
Protecting Control Flow Confidentiality in Cloud-based Computation
Yongzhi Wang, Jinpeng Wei

Florida International University

Motivation

Solution: Runtime Control Flow Obfuscation

Idea:

• Transform each original program into a public program and a
private program.

• Public program: execute on the public cloud; perform most
execution except for evaluating predicates of branch statements.

• Private program: execute on private cloud; evaluate predicates.

Proposed Techniques:

• Replace predicates of the branch statements in the original
program with control flow query (CFQ) invocations to the
private program.

• Insert indistinguishable fake branch statements in the original
program to raise the bar for the attacker to understand the
algorithm’s control flow.

• Maintain a continuous cache to reduce the cost of cross-cloud
communication.

Experiments Result

• For each CFQ(exp, Ln) on the public cloud, maintain a
true_bound and a false_bound and implement a public
program version.

• For each invocation of CFQ(exp, Ln) on the public program,
If exp>true_bound, the public program version returns true.
If exp<false_bound, the public version returns false.
Otherwise, invoke on the real CFQ function in the private
program.

Transform original predicates

Continuous Cache

• Text

• Text

Insert fake branch statements

Yongzhi Wang, Jinpeng Wei. “Toward Protecting Control Flow Confidentiality in Cloud-based
Computation”. Elsevier Journal of Computers & Security (in press)

• More and more innovative algorithmic computations are being
deployed to the public cloud in important applications (e.g., business
analytics, geospatial mapping/searching, bioinformatic analysis, and
image processing).

• Control flow, which decides the sequence of instructions (e.g.,
statements) to be executed, directly reflects the algorithm of a
program.

• How to protect control flow confidentiality (and thus the
confidentiality of the algorithm) of an outsourced program deployed
to the public cloud?

Original

Program

Private

program

Public

program

1.Transform

Offline

2. Deploy to

public cloud

2. Deploy to

private cloud

Public Cloud

Private Cloud

5. Cache Hit?

3. Program

Execution

6. Remote

CFQ

Function

No

Yes 4. Control

Flow Query

Normalized inequality:
x+5>y

Select predicate secret as 23, reorganize the inequality:
x-y+28>23

Transform to CFQ function call in public program:
CFQ(x-y+28, L1)

Generate private program with
 call site identifier,
relational operator

and predicate secret:
<L1: ">" :23>

Original Predicate
y<x+5

//Private program
CFQ(pred_exp_val, call_site_id){
 switch(call_site_id){
 case "L1":
 return pred_exp_val>23;

 }
}

Invoke

L8:

L9:

//Original program

if(x>6){

if(y<45){

z = x+y;

a++;

}

}

L7:

L8:

L10

//public program

If(x>6){

if(y<45){

if(CFQ(x-y+48,L7))

z=x+y;

else goto L10;

a++;

//private

//program

<L7:”>”:7>

Variable Range Eval.: (x>6), (45>y)

Expression Aggregation: x+45>6+y

Expression Relaxation: x+45+2>6+y

Choose Predicate Secret (7): x-y+48>7

Transform to CFQ
predicate;

Insert fake branch
statement

Predicate Normalization

Arithmetic Manipulation

Condition Substitution

Predicate Secret-Infinity +Infinityfalse_bound true_bound

Returns trueReturns false

Execution time of MapReduce jobs with different obfuscation degree d
• The experiments are performed on a hybrid cloud (a private cloud and Amazon Elastic MapReduce).

• Obfuscation degree: The probability of inserting a fake branch statement before each original statement

RCFO Example

 boolean computeConvergence(

 DistanceMeasure measure,

 double convergenceDelta) {

 Vector centroid=computeCentroid();

 double distance=measure.distance(

 centroid.getLengthSquared(),

 centroid, getCenter());

L1: if (distance <= CONVERGENCEDELTA)

 //CONVERGENCEDELTA is a constant

 return true;

 else

 return false;

 }

 boolean computeConvergence(

 DistanceMeasure measure) {

 Vector centroid=computeCentroid();

 double distance = measure.distance(

 centroid.getLengthSquared(),

 centroid, getCenter());

L1: if(CFQ(0.05-distance,L1))

 //CONVERGENCEDELTA is now hidden

 //in the private program

 return true;

 else

 return false;

 }

The original function of

the K-means clustering

algorithm

The function after RCFO:

the constant variable

CONVERGENCEDELTA

is hidden in the private

program.

