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Abstract—MapReduce, a cloud computing paradigm, is 

gaining popularity. However, like all open distributed 

computing frameworks, MapReduce suffers from the integrity 

assurance vulnerability: it takes merely one malicious worker 

to render the overall computation result useless. Existing 

solutions are effective in defeating the malicious behavior of 

non-collusive workers, but are futile in detecting collusive 

workers. In this paper, we focus on the mappers, which 

typically constitute the majority of workers, and propose the 

Verification-based Integrity Assurance Framework (VIAF) to 

detect both non-collusive and collusive mappers. The basic idea 

of VIAF is to combine task replication with non-deterministic 

verification, in which consistent but malicious results from 

collusive mappers can be detected by a trusted verifier. We 

have implemented VIAF in Hadoop, an open source 

MapReduce implementation. Our theoretical analysis and 

experimental result show that VIAF can achieve high task 

accuracy while imposing acceptable overhead. 

Keywords- MapReduce; Result Verification; Collusion 

detection;  Hadoop 

I. INTRODUCTION 

Ever since the genesis of cloud computing, discussion 

about its security has never stopped. On one hand, as the 

evolution outcome of web application, cloud computing, by 

nature inherited existing threats such as phishing [1], 

downtime [2], data loss [3], password weaknesses [4], and 

compromised hosts running botnets [5]. On the other hand, 

with unique characteristic, it brings new challenges such as 

unexpected side channels and covert channels [6]. Of all the 

issues threatening cloud computing, computation integrity is 

one of the most critical that needs attention. Due to the 

distributed architecture and open environment, some 

participants can be subverters that pretend to be good but 

actually perpetrate cybercrime or other cyber attacks [7]. 

In our research, we found MapReduce, a popular cloud 

computing framework, to a great extent, suffers from such 

integrity vulnerability. Since computation job is carried out 

via the collaboration of a number of computing nodes, 

which may not be trusted in an open environment, merely 

one corrupt result may render the overall result useless. In 

MapReduce, reducers normally constitute the minority of 

workers, so they can be deployed on trusted nodes to 

achieve high computation accuracy. However, it is often 

infeasible to deploy mappers on trusted nodes due to their 

large quantity. Hence, ensuring mappers’ computation 

integrity is of great importance and is in urgent need of a 

solution. 

Several existing techniques such as replication, sampling, 

and checkpoint-based solution have been proposed in the 

hope of addressing such issue in many distributed 

environments such as P2P Systems, Grid Computing and 

Cloud Computing [8-15]. However, since the cloud 

computing normally is applied to process critical data such 

as scientific computation and commercial data mining, 

above methods either requires too much overhead in order 

to guarantee high accuracy or can only deal with naïve 

attackers such as non-collusive attackers. For example, 

SecureMR [15] is purely based on replication, thus it cannot 

detect collusive workers that can cooperate to hide their 

attacks, i.e., returning consistent but bad results. For the 

quiz-based idea proposed in [9] used for P2P grid, when the 

percentage of malicious hosts increases from 5% to 50%, 

the overhead increases quickly from 2 to 4.5. Moreover, the 

idea proposed in [9] is to insert quizzes into a computation 

package, which cannot be directly applied to MapReduce. 

Based on the idea of replication-based and quiz-based 

method, we propose VIAF (Verification-based Integrity 

Assurance Framework), a MapReduce framework that can 

detect both collusive and non-collusive mappers and thus 

guarantee high computation accuracy. In VIAF, we replicate 

each mapping task to detect non-collusive mappers. In 

addition, we add limited number of trusted computation 

nodes called verifier to verify a small portion of consistent 

results in a random manner and thereby detect collusive 

mappers. We call passing one verification as passing one 

quiz. We accumulate the number of passed quizzes for each 

computation node. If a node passes certain amount of 

quizzes, we believe that this node is not a malicious one and 

accept its result. Once a node fails any quiz, we confirm that 

it is a malicious node and add it to a blacklist.  

We perform theoretical analysis about VIAF and 

implement it on top of Apache Hadoop MapReduce[16]. 

Both theoretical analysis and experimental result 

demonstrate that VIAF can achieve high accuracy while 

incurring acceptable overhead. 

The rest of the paper is organized as follows. 

Background knowledge and the system model are presented 

in Section II. System design and theoretical analysis is 

described in Section III. System implementation, 

experiment result and analysis are discussed in Section IV. 

