

2 Behavior Analysis

When executed, the malware will download a file from ymgq.a[Random Number].wrs.mcboo.com (for
example, ymq.a2000352.wrs.mcboo.com). The downloaded file is saved at the following location:
Jowindir%\17PHolmes[Random Number].exe (for example, 17PHolmes2000352.exe). The malware tries
to execute the downloaded file so it uses the API CreateProcessW to create a process for it. In the API
CreateProcessW, this file will be checked before creating its process. Since this file is an .html file
(although it has an .exe extension), the checking result is STATUS_INVALID_IMAGE_NOT_MZ,
which means that this file does not have the correct format: it does not have an initial MZ [1]. Because the
checking result of this file is STATUS_INVALID_IMAGE_NOT_MZ, CreateProcessW launches
NTVDM (NT Virtual DOS Machine) to execute this file.

The downloaded file, 17PHolmes[Random Number].exe, is a HTML page with a redirect link to
www.aquirethisname.com. This website claims itself as the best place to find premium domain names and
to find the perfect domain name for the visitor’s business.

3 Assembly Code Analysis

To better understand how NTVDM starts when the malware tries to execute downloaded files such as
17PHolmes2000352.exe, we use Ollydbg and IDA disassembler to perform an in-depth analysis. We do
not have source code for kernel32.dll (which contains the code for CreateProcessW) so we can only list
assembly code here. For the functions NtCreateSection, MmCreateSection and MiCreateImageFileMap,
since they belong to WRK kernel and we have their source code, we show the C code.

The code path is demonstrated below, and we start from the call to CreateProcessW with the following
arguments:

IpApplicationName = "C:\WINDOWS\17PHolmes2000352.exe"
IpCommandLine=
"C:\WINDOWS\17PHolmes2000352.exe" 61A847B5BBF72810329B385577FB01FOB3E35B6638993F4661AA4EBD86D67C56389B284534F310"

; The memory address range of kernel32.dll is 7C800000 - 7C8F5FFF

7C802336 mov edi, edi ; Entry of CreateProcessW
7C80235D call CreateProcessinternalWw ; CreateProcessW is a wrapper of CreateProcessinternalW
7C80235D ; Try to create a process for 17PHolmes2000352.exe

7C81979C 68 080A0000 PUSH 0A08 ; Entry of CreateProcessInternalW



7C818FA6
7C818FA8
7C818FAA
7C818FB0O
7C818FB1
7C818FB7
7C818FB8
7C818FBD
7C818FC3
7C818FC4
7C818FCA
7C818FE6
7C818FEC
7C818FF1
7C818FF3
7C818FF4
7C818FF5
7C818FFA
7C819000
7C819001

6A 60

6A 05

8D85 ECF8FFFF
50

8D85 34F8FFFF
50

68 A1001000
8D85 88F9FFFF
50
8B351410807C
FFD6

FFB5 88FOFFFF
68 00000001
6A 10

53

53

68 1FOO0F00
8D85 90F9FFFF
50
FF157012807C

PUSH 60

PUSH 5

LEA EAX,DWORD PTR SS:[EBP-714]
PUSH EAX

LEA EAX,DWORD PTR SS:[EBP-7CC]
PUSH EAX

PUSH 1000A1

LEA EAX,DWORD PTR SS:[EBP-678]
PUSH EAX

MOV ESI,DWORD PTR DS:[<&ntdIl.NtOpenFile> ; Open 17PHolmes2000352.exe and get the file handle
CALL ESI

PUSH DWORD PTR SS:[EBP-678] ; the file handle of 17PHolmes2000352.exe

PUSH 1000000

PUSH 10

PUSH EBX

PUSH EBX

PUSH OF001F

LEA EAX,DWORD PTR SS:[EBP-670]

PUSH EAX

CALL DWORD PTR DS:[<&ntdIl.NtCreateSection> ; in NtCreateSection 17PHolmes2000352.exe is checked via
; its handle and STATUS_INVALID_IMAGE_NOT_MZ (CO00012F) is
; returned

NTSTATUS NtCreateSection (..., __in_opt HANDLE FileHandle){ /* WRK-v1.2\base\ntos\mm\creasect.c */

Status = MmCreateSection (&Section,

DesiredAccess,

ObjectAttributes,

&CapturedsSize,

SectionPageProtection,
AllocationAttributes,

FileHandle,

NULL);

if (INT_SUCCESS(Status)) {

return Status;

Status = ObReferenceObjectByHandle(FileHandle, ..., (PVOID *)&File, NULL);

if (AllocationAttributes & SEC_IMAGE) {

Status = MiCreatelmageFileMap (File, &Segment);

}

if (INT_SUCCESS(Status)) {

return Status;

NTSTATUS MiCreatelmageFileMap (IN PFILE_OBJECT File, OUT PSEGMENT *Segment) /* WRK-v1.2\base\ntos\mm\creasect.c */



DosHeader = (PIMAGE_DOS_HEADER) Base;

/!

// Check to determine if this is an NT image (PE format) or
// a DOS image, Win-16 image, or 0S/2 image. If the image is
// not NT format, return an error indicating which image it
// appears to be.

