
Software Persistent Memory

Jorge Guerra, Leonardo Mármol, Daniel Campello, Carlos Crespo, Raju Rangaswami, Jinpeng Wei

Florida International University

{jguerra, lmarm001, dcamp020, ccres008, raju, weijp}@cs.fiu.edu

Abstract

Persistence of in-memory data is necessary for many

classes of application and systems software. We pro-

pose Software Persistent Memory (SoftPM), a newmem-

ory abstraction which allows malloc style allocations

to be selectively made persistent with relative ease.

Particularly, SoftPM’s persistent containers implement

automatic, orthogonal persistence for all in-memory

data reachable from a developer-defined root structure.

Writing new applications or adapting existing applica-

tions to use SoftPM only requires identifying such root

structures within the code. We evaluated the correct-

ness, ease of use, and performance of SoftPM using

a suite of microbenchmarks and real world applica-

tions including a distributedMPI application, SQLite (an

in-memory database), and memcachedb (a distributed

memory cache). In all cases, SoftPM was incorporated

with minimal developer effort, was able to store and re-

cover data successfully, and provide significant perfor-

mance speedup (e.g., up to 10X for memcachedb and

83% for SQLite).

1 Introduction

Persistence of in-memory data is necessary for many

classes of software including metadata persistence in

systems software [21, 24, 32, 33, 35, 38, 40, 47, 48, 52,

59], application data persistence in in-memory databases

and key-value stores [3, 5], and computational state per-

sistence in high-performance computing (HPC) applica-

tions [19, 44]. Currently such software relies on the

persistence primitives provided by the operating system

(file or block I/O) or a database system. When using

OS primitives, developers need to carefully track persis-

tent data structures in their code and ensure the atomic-

ity of persistent modifications. Additionally they are re-

quired to implement serialization/deserialization for their

structures, potentially creating and managing additional

metadata whose modifications must also be made con-

sistent with the data they represent. On the other hand,

using databases for persistent metadata is generally not

an option within systems software, and when their use is

possible, developers must deal with data impedance mis-

match [34]. While some development complexity is al-

leviated by object-relation mapping libraries [10], these

translators increase overhead along the data path. Most

importantly, all of these solutions require substantial ap-

plication involvement for making data persistent which

ultimately increases code complexity affecting reliabil-

ity, portability, and maintainability.

In this paper, we present Software Persistent Mem-

ory (SoftPM), a lightweight persistent memory abstrac-

tion for C. SoftPM provides a novel form of orthogo-

nal persistence [8], whereby the persistence of data (the

how) is seamless to the developer, while allowing effort-

less control over when and what data persists. To use

SoftPM, developers create one or more persistent con-

tainers to house a subset of in-memory data that they

wish to make persistent. They only need to ensure that

a container’s root structure houses pointers to the data

structures they wish to make persistent (e.g. the head of

a list or the root of a tree). SoftPM automatically dis-

covers data reachable from a container’s root structure

(by recursively following pointers) and makes all new

and modified data persistent. Restoring a container re-

turns the container root structure from which all origi-

nally reachable data can be accessed. SoftPM thus ob-

viates the need for explicitly managing persistent data

and places no restrictions on persistent data locations in

the process’ address space. Finally, SoftPM improves

I/O performance by eliminating the need to serialize data

and by using a novel chunk-remapping technique which

utilizes the property that all container data is memory

resident and trades writing additional data for reducing

overall I/O latency.

We evaluated a Linux prototype of SoftPM for correct-

ness, ease of use, and performance using microbench-

marks and three real world applications including a re-

coverable distributed MPI application, SQLite [5] (a

serverless database), and memcachedb (a distributed

memory cache). In all cases, we could integrate SoftPM

with little developer effort and store and recover appli-

cation data successfully. In comparison to explicitly

managing persistence within code, development com-

plexity substantially reduced with SoftPM. Performance

improvements were up to 10X for memcachedb and

83% for SQLite, when compared to their native, opti-

mized, persistence implementations. Finally, for a HPC-

class matrix multiplication application, SoftPM’s asyn-

1

Function Description

int pCAlloc(int magic, int cSSize, void ∗∗ cStruct) create a new container; returns a container identifier

int pCSetAttr(int cID, struct cattr ∗ attr) set container attributes; reports success or failure

struct cattr ∗ pCGetAttr(int magic) get attributes of an existing container; returns container attributes

void pPoint(int cID) create a persistence point asynchronously

int pSync(int cID) sync-commit outstanding persistence point I/Os; reports success or failure

int pCRestore(int magic, void ∗∗ cStruct) restore a container; populates container struct, returns a container identifier

void pCFree(int cID) free all in-memory container data

void pCDelete(int magic) delete on-disk and in-memory container data

void pExclude(int cID, void ∗ ptr) do not follow pointer during container discovery

Table 1: The SoftPM application programmer interface.

App1

App2

Appn

A

P

I

LIMA

Container

Manager

Discovery &

Allocator

Write

Handler
Flusher

SID

Chunk

Remapper

Transaction

Handler

Network

memcachedb

PFS module

SSD module

Cache module

HDD module

Figure 1: The SoftPM architecture.

Container Root

Structure

Usage

struct c root

{
id = pCAlloc(m,sizeof(*cr),&cr);

list t *l; cr->l = list head;

} *cr; pPoint(id);

Figure 2: Implementing a persistent list. pCAlloc

allocates a container and pPointmakes it persistent.

chronous persistence feature provided performance at

close to memory speeds without compromising data con-

sistency and recoverability.

2 SoftPM Overview

SoftPM implements a persistent memory abstraction

called container. To use this abstraction, applications

create one or more containers and associate a root struc-

ture with each. When the application requests a persis-

tence point, SoftPM calculates a memory closure that

contains all data reachable (recursively via pointers)

from the container root, and writes it to storage atomi-

cally and (optionally) asynchronously.

The container root structure serves two purposes: (i)

it frees developers from the burden of explicitly track-

ing persistent memory areas, and (ii) it provides a simple

mechanism for accessing all persistent memory data af-

ter a restore operation. Table 1 summarizes the SoftPM

API. In the simplest case, an application would create

one container and create persistence points as necessary

(Figure 2). Upon recovery, a pointer to a valid container

root structure is returned.

2.1 System Architecture
The SoftPM API is implemented by two components:

the Location Independent Memory Allocator (LIMA),

and the Storage-optimized I/O Driver (SID) as depicted

in Figure 1. LIMA’s container manager handles con-

tainer creation. LIMA manages the container’s persis-

tent data as a collection of memory pages marked for

persistence. When creating a persistence point, the dis-

covery and allocator modulemoves any data newlymade

reachable from the container root structure and located in

volatile memory to these pages. Updates to these pages

are tracked by the write handler at the granularity of

multi-page chunks. When requested to do so, the flusher

creates persistence points and sends the dirty chunks to

the SID layer in an asynchronous manner. Restore re-

quests are translated into chunks requests for SID.