Section V discusses related work. Finally, Section VI gives 

the conclusion and future work. 
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II. BACKGROUD AND SYSTEM MODEL 

A. MapReduce 

MapReduce [17] is a framework of performing data-

intensive computations in parallel on commodity computers. 

In MapReduce, each computation request issued by the user 

is called a job. Each job is usually broken down into several 

tasks. Once all the tasks are finished, the job is completed. 

The traditional architecture of MapReduce consists of one 

master and a number of workers. The master is responsible 

for controlling the computation, such as job management, 

task scheduling, and load balance. Workers are hosts that 

contribute computation resources to execute tasks assigned 

by the master. In addition to the master and workers, the 

Distributed File System (DFS) is also an important 

component of MapReduce for data storage. At the beginning 

of computation, input data will be retrieved from the DFS 

and the result data will be stored to the DFS after the job is 

finished.   

An ordinary MapReduce computation process can be 

divided into two phases: map and reduce. In the map phase, 

input data from the DFS are divided into several chunks. 

Each data chunk will be assigned to one worker as a task 

input to compute independently. And the computation result 

will be written to the worker’s storage temporarily for future 

use. In this phase, the task that each worker is performing is 

called a mapping task. Those workers are called mappers. 

The map phase is followed by the reduce phase. In the 

reduce phase, one or several workers aggregate the 

intermediate result into a complete result according to some 

function and write the result into the DFS. Similarly, the 

task being executed is called a reducing task and the 

workers are called reducer. 

B. System model and Assumptions 

The MapReduce system discussed in this paper is 

implemented to run in an open system, where entities (DFS, 

master, workers) may come from different trust domains. 

Hence not all entities are trusted. In our system model, we 

assume the master and the DFS are trusted, where workers 

are not. Our goal in this paper is trying to ensure high 

accuracy of computing using untrusted workers. In this 

paper, we introduce a new type of worker called verifier, 

which is responsible for verifying mapper’s computation 

result in order to guarantee the overall computation 

accuracy. Therefore, our system has three types of workers: 

mapper, reducer and verifier. Since reducers and verifiers 

typically take the minority portion among workers, we 

assume they are running on the trusted nodes. Therefore, the 

only untrusted nodes are mappers, which, however, take the 

majority portion. We assume the number of benign mappers 

in the cloud environment is dominating the number of 

malicious mappers. Also, since our framework asks each 

mapper to report its intermediate result (in the form of hash 

code) to the masters but keep the real result data in its local 

storage for the future reduce, we assume the result reported 

to the master is consistent with the local storage.  This can 

be guaranteed by a commitment-based protocol such as 

SecureMR[15]. Based on the above assumption, the rest of 

our discussion only focuses on the accuracy of the map 

phase.  

In addition, we only focus the information integrity on 

whether the computation node could provide correct 

calculation result, without considering the integrity 

vulnerability on the network. In other words, we assume the 

network facility is trusted. 

C. Attack Model 

The attackers in this system model are actually the 

malicious workers that try to generate bad result in order to 

sabotage the job output. They can be categorized into two 

types: Non-collusive malicious worker and Collusive 

malicious worker. (In the rest of this paper, we simply call 

them non-collusive worker and collusive worker, 

respectively.) A non-collusive worker normally returns bad 

result without consulting other malicious workers. In this 

case, if the same task is assigned to two workers and at least 

one of them is non-collusive, the cheat behavior can be 

easily detected by comparing the returns. In contrast, 

collusive workers can communicate with each other before 

cheating. When a collusive worker is assigned a task, it 

normally consults its collusive partner to see if they are 

assigned the same task. If yes, they will return consistently 

bad result; otherwise, they just return correct result. Since 

collusive workers try their best to minimize the 

inconsistency of their returns, they are much harder to detect 

than non-collusive workers. 

