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Motivation

Solution: Runtime Control Flow Obfuscation

Idea: 

• Transform each original program into a public program and a 
private program.

• Public program: execute on the public cloud; perform most 
execution except for evaluating predicates of branch statements.

• Private program: execute on private cloud; evaluate predicates.

Proposed Techniques:

• Replace predicates of the branch statements in the original 
program with control flow query (CFQ) invocations to the 
private program.

• Insert indistinguishable fake branch statements in the original 
program to raise the bar for the attacker to understand the 
algorithm’s control flow.

• Maintain a continuous cache to reduce the cost of cross-cloud 
communication.

Experiments Result

• For each CFQ(exp, Ln) on the public cloud, maintain a 
true_bound and a false_bound and implement a public 
program version.

• For each invocation of CFQ(exp, Ln) on the public program, 
If exp>true_bound, the public program version returns true. 
If exp<false_bound, the public version returns false. 
Otherwise, invoke on the real CFQ function in the private 
program.
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• More and more innovative algorithmic computations are being 
deployed to the public cloud in important applications (e.g., business 
analytics, geospatial mapping/searching, bioinformatic analysis, and 
image processing).

• Control flow, which decides the sequence of instructions (e.g., 
statements) to be executed, directly reflects the algorithm of a 
program.

• How to protect control flow confidentiality (and thus the 
confidentiality of the algorithm) of an outsourced program deployed 
to the public cloud?
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Normalized inequality: 
x+5>y

Select predicate secret as 23, reorganize the inequality:
x-y+28>23

Transform to CFQ function call in public program:
CFQ(x-y+28, L1)

Generate private program with
 call site identifier, 
relational operator 

and predicate secret: 
<L1: ">" :23>

Original Predicate
y<x+5

//Private program
CFQ(pred_exp_val, call_site_id){
    switch(call_site_id){
        case "L1":
            return pred_exp_val>23;
       ......
    }
}

Invoke

L8:

L9:

//Original program

if(x>6){

if(y<45){

z = x+y;

a++;

}

}

L7:

L8:

L10

//public program

If(x>6){

if(y<45){

if(CFQ(x-y+48,L7))

z=x+y;

else goto L10;

a++;

//private

//program

<L7:”>”:7>

Variable Range Eval.: (x>6), (45>y)

Expression Aggregation: x+45>6+y

Expression Relaxation: x+45+2>6+y

Choose Predicate Secret (7): x-y+48>7

Transform to CFQ 
predicate;

Insert fake branch 
statement

Predicate Normalization

Arithmetic Manipulation

Condition Substitution

Predicate Secret-Infinity +Infinityfalse_bound true_bound

Returns trueReturns false

  

  

 

Execution time of MapReduce jobs with different obfuscation degree d
• The experiments are performed on a hybrid cloud (a private cloud and Amazon Elastic MapReduce).

• Obfuscation degree: The probability of inserting a fake branch statement before each original statement

RCFO Example

  boolean computeConvergence( 

        DistanceMeasure measure,  

        double convergenceDelta) { 

    Vector centroid=computeCentroid(); 

    double distance=measure.distance( 

        centroid.getLengthSquared(),  

        centroid, getCenter()); 

L1: if (distance <= CONVERGENCEDELTA)  

        //CONVERGENCEDELTA is a constant 

        return true; 

    else 

        return false; 

  } 

  boolean computeConvergence( 

        DistanceMeasure measure) { 

    Vector centroid=computeCentroid(); 

    double distance = measure.distance( 

        centroid.getLengthSquared(), 

        centroid, getCenter()); 

L1: if(CFQ(0.05-distance,L1)) 

        //CONVERGENCEDELTA is now hidden  

        //in the private program 

        return true; 

    else 

        return false; 

  } 

 

The original function of 

the K-means clustering 

algorithm

The function after RCFO: 

the constant variable 

CONVERGENCEDELTA 

is hidden in the private 

program.