The SID layer atomically commits container data to

persistent storage and tunes I/O operations to the under-

lying storage mechanism. LIMA’s flusher first notifies

the transaction handler of a new persistence point and

submits dirty chunks to SID. The chunk remapper im-

plements a novel I/O technique which uses the property

that all container data is memory resident and trades writ-

ing additional data for reducing overall I/O latency. We

designed and evaluated SID implementations for hard

drive, SSD, and memcached back-ends.

3 LIMA Design

Persistent containers build a foundation to provide seam-

less memory persistence. Container data is managed

within a contiguous container virtual address space, a

self-describing unit capable of being migrated across

systems and applications running on the same hardware

architecture. The container virtual address space is com-

posed solely of pages marked for persistence including

those containing application data and others used to store

LIMA metadata. This virtual address space is mapped to

2

Container 0 Container 1 Volatile Page Unused Page

Container

Page Table

Chunk

Ind. Map

LIMA Virtual Volume

...

<container>

...

...

SID Physical Volume

<chunk>

...

Process Virtual Address Space

<page>

Figure 3: Container virtual address spaces in rela-

tion to process virtual address space and LIMA/SID

volumes. The container virtual address space is chunked,

containing a fixed number of pages (three in this case).

logically contiguous locations within the virtual volume

managed by LIMA. SID remaps LIMA virtual (storage)

volumes at the chunk granularity to the physical (stor-

age) volume it manages. This organization is shown in

Figure 3. The indirection mechanism implemented by

SID simplifies persistent storage management for LIMA

which can use a logically contiguous store for each con-

tainer.

3.1 Container Manager
The container manager implements container allocation

and restoration. To allocate a new container (pCAlloc),

an in-memory container page table, that manages both

application persistent data and LIMA metadata, is first

initialized. Next, the container root structure and other

internal LIMA metadata structures are initialized to be

managed via the container page table.

To restore a container, an in-memory container in-

stance is created and all container data and metadata

loaded. Since container pages would likely be loaded

into different portions of the process’ address space, two

classes of updates must be made to ensure consistency of

the data. First, the container metadata must be updated

to reflect the new in-memory data locations after the re-

store operation. Second, all memory pointers within data

pages need to be updated to reflect the new memory ad-

dresses (pointer swizzling). To facilitate this, pointer lo-

cations are registered during process execution; we dis-

cuss automatic pointer detection in §5.

3.2 Discovery and Memory Allocation
A core feature of SoftPM is its ability to discover con-

tainer data automatically. This allows substantial control

over what data becomes persistent and frees the devel-

oper from the tedious and error-prone task of precisely

specifying which portions of the address space must be

allocated persistently. SoftPM implements automatic

container discovery and persistent memory allocation by

automatically detecting pointers in process memory, re-

cursively moving data reachable from the container root

to the container data pages, and fixing any back refer-

ences (other pointers) to the data that was moved. In

our implementation, this process is triggered each time

a persistence point is requested by the application and is

executed atomically by blocking all threads of a process

only until the container discovery phase is completed;

disk I/O is performed asynchronously (§3.4).

To make automatic container discovery possible,

SoftPM uses static analysis and automatic source trans-

lation to register both pointers and memory allocation

requests (detailed in §5). At runtime, pointers are added

either to a persistent pointer set or a volatile pointer set

as appropriate, and information about all memory allo-

cations is gathered. Before creating a persistence point,

if a pointer in the persistent pointer set (except those ex-

cluded using pExclude) references memory outside the

container data pages, the allocation containing the ad-

dress being referenced is moved to the persistent mem-

ory region. Forward pointers contained within the moved

data are recursively followed to similarly move other new

reachable data using an edge-marking approach [30]. Fi-

nally, back references to all the data moved are updated.

This process is shown in Figure 4. There are two spe-

cial cases for when the target is not within a recognized

allocation region. If it points to the code segment (e.g.

function pointers), the memory mapped code is regis-

tered so that we can “fix” the pointer on restoration. Oth-

erwise, the pointer metadata is marked so that its value

is set to NULL when the container gets restored; this

allows SoftPM to correctly handle pointers to OS state

dependent objects such as files and sockets within stan-

dard libraries. If allocations made by library code are

required to be persistent, then the libraries must also

be statically translated using SoftPM; the programmer

is provided with circumstantial information to help with

this. In many cases, simply reinitializing the library upon

restoration is sufficient, for instance, we added one extra

line in SQLite (see § 6.3.3) for library re-initialization.

3.3 Write Handler

To minimize disk I/O, SoftPM commits only modified

data during a persistence point. The write handler is re-

sponsible for tracking such changes. First, sets of con-

tiguous pages in the container virtual address space are

grouped into fixed-size chunks. At the beginning of a

persistence point, all container data and metadata pages

are marked read-only. If any of these pages are subse-

quently written into, two alternatives arise when hand-

ing the fault: (i) there is no persistence point being cre-

ated currently – in this case, we allow the write, mark

the chunk dirty, and its pages read-write. This ensures at

most one write page fault per chunk between two consec-

3

(a) Start (b) Copy (c) Fix pointer (d) Add pointers (e) Repeat (f) Fix references

Figure 4: Container Discovery. Grey boxes indicate freed memory.

utive persistence points. (ii) there is a persistence point

being created currently – then we check if the chunk has

already been made persistent. If so, we simply proceed

as in the first case. If it has not yet been made persistent,

a copy of the chunk is first created to be written out as

part of the ongoing persistence point, while write to the

original chunk is handled as in the first case.

3.4 Flusher

Persistence points are created asynchronously (via

pPoint) as follows. First, the flusher waits for previous

persistence points for the same container to finish. It then

temporarily suspends other threads of the process (if any)

and marks all the pages of the container as read-only. If

no chunks were modified since the previous persistence

point, then no further action is taken. If modifications ex-

ist, the flusher spawns a new thread to handle the writing,

sets the state of the container to persistence point commit,

and returns to the caller after unblocking all threads. The

handler thread first identifies all the dirty chunks within

the container and issues write operations to SID. Once

all the chunks are committed to the persistent store, SID

notifies the flusher. The flusher then reverts the state of

the container to indicate that persistence point has been

committed.

4 SID Design

LIMA maps chunks and containers to its logical volume

statically and writes out only the modified chunks during

persistence points. If a mechanical disk drive is used di-

rectly to store this logical volume, I/O operations during

a persistence point can result in large seek and rotational

delay overheads due to fragmented chunk writes within

a single container; if multiple containers are in use si-

multaneously, the problem compounds causing disk head

movement across multiple container boundaries. If a

solid-state drive (SSD) were used as the persistent store,

the LIMA volume layout will result in undesirable ran-

dom writes to the SSD that is detrimental to both I/O

performance and wear-leveling [22, 31]. The comple-

mentary requirement of ensuring atomicity of all chunk

writes during a persistence point must be addressed as

well. The SID component of SoftPM is an indirection

layer below LIMA and addresses the above concerns.

4.1 SID Basics

SID divides the physical volume into chunk-sized units

and maps chunks in the LIMA logical volume to phys-

ical volume locations for I/O optimization. The chunk

remapper utilizes the property that all container data

is memory resident and trades writing additional data

(chunk granularity writes) for reducing I/O latency using

device-specific optimizations.