III. SYSTEM DESIGN AND ANALYSIS 

A. System Design  

The basic idea of VIAF is a combination of task 
replication and non-deterministic result verification. In VIAF, 
each task is assigned to two workers, and the results are 
required to return. The consistency of two workers’ returns 
will be checked in order to detect non-collusive workers. In 
addition, we add a type of trusted worker, the verifier, to the 
VIAF to verify the correctness of consistent returns, in order 
to detect collusive workers. Each worker has to accumulate 
its credit by passing enough verification. Task results are 
first stored locally by each worker. When a worker 
accumulated enough credits, all its stored results will be 
accepted by the master. By using replication and result 
verification, we can efficiently defeat both non-collusive 
workers and collusive workers. Fig. 1 depicts the data flow 
of the VIAF. In Fig. 1, the Task Queue, History Caches for 
each worker and the Result Buffer are maintained in the 
master. w1 and w2 are any two workers performing the same 
map task. The Verifier and the Reducer, as mentioned in 
Section II.B, are trusted entities. With Fig. 1, we can easily 
describe the control flow of the VIAF. 

Whenever the Task Queue is not empty, the master will 
pick one task from it and send it to any two workers, shown 
in step 1 of Fig. 1. After calculation, both workers will return   
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Figure 1.  Data flow of VIAF 

their results (in the form of hash code) to the master. If the 
returns are different, the master will reschedule the task to 
two new workers. (In this case, the master realizes that at 
least one worker is a non-collusive worker, but it is hard to 
tell which one is. So it has to reschedule the task to two 
different workers in the hope that the newly assigned 
workers are not malicious.) If the returns are the same, the 
master caches the two workers’ result and task information 
to their History Caches respectively (step 2). Those cached 
information are called history. After that, the master might 
ask the verifier to verify this consistent result (step 3). Due to 
the limited resource of the verifier, verification will be 
launched in a non-deterministic manner (with certain 
probability). If the verification fails (the verifier returns a 
different result), the master is confirmed that the two workers 
are collusive workers. They will be added to a black list. All 
the results in their History Caches are untrusted and all the 
tasks in their History Caches will be rescheduled. On the 
contrary, if the verification succeeds (the verifier returns the 
same result as the workers), we say each of the two workers 
has passed one quiz or accumulated one credit. Their credit 
will be incremented respectively (step 4). Each worker, after 
accumulating adequate credits, will obtain the master’s trust, 
and all the results cached in its History Cache will be 
released to the Result Buffer (step 5.a and 5.b). Since the 
credit of each worker is accumulated independently, the 
release of Cache History for each worker happens 
independently. Since the two workers are chosen in a non-
deterministic manner (the master only guarantees that 
replicate tasks are not assigned to the same worker), it is very 
likely that when one verification successfully increases two 
workers’ credit, one has accumulated enough credit and can 
release its History Cache to the Result Buffer, whereas the 
other still hasn’t accumulated enough credit. After releasing 
the result, the worker’s credit is reset to 0 and its History 
Cache is cleared.  Since our strategy is to release the result to 
the reducer only when both workers executing the task are 
trusted, the Result Buffer is therefore designed to buffer the 
result of the replicate tasks. Only when two results of one 
task are received by the Result Buffer, can the master release 
it to the reducer (step 6). In other words, the result received 

by the reducer is issued by two workers, both of which have 
passed adequate quizzes and obtained the master’s trust. If 
one worker fails to pass a quiz, not only will the tasks in its 
History Cache be rescheduled, but also the relevant replicate 
tasks already received by the Result Buffer will be 
rescheduled.  The algorithm can be expressed as Fig. 2. 

In the algorithm of VIAF, we declare the number of 
credits a worker needs to accumulate in order to earn the 
master’s trust as quiz_threshold. Each worker’s History 
Cache and credit are initialized in the function Initialization(). 
After initialization, the function Task_scheduler() keeps on 
monitoring the Task Queue to schedule the task and 
accumulate the credit for each worker. When a worker has 
accumulated enough credit, the master will release its 
History Cache to the Result Buffer. Meanwhile, the function 
ResultBuffer_monitor() keeps on monitoring the Result 
Buffer and release the result to the reducer once both results 
of replicate tasks are received by the Result Buffer.  

Although the algorithm depicted in Fig. 2 is 
straightforward, some details are skipped for clarity. For 
example, when a task is released or rescheduled, the 
corresponding task information in its History Cache should 
be cleared. Since verification result is trustworthy, it can be 
directly released to the reducer without being added to the 
History Cache. Since each task is replicated, releasing results 
to the reducer should avoid passing the duplicate results. To 
achieve randomized verification effect, each time when the 
consistent duplicate results are received by the master, the 
master will verify the result with certain probability. We call 
such probability the verification probability. Apparently, the 
verification probability dictates the workload of verifiers.  
Finally, although verification is launched in a randomized 
way, it is also necessary to guarantee the verification is 
balanced across all the workers. Otherwise, some workers 
may cache too many results before releasing them.  