/!

if (DosHeader->e_magic != IMAGE_DOS_SIGNATURE) {

Status = STATUS_INVALID_IMAGE_NOT_MZ;

goto BadPelmageSegment;

return Status;

7C819007

7C828B36
7C828B3B
7C828B3D
7C828B43
7C828B44
7C828B4A
7C828B4B
7C828B50

7C842B7F
7C842B80
7C842B86
7C842B87
7C842B8D
7C842B8D
7C818FA6
7C818FA8
7C818FAA
7C818FBO
7C818FB1
7C818FB7
7C818FB8
7C818FBD
7C818FC3
7C818FC4
7C818FCA
7C81927B
7C819282
7C819286
7C819289
7C81928B
7C81928D
7C819293
7C819299
7C81929F
7C8192A0
7C8192A6
7C8192AC
7C8192B2

8BF8

OF8C ESFA0000

B8 2F0100CO
3BF8

OF85 6705FFFF
50

8D85 48F9FFFF
50

E8 1F000000
85C0

50

8D85 28F9FFFF
50

FFB5 BOF8FFFF
E8 0C650200

6A 60

6A 05

8D85 ECF8FFFF
50

8D85 34F8FFFF
50

68 A1001000
8D85 88F9FFFF
50

8B35 1410807C
FFD6

66:8B85 ECF7FFFF

66:2D 4C01
66:F7D8

1BCO

F7D0

2385 74F9FFFF
8985 00F7FFFF
FFB5 1CF7FFFF
53

FFB5 30F7FFFF
FFB5 SOF9FFFF
FFB5 FCF7FFFF
83CE FF

MOV EDI,EAX
JL kernel32.7C828B36

MOV EAX,C000012F

CMP EDI,EAX

INZ kernel32.7C8190AA

PUSH EAX

LEA EAX,DWORD PTR SS:[EBP-6B8]
PUSH EAX

CALL kernel32.7C828B6F

TEST EAX,EAX

PUSH EAX

LEA EAX,DWORD PTR SS:[EBP-6D8]
PUSH EAX

PUSH DWORD PTR SS:[EBP-750]
CALL kernel32.7C86909E

PUSH 60

PUSH 5

LEA EAX,DWORD PTR SS:[EBP-714]
PUSH EAX

LEA EAX,DWORD PTR SS:[EBP-7CC]
PUSH EAX

PUSH 1000A1

LEA EAX,DWORD PTR SS:[EBP-678]
PUSH EAX

; return from NtCreateSection
; EAX is CO00012F (IMAGE_DOS_SIGNATURE); CO00012F->EDI

; Compare the return value of NtCreateSection with CO00012F
; Since EDI==EAX, do not jump

; "C:\WINDOWS\17PHolmes2000352.exe"

; call BaselsDosApplication

; EAX is 1, meaning the malware is recognized as a DOS
; application

; call BaseCreateVDMEnvironment
; create a new environment for VDM

MOV ESI,DWORD PTR DS:[<&ntdIl.NtOpenFile> ; Open ntvdm.exe for execute access

CALLESI

MOV AX,WORD PTR SS:[EBP-814]
SUB AX,14C

NEG AX

SBB EAX,EAX

NOT EAX

AND EAX,DWORD PTR SS:[EBP-68C]
MOV DWORD PTR SS:[EBP-900],EAX

PUSH DWORD PTR SS:[EBP-8E4]
PUSH EBX

PUSH DWORD PTR SS:[EBP-8D0]
PUSH DWORD PTR SS:[EBP-670]
PUSH DWORD PTR SS:[EBP-804]
OR ESI,FFFFFFFF



7C8192B5
7C8192B6
7C8192BC
7C8192C1
7C8192C7
7C8192C8

56

FFB5 C8F7FFFF
68 FFOF1F00
8D85 94F9FFFF
50

FF15 5014807C

4 Conclusion

We also analyze the other Matcash samples that trigger NTVDM and find that they work in a similar
fashion as the one that we discussed above. In summary, these Matcash samples connect to a remote site
(ymqg.a[Random Number].wrs.mcboo.com) to download and execute 17PHolmes[Random Number].exe,

PUSH ESI

PUSH DWORD PTR SS:[EBP-838]

PUSH 1FOFFF

LEA EAX,DWORD PTR SS:[EBP-66C]

PUSH EAX

CALL DWORD PTR DS:[<&ntdIl.NtCreateProcess> ; Create Process for ntvdm.exe

which leads to the launching of NTVDM as we have discussed in Section 2.

In our opinion, one possible reason why these samples try to execute an .html file is that at the time when
they were developed, the downloaded file was indeed an executable file that could automatically deliver
advertisement when executed; but the remote site has changed ever since, so the downloaded file becomes
an .html file now. However, these Matcash samples still try to execute the downloaded file, blindly

assuming that it is the expected one.

A side note of this analysis is: a malware writer can be sloppy because he/she does not bother to verify

whether the downloaded file has the right format.

5 References

[1] MSDN. http://msdn.microsoft.com/en-us/library/cc704588.aspx