Each physical volume stores volume-level SID meta-

data at a fixed location. This metadata includes for each

container the address of a single physical chunk which

stores two of the most recent versions of metadata for

the container to aid crash recovery (elaborated later). To

support chunk indirection, SID maintains a chunk indi-

rection map as part of the container metadata. Finally,

SID also maintains both an in-memory and on-disk per-

container free chunk bitmap to locate the chunks utilized

by a container. We chose to store per-container free

chunk bitmaps to make each container self-describing

and as a simple measure to eliminate race conditions

when persisting multiple containers simultaneously.

During SID initialization, the free chunk bitmaps

for each container stored on the physical volume are

read into memory. An in-memory global free chunk

bitmap obtained by merging the per-container free chunk

bitmaps is used to locate free chunks in the physical vol-

ume quickly during runtime.

Atomic Persistence. To ensure atomicity of all chunk

writes within a persistence point, SID uses persistence

version numbers. When SID receives a request to create

a persistence point, it goes through several steps in se-

quence. First, it writes all the dirty data chunks; chunks

are never updated in place to allow recovery of the pre-

vious version of the chunks in case the persistence oper-

ation cannot be completed. Once the data chunk writes

have all been acknowledged, SID writes the updated free

chunk bitmap. Finally, it writes the container’s metadata.

This metadata includes, the chunk indirection map, the

location of the newly written free chunk bitmap, and a

(monotonically increasing) version number to uniquely

identify the persistence point. Writing the last block of

the metadata (the version number) after an I/O barrier

commits the persistence point to storage; we reasonably

assume that this block gets written to the storage device

atomically.

4

Recovery. SID recovers the same way after both nor-

mal shutdowns and crashes. In either case, it identifies

the most recent metadata for each container by inspect-

ing their version numbers. It then reads the per-container

free chunk bitmaps, and builds the global free chunk

bitmap by merging all per-container bitmaps. When the

application requests to restore a container, the most re-

cent version of the chunk indirection map is used to re-

construct the container data in memory.

4.2 Device-specific optimizations

Disk Drives. Since sequential access to disk drives is

orders of magnitude more efficient than random, we de-

signed a mechanical disk SID driver to employ mostly-

sequential chunk layout. The design assumes that the

storage device will be performance rather than capacity

bound, justifying a fair degree of space over-provisioning

for the SID physical volume. Every chunk is written to

the nearest free location succeeding the previously writ-

ten location, wrapping around in a circular fashion. The

greater the over-provisioning of the SID physical vol-

ume, the higher the probability of finding an adjacent

free chunk. For instance, a 1.5X over-provisioning of

capacity will result in every third chunk being free on

average. Given sufficient outstanding chunk requests in

the disk queue at any time, chunks can be written with

virtually no seek overhead and minimum rotational de-

lay. Reclaiming free space is vastly simpler than a log-

structured design [49] or that of other copy-on-write sys-

tems like WAFL [28] because (i) the design is not strictly

log-structured and does not requiremultiple chunkwrites

to be sequential, and (ii) reclaiming obsolete chunks is

as simple as updating a single bit in the freespace bitmap

without the need for log cleaning or garbage collection

that can affect performance.

Flash drives. An SSD’s logical address space is orga-

nized into erase units which were hundreds of kilobytes

to a few megabytes in size for the SSD units we tested.

If entire erase units are written sequentially, free space

can be garbage collected using inexpensive switch merge

operations rather than more expensive full merge opera-

tions that require data copying [31]. SID writes to the

SSD space one erase unit at a time by tuning its chunk

size to a multiple of the erase unit size. The trade-off be-

tween the availability of free chunks and additional ca-

pacity provisioning follows the same arguments as those

for disk drives above.

5 Pointer Detection

As discussed in §3, LIMAmust track pointers in memory

for automatic container discovery and updating pointer

values during container restoration. The life-cycle of a

pointer can be defined using the following stages: (i) al-

location: when memory to store the pointer is allocated,

(ii) initialization: when the value of the pointer is initial-

ized, (iii) use: when the pointer value is read or written,

and (iv) deallocation: when the memory used to store the

pointer is freed. Note that, a pointer is always associated

with an allocation. In SoftPM, we detect pointers at ini-

tialization, both explicitly (via assignment) or implicitly

(via memory copying or reallocation). Hence, if pro-

grams make use of user-defined memory management

mechanisms (e.g., allocation, deallocation, and copy),

these must be registered with SoftPM to be correctly ac-

counted for.

SoftPM’s pointer detection works in two phases. At

compile time, a static analyzer based on CIL (C Interme-

diate Language) [43] parses the program’s code looking

for instructions that allocate memory or initialize point-

ers. When such instructions are found, the analyzer in-

serts static hints so that these operations are registered by

the SoftPM runtime. At runtime, SoftPM maintains an

allocation table with one entry per active memory allo-

cation. Each entry contains the address of the allocation

in the process’ address-space, size, and a list of point-

ers within the allocation. Pointers are added to this list

upon initialization which can be done either explicitly or

implicitly. A pointer can be initialized explicitly when it

appears as an l-value of an assignment statement. Sec-

ond, during memory copying or moving, any initialized

pointers present in the source address range are also con-

sidered as implicitly initialized in the destination address

range. Additionally, the source allocation and pointers

are deregistered on memory moves. When memory gets

deallocated, the entry is deleted from the allocation table

and its pointers deregistered.

Notes. Since SoftPM relies on static type information

to detect pointers, it cannot record integers that may be

(cast and) used as pointers by itself. However, develop-

ers can insert static hints to the SoftPM runtime about the

presence of additional “intentionally mistyped” pointers

to handle such oddities. Additionally, SoftPM is agnos-

tic to the application’s semantics and it is not intended to

detect arbitrary memory errors. However, SoftPM itself

is immune to most invalid states. For example, SoftPM

checks whether a pointer’s target is a valid region as per

the memory allocation table before following it when

computing the memory closure during container discov-

ery. This safeguard avoids bloating the memory closure

due to “rogue” pointers. We discuss this further detail in

§ 8.

Related work. Pointer detection is an integral part of

garbage collectors [58]. However, for languages that

are not strongly typed, conservative pointer detection is

used [12]. This approach is unsuitable for SoftPM since

it is necessary to swizzle pointers. To the best of our

knowledge, the static-dynamic hybrid approach to exact

5

pointer detection presented in this paper, is the first of

its kind. Finally, although pointer detection seems simi-

lar to points-to analysis [27], these are quite different in

scope. The former is concerned about if a given memory

location contains a valid memory address, while the lat-

ter is concerned about exactly which memory addresses

a memory location can contain.

6 Evaluation

Our evaluation seeks to address the correctness, ease of

use, and performance implications of using SoftPM. We

compare SoftPM to conventional solutions for persis-

tence using a variety of different application benchmarks

and microbenchmarks. In cases where the application

had a built-in persistence routine, we compared SoftPM

against it using the application’s default configuration.