For the non-collusive workers, since their bad returns 
will always be detected, their task will always be rescheduled. 
Therefore, non-collusive worker will not undermine the 
accuracy of job result. For the collusive workers, since the 
verification is invoked in a random way, they cannot predict 
whether their return will be verified. The only way to avoid 
detection is to return correct result. For those collusive 
workers who try to take a risk to evade verification, the 
probability to pass a series of quizzes turns to be very low. 
Passing more quizzes makes the worker to be more trusted, 
but it requires more space to buffer the intermediate result 
and delay the overall computation time. Therefore, choosing 
a proper quiz threshold (the number of quizzes that a worker 
has to pass in order to obtain trust) becomes critical. The 
analysis below indicates the relationship between quiz 
threshold and accuracy requirement. 

B. Theoretical Analysis 

Our analysis model assumes a cloud environment that 
contains a large number of workers, specifically, mappers. 
Suppose the environment contains N workers, and M out of 
which are malicious, we define malicious node ratio m = 
M/N. For simplicity, we assume that m stays constant 
throughout the job execution. That is, even though some  
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Figure 2.  The algorithm of VIAF 

malicious nodes are detected and black-listed during job 
execution, m decreases very little given the large values of N 
and M. 

We also assume M malicious nodes include both workers: 
collusive and non-collusive workers. We define c as the 
portion of collusive worker out of M malicious workers. 
Similarly, we also assume c as a constant parameter due to 
the large value of M. Even though a task is assigned to two 
collusive workers, collusion can happen only when they are 
in the same collusion group (in some environment, there may 

exists several groups of collusive workers, collusion can only 
happen within a group) and they are executing the task 
simultaneously (for example, collusion cannot happen if the 
two workers fall out of sync in processing the same task). 
Due to the uncertainty of temporal sequence, we define p as 
the probability that one collusive worker can find its partner 
executing the same task and be able to commit a cheat. 
When the collusive workers find each other, they can cheat 
in a non-deterministic way in the hope of not been 
discovered very soon. We define q as the probability that the 
collusive partners decide to commit a cheat. Similarly, we 
define r as the cheat probability of non-collusive workers. As 
mentioned in Section III.A, verification is launched with a 
certain probability, called the verification probability. We 
denoted it as v. Also, we denote the quiz threshold as k. 

With the model defined above, we are about to analyze 
the following measurement metrics:  

Definition III.1 (Survival Chance) The Survival Chance 
of a collusive worker is the probability that it passes all the k 
quizzes and earns trust of master so that the result of its 
History Cache can be released to the Result Buffer. It is 
denoted as ∆.  

Definition III.2 (Cheat Probability) The Cheat 
Probability of a task is the probability that the master accepts 
a bad result and releases it to the reducer, denoted as CP. 

Definition III.3 (Accuracy) The Accuracy of a task is the 
probability that the master accepts a good result and releases 
it to the reducer, denoted as AC. Apparently, AC = 1-CP. 

Definition III.4 (Overhead) The Overhead of a task is 
the average number of execution launched by the worker 
before its result is released to the reducer. It includes task 
replication and task reschedule. It is denoted as OH. 

Definition III.5 (Verification Overhead) The 
Verification Overhead of a task is the average number of 
execution launched by the verifier before its result is released 
to the reducer. It only includes task verification. It is denoted 
as VO.  

The model parameter and measurement metrics are 
summarized in TABLE I.  

Let’s start with the analysis of survival chance ∆. In our 
analysis model, we don’t eliminate non-collusive workers 
because they cannot affect the correctness of job result, due 
to the existence of replication. So the survival chance of non-
collusive workers is 1. For benign workers, the survival 
chance is always 1, since they never return bad result. Now, 
let’s consider the survival chance ∆ of each collusive worker. 
For a collusive worker, passing one quiz must happen in one 
of the four scenarios below: 
a. The replicate task is also assigned to another collusive 

worker (with probability m*c), they are able to collude 
(with probability p), but they determine not to (with 
probability 1-q). So the probability in this case is A = 
mcp(1-q);  

b. The replicate task is assigned to another collusive 
worker (with probability m*c), but they cannot collude 
either because they belong to different collusive group 
or they are not executed simultaneously (with 
probability 1-p). The probability in this case is B = 
mc(1-p); 

const quiz_threshold; 
 