Where such an implementation was not available, we

used the TPL serialization library [6] v1.5 to implement

the serialization of data structures. All experiments were

done on one or more 4-Core AMD Opteron 1381 with

8 GB of RAM using WDC WD5002ABYS SATA and

MTRON 64GB SSD drives running Linux 2.6.31.

6.1 Workloads
We discuss workloads that are used in the rest of this

evaluation and how we validated the consistency of per-

sistent containers stored using SoftPM in each case.

Data Structures. For our initial set of experiments we

used the DragonFly BSD [1] v2.13.0 implementation of

commonly used data structures including arrays, lists,

trees, and hashtables. We populated these with large

number of entries, queried, and modified them, creating

persistence points after each operation.

Memcachedb [3]. A persistent distributed cache based

on memcached [2] which uses Berkeley DB (BDB) [45]

v4.7.25 to persistently store elements of the cache. Mem-

cachedb v1.2.0 stores its key-value pairs in a BDB

database, which provides a native persistent key value

store by using either a btree or a hash table. We mod-

ified memcachedb to use a hash table which we make

persistent using SoftPM instead of using BDB, and com-

pared its performance to the native version using de-

fault configurations of the software. To use SoftPM with

memcachedb, we modified the file which interfaced with

BDB, reducing the LOC from 205 to 40. The workload

consisted of inserting a large number of key-value pairs

into memcachedb and performing a number of lookups,

inserts, and deletes of random entries, creating persis-

tence points after each operation.

SQLite [5]. A popular serverless database system with

more than 70K LOC. We modified it to use SoftPM

for persistence and compared it against its own persis-

tence routines. SQLite v3.7.5 uses a variety of complex

data structures to optimize inserts and queries among

other operations; it also implements and uses a custom

slab-based memory allocator. A simple examination of

the SQLite API revealed that all the database metadata

and data is handled through one top-level data structure,

called db. Thus, we created a container with just this

structure and excluded an incorrectly detected pointer

resulting from casting an int as a void*. In total,

we added 9 LOC to make the database persistent using

SoftPM which include a few more code to re-initialize a

library.

MPIMatrix Multiplication. A recoverable parallel ma-

trix multiplication that uses Open MPI v1.3.2 and check-

points state across processes running on multiple ma-

chines.

6.2 Correctness Evaluation
To evaluate the correctness of SoftPM for each of the

above applications, we crashed processes at random ex-

ecution points and verified the integrity of the data when

loaded from the SoftPM containers. We then compared

what was restored from SoftPM to what was loaded from

the native persistence method (e.g. BDB or file); in all

cases, the contents were found to be equal. Finally, given

that we were able to examine and correctly analyze com-

plex applications such as SQLite with a large number of

dynamically allocated structures, pointers, and a custom

memory allocation implementation, we are confident that

our static and dynamic analysis for pointer detection is

sound.

6.3 Case Studies
In this section, we perform several case studies including

(i) a set of SoftPM-based persistent data structures, (ii)

an alternate implementation of memcachedb [3] which

uses SoftPM for persistence, (iii) a persistent version of

SQLite [5], a serverless database based on SoftPM, and

(iv) a recoverable parallel matrix multiplication applica-

tion that uses MPI.

6.3.1 Making Data Structures Persistent

We examined several systems that require persistence of

in-memory data and realized that these systems largely

used well-known data structures to store their persistent

data such as arrays, lists, trees, and hashtables. A sum-

mary of this information is presented in Table 2. We con-

structed several microbenchmarks that create and mod-

ify several types of data structures using SoftPM and

TPL [6], a data structure serialization library. To quantify

the reduction in development complexity we compared

the lines of code necessary to implement persistence for

various data structures using both solutions. We report in

Table 3 the lines of code (LOC) without any persistence

and the additional LOC when implementing persistence

using TPL and SoftPM respectively.

6

 0

 0.5

 1

 1.5

 2

Create Query 25% 50% 75% 25% 50% 75% 25% 50% 75%

R
e
la

ti
v
e
 E

x
e
c
.
T

im
e List

RB Tree
Hashtable

Array

RemoveAddModify

Figure 5: Performance of individual data structure operations. The bars represent the execution time of the SoftPM

version relative to a version that uses the TPL serialization library for persistence. We used fixed size arrays which do not

support add or remove operations.

Systems Arrays Lists
Hash

Trees C
Tables

BORG [11] X X X X

CDP [33] X

Clotho [21] X X

EXCES [54] X X X X

Deduplication [59] X X

FlaZ [38] X X X

Foundation [48] X X

GPAW [41] X

I/O Shepherd [24] X X

I/O Dedup [32] X X X

Venti [47] X

Table 2: Persistent structures used in application and

systems software. Arrays are multidimensional in some

cases. C indicates other complex (graphs and/or hybrid)

structures were used. This summary is created based on de-

scriptions within respective articles and/or direct communi-

cation with the developers of these systems.

For each data structure we perform several operations

(e.g modify) and make the data structure persistent. Note

that the TPL version writes entire structures to disk,

whereas SoftPM writes only what was modified. For

create, SoftPM calculates the memory closure, move the

discovered data to persistent memory, and write to disk

and overhead is proportional to this work. The query

operation doesn’t modify any data and SoftPM clearly

outperforms TPL in this case. modify only changes ex-

isting data values, remove reduces the amount of data

written by TPL and involves only metadata updates in

SoftPM, and add increases the size of the data structure

increasing both the amount of data and metadata writes

with SoftPM. Figure 5 presents the execution times of

the SoftPM version relative to the TPL version. Two in-

teresting points are evidenced here. First, for add opera-

tions SoftPM outperforms TPL for all data structures ex-

cept RB Tree, this is due to balancing of the tree modify-

ing almost the entire data structure in the process requir-

ing expensive re-discovery, data movement, and writing.

Second, the remove operations for Hashtable are expen-

Data

Structure

Array

Linked List

RB Tree

Hash Table

SQLite

memcachedb

Original LOC for LOC to use

LOC Persistence SoftPM

102 17 3

188 24 3

285 22 3

396 21 3

73042 6696 9

1894 205 40

Table 3: Lines of code to make structures (or appli-

cations) persistent and recover them from disk. We

used TPL for Array, Linked List, RB Tree, and Hash Table;

SQLite and memcachedb implement custom persistence.

sive for SoftPM since its implementation uses the largest

number of pointer; removing involves a linear search in

one of our internal data structures and we are currently

working on optimizing this.

6.3.2 Comparing with Berkeley DB

memcachedb is an implementation of memcached which

periodically makes the key value store persistent by writ-

ing to a Berkeley DB (BDB) [45] database. BDB pro-

vides a persistent key value store using a btree (BDB-

Btree) or hash table (BDB-HT), as well as incremen-

tal persistence by writing only dirty objects, either syn-

chronously or asynchronously. We modified mem-

cachedb to use a hash table which we make persistent

using SoftPM instead of using BDB. In Figure 6 we com-

pare the operations per second achieved while changing

the persistence back-end. SoftPM outperforms both vari-

ants of BDB by upto 2.5X for the asynchronous versions

and by 10X for the synchronous.

6.3.3 Making an in Memory Database Persistent

SQLite is a production-quality highly optimized server-

less database, it is embedded within many popular soft-

ware such as Firefox, iOS, Solaris, and PHP. We imple-

mented a benchmark which creates a database and per-

forms random insert, select, update, and delete trans-

actions. We compare the native SQLite persistence to

that using SoftPM; transactions are synchronous in both

cases. Figure 7 shows that SoftPM is able to achieve 55%

7

 0

 10000

 20000

 30000

 40000

 50000

 60000

BDB-BTree

BDB-HT

SoftPM

O
p

e
ra

ti
o

n
s
/S

e
c

Persistence Backend

Sync HDD
Sync SSD

Async HDD
Async SSD

Figure 6: Performance of memcachedb using differ-

ent persistent back-ends. The workload randomly adds,

queries, and deletes 512 byte elements with 16 byte keys.

The dashed line represents a memory only solution.

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100

T
ra

n
s
a

c
ti
o

n
s
/s

e
c

of Rows (x1000)

SoftPM
Vanilla

Figure 7: SQLite transactions per second comparison

when using SoftPM and the native file persistence.

to 83% higher transactions rate depending on the size of

the database. We believe this is a significant achieve-

ment for SoftPM given two facts. First, SQLite is a

large and complex code base which includes a complete

stand alone database application and second, SQLite’s

file transactions are heavily optimized and account for

more than 6K LOC. Further analysis revealed that most

of SoftPM’s savings arise from its ability to optimize

I/O operations relative to SQLite. The reduction in per-

formance improvement with a larger number of rows in

the database is largely attributable to a sub-optimal con-

tainer discovery implementation; by implementing incre-

mental discovery to include only those pointers within

dirty pages, we expect to scale performance better with

database size in future versions of SoftPM. Figure 8

shows a breakdown of the total overhead including I/O

time incurred by SoftPM which are smaller than the time

taken by the native version of SQLite. Finally, all of this

improvement was obtained with only 9 additional LOC

within SQLite to use SoftPM, a significant reduction

relative to its native persistence implementation (6696

LOC).

6.3.4 Recoverable Parallel Matrix Multiplication

To compare SoftPM’s performance to conventional

checkpointing methods, we implemented a parallel ma-

trix multiplication application using Cannon’s algo-

rithm [25]. We evaluated multiple solutions, includ-

SoftPM

Vanilla

 0% 20% 40% 60% 80% 100%

Pointer Tracking Discovery I/O Other

Figure 8: Breakdown of time spent in the SQLite

benchmark for 100K rows.

 1

 1.1

 1.2

 1.3

 1.4

 100 200 300 400 500 600 700 800E
x
e

c
.

T
im

e
 W

.R
.T

 N
o

 C
h

e
c
k
p

o
in

t
Matrix Size (MB)

SoftPM (sync)
SoftPM (async)

Serialization
No checkpoint

Figure 9: Contrasting application execution times for

MPI matrix multiplication using 9 processes.

ing a no checkpoint non-recoverable implementation, a

serialization-based implementation which serializes the

matrices to files, and sync and async versions of SoftPM,

in all cases a checkpoint is made after calculating each

sub-matrix. For the file-based checkpointing version we

added 79 LOC to serialize, write the matrix to a file, and

recover from the file. In the SoftPM version, we added 44

LOC, half of them for synchronization across processes

to make sure all processes restored the same version after

a crash.

Figure 9 compares the total execution time across

these solutions. Synchronous SoftPM and the serializa-

tion solution have similar performance. Interestingly, be-

cause of unique ability of overlapping checkpoints with

computation, the asynchronous version of SoftPM per-

forms significantly better than either of the above, in fact,

within a 1% difference (for large matrices) relative to the

memory-only solution.

6.4 Microbenchmarks

In this section, we evaluate the sensitivity of SoftPM per-

formance to its configuration parameters using a series

of microbenchmarks. For these experiments, we used

a persistent linked list as the in-memory data structure.

Where discussed, SoftPM represents a version which

uses a SoftPM container for persistence; TPL represents

an alternate implementation using the TPL serialization

library. Each result is averaged over 10 runs, and except

when studying its impact, the size of a chunk in the SID

8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100

T
im

e
 (

s
e
c
s
)

% Locality

SoftPM (m)
SoftPM (a/r)

TPL (m)
TPL (a/r)

Figure 10: Impact of locality on incremental persis-

tence. Two different sets of experiments are performed:

(m) where only the contents of the nodes are modified, and

(a/r) where nodes are added and removed from the list. In

both cases the size of the list is always 500MB.

 0

 1

 2

 3

 4

 5

512KB 1MB 2MB 4MB 8MB 16MB 32MB
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

T
im

e
 (

s
e

c
s
)

S
ID

 M
e

ta
d

a
ta

 S
iz

e
 (

M
B

)

Chunk Size

100%
75%
50%
25%

SID Metadata

Figure 11: Impact of chunk size on persistence point

time. A list of size 500MB is made persistent and individual

lines depict for a specific fraction of the list modified.

layer is set to 512KB. To make the linked list persistent,

SoftPM and TPL add 5 and 28 LOC, respectively.

Incremental Persistence. Usually, applications modify

only a subset of the in-memory data between persistence

points. SoftPM implements incremental persistence by

writing only the modified chunks, which we evaluated

by varying the locality of updates to a persistent linked

list, shown in Figure 10. As expected, TPL requires ap-

proximately the same amount of time regardless of how

much data is modified; it always writes the entire data

structure. The SoftPM version requires less time to cre-

ate persistence points as update locality increases.

Chunk Size. SoftPM tracks changes and writes con-

tainer data at the granularity of a chunk to create per-

sistence points. When locality is high, smaller chunks

lead to lesser data written but greater SID metadata over-

head because of a bigger chunk indirection map and free

chunk bitmap. On the other hand, larger chunks im-

ply more data written but less SID metadata. Figure 11

shows the time taken to create persistence points and the

size of the SID metadata at different chunk sizes.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 2 4 6 8 10 12P
e
rt

s
is

te
n
c
e
 P

o
in

t
T

im
e
 (

s
e
c
s
)

Number of Processes

TPL
SoftPM

Figure 12: Time to create persistence points for mul-

tiple parallel processes. Every process persists a list of

size (1GB/number-of-processes).

Parallel Persistence Points. The SID layer optimizes

the way writes are performed to the underlying store, e.g.

writing to disk drives semi-sequentially. Figure 12 de-

picts the performance of SoftPM in relation to TPL when

multiple processes create persistence points to different

containers at the same time. We vary the number of pro-

cesses, but keep the total amount of data persisted by all

the processes a constant. The total time to persist using

SoftPM is a constant given that the same amount of data

is written. On the other hand, the time for TPL increases

with the number of threads, because of lack of optimiza-

tion of the interleaving writes to the different container

files at the storage level.

Percentage of Pointers in Data. Creating a persistence

point requires computing a transitive memory closure,

an operation whose time complexity is a function of the

number of pointers in container data. We varied the

fraction of the memory (used by the linked list) that is

used to store pointers (quantified as “percentage pointers

in data”) and measured the time to create a full (non-

incremental) persistence point.