Initialization(){ 
 for each worker(w){ 
  //tasks executed but not released by w 
  w.tasks = {};  
  //results generated but not released by w 
  w.results = {}; 
  //quizzes w has passed 
  w.credit = 0; 
 } 
} 
 

Task_Scheduler(){ 
 while (task queue Q is not empty){ 
  select a task t from task queue; 
  assign t to any 2 workers w1 and w2; 
  receive result R1,R2 from w1,w2; 
  if(R1 != R2) // inconsistent result 
   put t back to Q; //reschedule 
  else{ // consistent result 
   add t to w1.tasks and w2.tasks; 
   add R1 to w1.results and w2.results; 
   with probability (p){ 
    verify t and receive result Rv; 
    if(Rv== R1){ 
     w1.credit++; 
     w2.credit++; 
     if(w1.credit>quiz_threshold){ 
      release w1.results to resultBuffer; 
      reset w1.tasks,w1.results, w1.credit; 
     } 
     if(w2.credit>quiz_threshold){ 
      release w2.results to resultBuffer; 
      reset w2.tasks,w2.results, w2.credit; 
     } 
    } 

else{ 
      add w1, w2 to the black list; 
      put w1.tasks, w2.tasks back to Q; 
      find the replicate tasks of w1.tasks and 
w2.tasks that are released to the resultBuffer, 
remove their results from resultBuffer and 
reschedule them; 
    } 
   } // end with probability p 
  } // end consistent result 
 } // end while 
} 
 
ResultBuffer_monitor(){ 
 for each task t in resultBuffer{ 
  if(two results are released from workers) 

 release the result to reducer;  
 } 
} 
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TABLE I.  NOTATION FOR THEORETICAL ANALYSIS MODEL 

Symbol Explanation  

m Malicious worker ratio out of all workers  

c Collusive worker ratio out of malicious workers 

p 

When a task is assigned to two collusive workers,  the 

probability that two workers are in one collusive group 
and can discover each other, which is to say, they are 

able to commit a cheat. 

q 
The probability that two collusive workers determine to 
commit a cheat when discovering each other. 

r 
The probability that a non collusive worker determine to 

commit a cheat when assigned a task. 

v 
(Verification Probability) The probability that a task 
returning consistent results is verified by the verifier. 

k 
(Quiz Threshold) Number of quizzes a worker must 

passed in order to obtain the trust of the master. 

∆ 
(Survival Chance) The probability that a worker passes 

all the k quizzes and earns trust of master. 

CP 
(Cheat Probability) The probability that a task returns a 
bad result to the master and the master releases it to the 

reducer. 

AC 
(Accuracy) The probability that a task returns a good 
result to the master and the master releases it to the 

reducer. 

OH 
(Overhead) The average number of execution launched 

by the worker for each task. 

VO 
(Verification Overhead) The average number of 

execution launched by the verifier for each task. 

 
c. The replicate task is assigned to a non-collusive worker 

(with probability m(1-c)), and it does not commit a 
cheat(with probability 1-r). The probability is C = m(1-
c)(1-r); 

d. The replicate task is assigned to a benign worker. The 
probability is D = 1-m.  
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With the survival chance, we can derive Cheat 
Probability CP. The master releases a bad result to the 
reducer only in one of the following three scenarios: 
a. The task is assigned to two collusive workers. They both 

survive in k quizzes and they commit a collusive cheat. 
The probability in this case is m

2
c
2
pq∆

2
. 

b. The task is assigned to two collusive workers. Any of 

them fails to pass the k quizzes, so the task has to be 
rescheduled. Knowing the Cheat Probability of a 
rescheduled task as CP, we have the cheat probability as 
m

2
c
2
(1-∆

2
)CP in this case. 

c. The task is assigned to at least one non-collusive worker 
and it commits a cheat. The probability of this case is 
m(1-c)r. In this case, the task should be rescheduled, so 
the probability is m(1-c)rCP. 
Combining the three cases, we have the Cheat Probability 

CP as: 

CPrcmCPcmpqcmCP ⋅⋅−+∆−+∆= )1()1(
222222

 