We compare performance with a TPL version of the

benchmark that writes only the contents of the elements

of the list to a file in sequence without having to store

pointers. A linked list of total size 500MBwas used. Fig-

ure 13 shows the persistence point creation times when

varying the percentage pointers in data. SoftPM is not

always more efficient in creating persistence points than

TPL, due to the need to track and store all the pointers

and the additional pointer data and SoftPM metadata that

needs to be written to storage. The linked list represents

one of the best case scenarios for the TPL version since

the serialization of an entire linked list is very simple and

performs very well due to sequential writing. We also

point out here that we are measuring times for register-

ing pointers in the entire list, a full discovery and (non-

incremental) persistence, a likely worst case for SoftPM;

in practice, SoftPM will track pointers incrementally and

9

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30 35 40 45 50
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

T
im

e
 (

s
e

c
s
)

L
im

a
 M

e
ta

d
a

ta
 S

iz
e

 (
M

B
)

Percentage Pointers in Data

SoftPM
TPL

Lima Metadata

Figure 13: Time to persist a linked list and LIMA

metadata size, varying percentage of pointers in data.

The total size is fixed at 500MB and node sizes are varied

accordingly.

persist incrementally as the list gets modified over time.

Further, for the complex programs we studied the per-

centage pointers in data is significantly lower; in SQLite

this ratio was 4.44% and for an MPI-based matrix mul-

tiplication this ratio was less than 0.04%. Finally, the

amount of SoftPM metadata per pointer can be further

optimized; instead of 64 bit pointer locations (as we cur-

rently do), we can store a single page address and multi-

ple 16 bit offsets.

7 Related Work

Persistence techniques can be classified into system-

managed, application-managed, and application-

directed. System-managed persistence is usually

handled by a library with optional OS support. In

some solutions, it involves writing a process’s entire

execution state to persistent storage [23, 26, 13]. Other

solutions implement persistently mapped memories for

programs with pointer swizzling at page fault time [51].

While transparent to developers, this approach lacks the

flexibility of separating persistent and non-persistent

data required by many applications and systems soft-

ware. With application-managed persistence [19, 44],

application developers identify and track changes to

persistent data and build serialization-based persistence

and restoration routines. Some hybrid techniques

implemented either as persistent memory libraries and

persistent object stores have combined reliance on

extensive developer input about persistent data with

system-managed persistence [14, 20, 36, 34, 46, 50].

However, these solutions involve substantial develop-

ment complexity, are prone to developer error, and in

some cases demand extensive tuning of persistence

implementations to the storage system making them

less portable. For instance, ObjectStore[34] requires

developers to specify which allocations are persistent

and their type by overloading the new operator in

C++ [4].

Application-directed persistence provides a middle

ground. The application chooses what data needs to

be persistent, but a library implements the persistence.

The earliest instances were persistent object storage sys-

tems [16] based on Atkinson’s seminal orthogonal per-

sistence proposal [8]. Applications create objects and ex-

plicit inter-object references, and the object storage sys-

tem (de)serializes entire objects and (un)swizzles refer-

ence pointers [42]. Some persistent object systems (e.g.,

Versant Persistent Objects [7], SSDAlloc [9], Dali [29])

eliminate object serialization but they require (varying

degrees of) careful development that includes identify-

ing and explicitly tagging persistent objects, identifying

and (un)swizzling pointers, converting strings and arrays

in the code to custom persistent counterpart types, and

tagging functions that modify persistent objects.

Recoverable Virtual Memory (RVM) [50] was one of

the first to demonstrate the potential for memory-like in-

terfaces to storage. However, its approach has some key

limitations when compared to SoftPM. First, RVM’s in-

terface still requires substantial developer involvement.

Developers must track all persistent data, allocate these

within RVM’s persistent region, and ensure that depen-

dence relations among persistent data are satisfied (e.g.,

if persistent structure a points to b, then b must also be

made persistent). Manually tracking such relations is te-

dious and error-prone. Further, developers must specify

the address ranges to be modified ahead of time to op-

timize performance. These requirements were reported

to be the source of most programmer bugs when using

RVM [39]. Second, RVM’s static mapping of persis-

tent memory segments makes it too rigid for contem-

porary systems that demand flexibility in managing ad-

dress spaces [37, 53]. In particular, this approach is

not encouraged in today’s commodity operating systems

that employ address-space layout randomization for se-

curity [53]. Finally, RVM is also restrictive in dynami-

cally growing and shrinking persistent segments and lim-

its the portability of a persistent segment due to its ad-

dress range restrictions.

The recent Mnemosyne [56] and NV-Heaps [15]

projects also provide persistent memory abstractions

similar to SoftPM. However, there are at least two key

differences. First, both of the solutions are explicitly de-

signed for non-volatile memories or NVM (e.g., phase-

change memory) that are not yet commercially avail-

able. Most significantly, these devices are intended to

be CPU accessible and byte addressable which elimi-

nates copying data in/out of DRAM [17]. Thus, the

focus of these systems is on providing consistent up-

dates to NVM-resident persistent memory via transac-

tions. On the other hand, SoftPM targets currently avail-

able commodity technology. Second, neither of these

10

systems provide the orthogonal persistence that SoftPM

enables; rather, they require the developer to explicitly

identify individual allocations as persistent or not and

track and manage changes to these within transactions.

For instance, the NV-Heaps work argues that explicit

tracking and notification of persistent data ensures that

the developer does not inadvertently include more data

than she intends [15]. We take the converse position

that besides making persistence vastly simpler to use,

automatic discovery ensures that the developer will not

inadvertently exclude data that does need to be persis-

tent for correctness of recovery, while simultaneously re-

taining the ability to explicitly exclude portions of data

when unnecessary. Further, SoftPM’s design, which re-

lies on interposing on application memory allocations,

ensures that pointers to library structures (e.g., files or

sockets) are reset to NULL upon container restoration by

default, thus relieving the developer of explicitly exclud-

ing such OS dependent data; such OS specific data is

typically re-initialized upon application restart. Finally,

feedback about automatically discovered persistent con-

tainers from SoftPM can help the developer in reasoning

about and eliminating inadvertently included data.

Single level persistent stores as used in the Grasshop-

per operating system [18] employ pointer swizzling to

convert persistent store references to in-memory ad-

dresses at the page granularity [55, 57] by consulting

an object table within the object store or OS. Updates

to persistent pointers are batch-updated (swizzled) when

writing pages out. SoftPM fixes pointer addresses when

persistent containers get loaded into memory but is free

of swizzling during container writing time.

Finally, Java objects can be serialized and saved to

persistent storage, from where it can be later loaded and

recreated. Further, the Java runtime uses its access to the

object’s specification, unavailable in other lower-level

imperative languages that SoftPM targets.

7.1 SoftPM: A New Approach

SoftPM implements application-directed persistence and

differs from the above body of work in providing a solu-

tion that: requires little developer effort, works with cur-

rently available commodity storage, is flexible enough

to apply to modern systems, and enables memory to

be ported easily across different address space config-

urations and applications. Unlike previous solutions in

the literature, SoftPM automatically discovers all the

persistent data starting from a simple user-defined root

structure to implement orthogonal persistence. SoftPM’s

modular design explicitly optimizes I/O using chunk

remapping and tuning I/Os for specific storage devices.

Further, SoftPM’s asynchronous persistence allows over-

lapping computation with persistence I/O operations. Fi-

nally, unlike most previous solutions, SoftPM imple-

ments persistence for the weakly typed C language, typ-

ically used for developing systems code using a novel

approach that combines both static and dynamic analysis

techniques.

8 Discussion and Future Work

Several issues related to the assumptions, scope, and cur-

rent limitations of SoftPMwarrant further discussion and

also give us direction for future work.

Programmer errors. SoftPM’s automatic discovery of

updated container data depends on the programmer hav-

ing correctly defined pointers to the data. One concern

might be that if the programmer incorrectly assigned a

pointer value, that could result in corrupt data propagat-

ing to disk or losing portions of the container. This is a

form of programmer error to which SoftPM seems more

susceptible to. However, such programmer errors would

also affect other classes of persistence solutions includ-

ing those based on data structure serialization since these

also require navigating hierarchies of structures. Never-

theless, SoftPM does provide a straightforward resolu-

tion when such errors get exercised. While not discussed

in this paper, the version of SoftPM that was evaluated in

this paper implements container versioning whereby pre-

viously committed un-corrupted versions of containers

can be recovered when such errors are detected. Addi-

tionally, we are currently implementing simple checks to

warn the developer of unexpected states which could be

indicators of such errors; e.g., a persistent pointer points

to a non-heap location.

Container sharing. Sharing container data across

threads within a single address-space is supported in

SoftPM. Threads sharing the container would have to

synchronize updates as necessary using conventional

locking mechanisms. Sharing memory data across con-

tainers within a single address-space is also supported in

SoftPM. These containers can be independently check-

pointed and each container would store a persistent copy

of its data. However, sharing container data persistently

is not supported. Further, in our current implementation,

containers cannot be simultaneously shared across pro-

cess address-spaces. In the future, such sharing can be

facilitated by implementing the SoftPM interface as li-

brary system calls so that container operations can be

centrally managed.

Non-trivial types. SoftPM currently does not handle

pointers that are either untyped or ambiguously typed.

This can occur if a programmer uses a special integer

type to store a pointer value or if a pointer type is part

of a union. These can be resolved in the future with ad-

ditional hints to SoftPM’s static translator from the pro-

grammer. Additionally, the runtime could hint to SoftPM

11

about when a union type resolves to a pointer and when

it is no longer so.

Unstructured data. The utility of SoftPM in simplify-

ing development depends on the type of the data that

must be made persistent. Unstructured data (e.g., au-

dio or video streams) are largely byte streams and do not

stand to benefit as much from SoftPM as data that has

structure containing a number of distinct elements and

pointers between them. Specifically, unstructured data

tends not to get modified in place as much as structured

data and consequently they may not benefit from the in-

cremental change tracking that SoftPM implements.

9 Conclusion

For applications and systems that rely on a portion of

their state being persistent to ensure correctness for

continued operation, the availability of a lightweight

and simple solution for memory persistence is valuable.

SoftPM addresses this need by providing a solution that

is both simple and effective. Developers use the existing

memory interfaces as-is, needing only to instantiate per-

sistent containers and container root structures besides

requesting persistence points. They thus entirely bypass

the complex requirements of identifying all persistent

data in code, tracking modifications to them, and writing

serialization and optimized persistence routines specific

to a storage system. SoftPM automates persistence by

automatically discovering data that must be made persis-

tent for correct recovery and ensures the atomic persis-

tence of all modifications to the container; storage I/O

optimizations are modularized within SoftPM making it

conveniently portable. Recovery of persistent memory is

equally simple; SoftPM returns a pointer to the container

root via which the entire container can be accessed. We

evaluated SoftPM using a range of microbenchmarks,

an MPI application, SQLite database, and a distributed

memcachedb application. Development complexity as

measured using lines of code was substantially reduced

when using SoftPM relative to custom-built persistence

of the application itself as well as persistence using an

off-the-shelf serialization library. Performance results

were also very encouraging with improvements of up

to 10X, with SoftPM’s asynchronous persistence feature

demonstrating the potential for performing at close to

memory speeds.

Acknowledgments

We thank the anonymous reviewers and our shepherd,

Paul Barham, whose feedback substantially improved

our work. We are also grateful to Michail Flouris,

Haryadi Gunawi, and Guy Laden for sharing the details

of the persistent data structures they used in their sys-

tems. This work was supported by NSF grants CNS-

0747038 and CCF-093796. Jorge Guerra was supported

in part by an IBM PhD Fellowship.

References

[1] DragonFlyBSD. http://www.dragonflybsd.org/.

[2] memcached. http://memcached.org/.

[3] memcachedb. http://memcachedb.org/.

[4] ObjectStore Release 7.3 Documentation.

http://documentation.progress.com/output/ostore/7.3.0/.

[5] SQLite. http://www.sqlite.org/.

[6] tpl. http://tpl.sourceforge.net/.

[7] Versant. http://www.versant.com/.

[8] M. P. Atkinson. Programming Languages and Databases.

In VLDB, 1978.

[9] A. Badam and V. S. Pai. Ssdalloc: Hybrid ssd/ram mem-

ory management made easy. In Proc. of NSDR, 2009.

[10] D. Barry and T. Stanienda. Solving the java object storage

problem. Computer, 31(11):33–40, 1998.

[11] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Lip-

tak, R. Rangaswami, and V. Hristidis. BORG: Block-

reORGanization and Self-optimization in Storage Sys-

tems. In Proc. of USENIX FAST, 2009.

[12] H.-J. Boehm and M. Weiser. Garbage collection in an

uncooperative environment. Software Practice and Expe-

rience , 18(9):807–921, September 1988.

[13] G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, and

M. Schulz. Application-level Checkpointing for Shared

Memory Programs. SIGARCH Comput. Archit. News,

32(5):235–247, 2004.

[14] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L.

McAuliffe, J. F. Naughton, D. T. Schuh, M. H. Solomon,

C. K. Tan, O. G. Tsatalos, S. J. White, and M. J. Zwill-

ing. Shoring up persistent applications. In Proceedings

of ACM SIGMOD, 1994.

[15] J. Coburn, A. Caulfield, A. Akel, L. Grupp, R. Gupta,

R. Jhala, and S. Swanson. Nv-heaps: Making persistent

objects fast and safe with next-generation, non-volatile

memories. In Proc. of ASPLOS, 2011.

[16] W. P. Cockshott, M. P. Atkinson, K. J. Chisholm, P. J.

Bailey, and R. Morrison. POMS - A Persistent Object

Management System. Software Practice and Experience,

14(1):49– 71, 1984.

[17] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,

D. Burger, and D. Coetzee. Better i/o through byte-

addressable, persistent memory. In Proc. of SOSP, 2009.