Therefore,  

)1()1(1 222

222
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Since AC = 1-CP, we have 
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∆
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cmrcm

pqcm
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Overhead OH can be calculated with the same principle. In 
our model, rescheduling happens in three cases: 
a. The task is executed by two collusive workers and one 

of them fails to pass the k quizzes. The probability of 
this case is m

2
c
2
(1-∆

2
). The overhead is 2+OH, where 2 

is for the replication and OH is the overhead caused by 
rescheduling.   

b. The task is assigned to at least one non-collusive worker 
and it commits a cheat. The probability is m(1-c)r. 
Similarly, the overhead is 2+OH. 

c. For the other cases, the overhead is 2 since there’s no 
reschedule needed. The probability is 1-m

2
c
2
(1-∆

2
)-m(1-

c)r. 
Adding above overheads together, we have 

))1()1(1(2

)2()1()2)(1(
222

222
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+−++∆−=
 

Therefore, we have derived the Overhead: 

                      
)1()1(1

2
222

∆−−−−
=
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Similarly, we can calculate the verification overhead. 
Suppose the average verification overhead of each task is 
VO. Consider the following cases: 
a. The task is assigned to two collusive workers and one of 

them fails to pass the k quizzes. The probability in this 
case is m

2
c
2
(1-∆

2
).When the task is verified (with 

probability v), the verification result will be directly 
accepted by the master. The verification overhead is 
m

2
c
2
(1-∆

2
)v. However, when the task is not verified 

(with probability of 1-v), it will be rescheduled. Since 
after reschedule, the average verification overhead is 
VO, we have the verification overhead as m

2
c
2
(1-∆

2
)(1-

v)VO. Combining the two cases, we have the 
verification overhead m

2
c
2
(1-∆

2
)v+ m

2
c
2
(1-∆

2
)(1-v)VO. 

b. The task is assigned to at least one non-collusive worker 



6 

 

and it commits a cheat. The probability in this case is 
m(1-c)r. Since task will be rescheduled in this case, the 
verification overhead is m(1-c)rVO. 

c. For the other cases, where the probability is (1- m
2
c
2
(1-

∆
2
)-m(1-c)r), the task will not be rescheduled but can be 

verified with probability v. The verification overhead is 
therefore (1-m

2
c
2
(1-∆

2
)-m(1-c)r)v. 

The above three cases consists the verification overhead VO:  

vrcmcm

VOrcmVOvcmvcmVO

))1()1(1(

)1()1)(1()1(
222

222222

−−∆−−+

⋅−+−∆−+∆−=
 

Solving above equation, we have 

)1)(1()1(1

))1(1(
222 vcmrcm

rcmv
VO

−∆−−−−

−−
=             (5) 

 Apparently, verification overhead is useful in calculating the 
workload of verifiers. Suppose a job consists of T tasks, the 
verifiers’ workload is T*VO.  

Fig. 3 shows the simulated relationship between quiz 
threshold and accuracy based on (3) and (1). In this figure, 
malicious node ratio is set to 0.1, 0.3 and 0.5, respectively. 
Half of the malicious workers are collusive, they commit 
collusive cheating with probability 0.5*0.5=0.25, and non-
collusive workers commit inconsistent cheat with probability 
of 50%. We can see in this case, the accuracy increases 
rapidly when the quiz threshold increases from 1 to 6. When 
quiz threshold grows to 7, the accuracy reaches almost 100%. 
Fig. 4 and Fig. 5 demonstrate the overhead and verification 
overhead under the same configuration as Fig. 3. Here we set 
verification probability v to 0.2. We can see both the 
overhead and the verification overhead growth is very 
modest when the quiz threshold is increasing.  

When the collusive worker ratio c increases to 1, where 
malicious workers are all collusive, malicious ratio m and 
probability p became important factor in determining the 
relationship of quiz threshold and accuracy. Fig. 6 
demonstrates the relationship under different m. We notice 
that with a constant p, different m needs almost the same 
quiz threshold in order to achieve high accuracy. Fig. 7 
demonstrates the relationship under different p. We observe 
that p determines the quiz threshold in a subtle manner: to 
achieve very high accuracy, the smaller the p is, the greater 
the quiz threshold is needed. For example, when p is 1.0, five 
quizzes can make the accuracy almost achieve 100%; when p 
is 0.3, more than 10 quizzes are needed to guarantee such a 

high accuracy. The intuition here is: when malicious workers 
are more likely to cheat (with larger p), accuracy suffers 
more without verification; at the same time however, they 
are easier to detect once verification is used. Thus 
verification tends to be more effective in improving the 
accuracy. On the other hand, when the malicious workers are 
more stealthy (cheating with smaller p), accuracy suffers less, 
but it is also harder to improve by verification. Fortunately, 
when the accuracy required is not very high, small number of 
quiz threshold will satisfy. For example, when the accuracy 
requirement is 98%, five quizzes will be enough for all three 
values of p. The overhead and the verification overhead 
corresponding to Fig. 7 are shown in Fig. 8 and Fig. 9, 
respectively. Still the overhead with different p is no larger 
than 2.5, and the verification overhead appears to be stable. 