[18] A. Dearle, R. di Bona, J. Farrow, F. Henskens, A. Lind-

ström, J. Rosenberg, and F. Vaughan. Grasshopper: An

Orthogonally Persistent Operating System. Computer

Systems, 7(3):289–312, 1994.

[19] E. N. Elnozahy and J. S. Plank. Checkpointing for

Peta-Scale Systems: A Look into the Future of Practical

Rollback-Recovery. IEEE TDSC, 1(2):97–108, 2004.

[20] J. L. Eppinger. Virtual Memory Management for Trans-

action Processing Systems. PhD thesis, Carnegie Mellon

University, 1989.

[21] M. D. Flouris and A. Bilas. Clotho: Transparent Data Ver-

12

sioning at the Block I/O Level. In Proc. of IEEE MSST,

2004.

[22] E. Gal and S. Toledo. Algorithms and data structures for

flash memories. ACM Computing Surveys, 37(2):138–

163, 2005.

[23] R. Gioiosa, J. C. Sancho, S. Jiang, F. Petrini, and

K. Davis. Transparent, Incremental Checkpointing at

Kernel Level: a Foundation for Fault Tolerance for Par-

allel Computers. In Proc. of the ACM/IEEE SC, 2005.

[24] H. S. Gunawi, V. Prabhakaran, S. Krishnan, A. C. Arpaci-

Dusseau, and R. H. Arpaci-Dusseau. Improving File Sys-

tem Reliability with I/O Shepherding. In Proc. of ACM

SOSP, 2007.

[25] H. Gupta and P. Sadayappan. Communication efficient

matrix-multiplication on hypercubes. Proc. of the ACM

SPAA, 1994.

[26] P. H. Hargrove and J. C. Duell. Berkeley Lab Check-

point/Restart (BLCR) for Linux Clusters. In Proc.of Sci-

DAC Conference, 2006.

[27] M. Hind. Pointer analysis: Haven’t we solved this prob-

lem yet? In PASTE’01, pages 54–61. ACM Press, 2001.

[28] D. Hitz, J. Lau, and M. Malcolm. File system design

for an nfs file server appliance. In Proc. of the USENIX

Technical Conference, 1994.

[29] H. V. Jagadish, D. F. Lieuwen, R. Rastogi, A. Silber-

schatz, and S. Sudarshan. Dali: A high performance main

memory storage manager. In Proc. of VLDB, 1994.

[30] S. V. Kakkad and P. R. Wilson. Address translation

strategies in the texas persistent store. In Proceedings of

theUSENIX Conference on Object-Oriented Technologies

& Systems, 1999.

[31] A. Kawaguchi, S. Nishioka, and H. Motoda. A Flash-

memory based File System. In USENIX Technical, 1995.

[32] R. Koller and R. Rangaswami. I/O deduplication: Uti-

lizing content similarity to improve i/o performance. In

Proc. of USENIX FAST, 2010.

[33] G. Laden, P. Ta-Shma, E. Yaffe, M. Factor, and S. Fien-

blit. Architectures for controller based cdp. In Proc. of

USENIX FAST, 2007.

[34] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The

objectstore database system. Commun. ACM, 34:50–63,

October 1991.

[35] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-Miner:

Mining Block Correlations in Storage Systems. In Proc.

of USENIX FAST, 2004.

[36] B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gru-

ber, U. Maheshwari, A. C. Myers, M. Day, and L. Shrira.

Safe and efficient sharing of persistent objects in thor. In

Proceedings of ACM SIGMOD, 1996.

[37] V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn.

Archipelago: trading address space for reliability and se-

curity. SIGARCH Comput. Archit. News, 36(1):115–124,

2008.

[38] T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris,

and A. Bilas. Using transparent compression to improve

ssd-based i/o caches. In Proc. of EuroSys, 2010.

[39] H. M. Mashburn, M. Satyanarayanan, D. Steere, and

Y. W. Lee. RVM: Recoverable Virtual Memory, Release

1.3. 1997.

[40] C. Morrey and D. Grunwald. Peabody: the time travelling

disk. In Proc. of IEEE MSST, 2003.

[41] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen. Real-

space grid implementation of the projector augmented

wave method. Phys. Rev. B, 71(3):035109, Jan 2005.

[42] E. B. Moss. Working with persistent objects: To swizzle

or not to swizzle. IEEE TSE, 18(8):657–673, 1992.

[43] G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer.

CIL: Intermediate language and tools for analysis and

transformation of C programs. In Compiler Construction,

Lecture Notes in Computer Science, 2002.

[44] R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam, M. R.

Varela, R. Riesen, and P. C. Roth. Modeling the Impact of

Checkpoints on Next-Generation Systems. IEEE MSST,

2007.

[45] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB.

In Proceedings of the USENIX Annual Technical Confer-

ence, 1999.

[46] J. S. Plank, M. Beck, and G. Kingsley. Libckpt: transpar-

ent checkpointing under Unix. In Proc. of the USENIX

ATC, January 1995.

[47] S. Quinlan and S. Dorward. Venti: A New Approach to

Archival Storage. In Proc. of USENIX FAST, 2002.

[48] S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive

content-addressed storage in foundation. In Proc. of

USENIX ATC, 2008.

[49] M. Rosenblum and J. Ousterhout. The Design And Im-

plementation of a Log-Structured File System. In Proc.

of ACM SOSP, 1991.

[50] M. Satyanarayanan, H. Mashburn, P. Kumar, D. C. Steer,

and J. Kistler. Lightweight Recoverable Virtual Memory.

Proc. of the ACM SOSP, 1993.

[51] V. Singhal, S. V. Kakkad, and P. R. Wilson. Texas: An

efficient, portable persistent store. In Proceedings of the

Intl Workshop on Persistent Object Systems, September

1992.

[52] V. Sundaram, T. Wood, and P. Shenoy. Efficient Data

Migration in Self-managing Storage Systems. In Proc. of

ICAC, 2005.

[53] The PaX Team. PaX Address Space Layout

Randomization (ASLR). Available online at:

http://pax.grsecurity.net/docs/aslr.txt.

[54] L. Useche, J. Guerra, M. Bhadkamkar, M. Alarcon, and

R. Rangaswami. EXCES: EXternal Caching in Energy

Saving Storage Systems. In Proc. of IEEE HPCA, 2008.

[55] F. Vaughan and A. Dearle. Supporting large persistent

stores using conventional hardware. In In Proc. Interna-

tional Workshop on POS, 1992.

[56] H. Volos, A. J. Tack, and M. Swift. Mnemosyne:

Lightweight persistent memory. In Proc. of ASPLOS,

2011.

[57] S. J. White and D. J. DeWitt. A performance study of al-

ternative object faulting and pointer swizzling strategies.

In Proc of VLDB, 1992.

[58] P. R.Wilson. Uniprocessor garbage collection techniques.

In Proc. of ISMM, 1992.

[59] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk Bot-

tleneck in the Data Domain Deduplication File System.

Proc. of USENIX FAST, Feb 2008.

13

	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory

	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory

	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory

	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory

	Software Persistent Memory

	Software Persistent Memory
	Software Persistent Memory

	Software Persistent Memory
	Software Persistent Memory