Based on the above analysis, we observe that p is an 
essential factor in determining the quiz threshold. When p is 
greater than 0.5, passing 7 quizzes will guarantee very high 
accuracy for each worker (close to 100%). When p is less 
than 0.5, to guarantee high accuracy, a higher quiz threshold 
is needed. 

IV. IMPLEMENTATION AND EVALUATION 

We have modified Hadoop MapReduce 0.21.0 to 
implement a prototype of VIAF. With this implementation, 
we did a series of experiment. The experimental results have 
been encouraging. 

A. Implementation details 

In Hadoop, each worker communicates with the master 

via “heartbeats”. In each heartbeat, the worker reports task 

update information to the master and requests new task to 

execute. When a task is done, a task complete event is 

passed to the master. The master will add such events to a 

queue so that the reducer can fetch the result and continue 

with the reduce task. When a worker is requesting new tasks, 

the master will choose an unexecuted task from its queue 

and assign it to the worker. 
In our implementation, we modify Hadoop to implement 

the algorithm of VIAF discussed in Fig. 2. Each worker has 
to return MD5 hash code of the task result along with the 
task completion event. Meanwhile, instead of directly adding 
the events to the queue, we cache the event of each task until 
both workers who submit the replicate task result have 
passed k quizzes. Also, we modify the task assignment 
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Figure 3.  Accuracy for miscellaneous workers 
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Figure 4.  Overhead for miscellanious workers 
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Figure 6.  Accuracy with           

different m 
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Figure 7.  Accuray with different p 
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Figure 8.  Overhead with       

different p 
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Figure 9.  Verification Overhead 

with different p 

function. Instead of randomly assigning the task, we 
guarantee that replicated and rescheduled tasks are not 
assigned to the same worker and that the verifier is only 
assigned verification tasks. 

B. Collusive worker model 

In our experiment, we design the behavior of collusive 
worker as follows: a collusive worker functions as both a 
client and a server. As a client, when a task is assigned, it 
will contact all its collusive group members to see if anyone 
is running the same task. If getting affirmative response from 
any partner (a server worker), they will negotiate whether to 
cheat (actually, whether to cheat is determined by the server 
worker, in our implementation, the collusion probability q is 
set to 1). If not getting response, it will execute the task in a 
benign way. Meanwhile, it will function as a server to 
monitor if any other collusive worker contacts it and claims 
running the same task. Once received such a message from 
any client worker, it will determine whether to cheat and 
instruct the client worker. Since the server worker usually 
execute the task before the client worker, to keep consistent 
return, the server worker usually needs to abort the current 
work and start to generate a consistent bad result when 
receiving a message. 

C. Experiment and result analysis 

We launch our experiments on a 2.93 GHz, 8-core Intel 
Xeon CPU with 16 GB of RAM running VMware 
Workstation 7.11. We deployed 11 virtual machines (512MB 
of RAM and 40GB of disk each) to construct a MapReduce 
environment. Each machine runs on Debian 5.0.6 “lenny”. 
Out of the 11 nodes, one is running as both a master and a 
benign worker; one is running as a verifier worker; four are 
collusive workers in one collusive group implementing the 
model in Section IV.A; and the remaining five nodes are 
benign workers. All experiments use the Hadoop WordCount 
application [18]. The input files are text files downloaded 
from a free eBook project website [19]. The complete job 
requires 400 mapping tasks and one reducing task with 
standard MapReduce.  

TABLE II shows the accuracy and overhead with 
different quiz threshold. Here we set a verification 
probability of 20%. In TABLE II, accuracy represents the 
ratio of accepted correct results to overall accepted results 
(400). From the table, we can see that without quiz test, 

accuracy is only 87.2%, but with quiz tests the accuracy 
rapidly improves. For example, a Quiz Threshold of 1 results 
in a 99.42% accuracy.  

Since our experiment environment only has collusive 
workers, c is effectively 1.0. Besides, our implementation of 
collusive workers sets p and q close to 1.0. Hence, the 
experiment configuration at the beginning is close to the 
theoretical model in Fig. 7. But we find the experiment result 
is much better than the Fig. 7 in terms of accuracy. Such 
discrepancy can be explained with Fig. 6: when other 
parameters are constant, the smaller the m is, the higher 
accuracy it will achieve. In our experiment environment, 
collusive workers are eliminated after detection, which 
makes the malicious ratio m decrease from 0.4 towards 0. 
Hence, the accuracy presented in Fig. 7 is only a lower 
bound. Similarly, with the decrease of m, the overhead 
decreases. This explains why the experiment overhead is 
lower than the simulated results in Fig. 8. 

Introduction of verification in VIAF will delay the job 
completion time, but our experiment shows that such delay is 

TABLE II.  EXPERIMENT RESULT WITH DIFFERENT QUIZ THRESHOLD 

Quiz 

Threshold 
Accuracy  Overhead Verification Overhead 

0 87.20% 2.000 0 

1 99.42% 2.045 22.00% 

2 99.83% 2.074 23.58% 

3 100% 2.053 23.00% 

4 100% 2.162 23.58% 

5 100% 2.046 21.75% 

6 100% 2.111 22.58% 

7 100% 2.027 19.83% 

 

TABLE III.  JOB EXECUTION TIME FOR DIFFERENT QUIZ THRESHOLD 

Quiz 

Threshold 
Execution time 

(s)  

Execution time increase 

compared with no quiz (%) 

No quiz 429.070 --------- 

1 475.064 10.72% 

2 472.426 10.10% 

3 473.149 10.27% 

4 476.798 11.12% 

5 460.029 7.22% 

6 483.246 12.63% 

7 473.030 10.25% 
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acceptable. According to the collusive worker model 
described in Section IV.B, the collusive workers may take 
longer time to return results compared to the benign workers. 
However, delays due to such worker-specific behaviors can 
be arbitrary and are not part of the overhead introduced by 
our framework. So, our experimental environment only 
includes benign workers in order to rule out the delay caused 
by malicious workers. TABLE III shows the job execution 
time under different Quiz Threshold.  Compared with the 
case in which no verification is applied, we can see that 
introducing verification adds a small amount of job 
completion delay. But such delay appears to be unrelated to 
the quiz threshold setting. 

V. RELATED WORK 

A number of techniques such as replication, sampling, 
and checkpoint-based solution have been proposed to 
address cheating in several distributed computing contexts, 
such as P2P systems, Grid Computing, and Cloud 
Computing [8-15]. Quiz-based schemes such as [9] insert 
quiz tasks with verifiable results to detect malicious workers. 
In order to generate quizzes that are indistinguishable from 
normal tasks, [20] proposes to use tasks of the given jobs 
themselves as quiz questions. [21] employs a replication-
based scheme that allows the degree of redundancy to be 
adaptively adjusted based on the dynamically-calculated 
reputation as well as reliability of each worker.  

Similar to VIAF, the LLFT middleware [22] for a cloud 
computing or data center environment employs replication 
techniques. However, LLFT is designed for tolerating fail-
stop faults for distributed applications, thus it cannot handle 
Byzantine faults such as the collusion among malicious 
workers in MapReduce. 

VI. CONCLUSION AND FUTURE WORK 

To guarantee high accuracy of MapReduce calculation, 
we propose the VIAF (Verification based Integrity 
Assurance Framework) to defeat both collusive and non-
collusive malicious mappers. We present the design and 
implementation detail of such a framework, along with 
theoretical analysis and experimental evaluations. Our 
analysis and evaluations confirm that this framework can 
ensure high accuracy while incurring acceptable overhead 
and delay.  

Although VIAF is a promising method to ensure 
MapReduce computation integrity, it can be further 
improved in the following directions. First, this paper is 
based on the assumption that the reducer is trusted; how to 
utilize VIAF to guarantee integrity without this assumption 
remains an interesting question. Second, since verifiers are 
precious resource, we can alleviate its workload further. For 
example, we can cache the results of verification and reuse 
verified tasks to test untrusted workers; then the verifier does 
not have to re-compute the reused tasks. 
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