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Abstract   One of the underpinnings of cloud computing security is the trustwor-

thiness of individual cloud servers. Due to the on-going discovery of runtime 

software vulnerabilities like buffer overflows, it is critical to be able to gauge the 

trustworthiness of a cloud server as it operates. The purpose of this chapter is to 

discuss trust enhancing technologies in cloud computing, specifically remote attes-

tation of cloud servers. We will discuss how remote attestation can provide higher 

assurance that cloud providers can be trusted to properly handle a customer’s 

computation and/or data. Then we will focus on the modeling of the runtime integ-

rity of a cloud server, which determines the level of assurance that remote attesta-

tion can offer. Specifically, we propose scoped invariants as a primitive for ana-

lyzing the software system for its integrity properties. We report our experience 

with the modeling and detection of scoped invariants for the Xen Virtual Machine 

Manager.  
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6.1 Introduction 

According to IDC’s 2008 cloud services user survey [1] of IT executives, security 

is the number one concern in adopting cloud computing. Part of the reason is that 

the operating systems supporting the cloud are just the conventional ones used to-

day, which means that they can be compromised and be infected with malware. 

Not surprisingly, a prospective cloud user is concerned about delegating his data 

and computation to a cloud server that can be compromised at runtime, even if the 

server starts in a known-good condition and the cloud provider is trusted. 

In other words, a trusted cloud server is not necessarily trustworthy, due to the 

inherent difficulty of eliminating software vulnerabilities and other operational er-

rors (e.g., configuration mistakes). Therefore, technologies that can enhance the 

trust of cloud servers are highly demanded. 

One way that can enhance the trust of cloud servers and relieve the concern of a 

potential cloud user is remote attestation [2], which enables the cloud user or a 

trusted third party to measure the “healthiness” (or integrity) of a cloud server at 

runtime, so that the compromise (or degraded integrity) can be detected in a timely 

manner. 

There has been a long line of research in software integrity ([2-13]), because 

malware like rootkits [9] must modify the victim software in some way, thus vio-

lating its integrity. In general, the integrity of a system can be approximated by a 

set of properties that must be satisfied by a “healthy” software system. For exam-

ple, many rootkits modify the system call table, so a property evaluated by many 

integrity monitors is whether the system call table has known-good values. It is 

through such properties that an integrity monitor differentiates a “healthy” system 

from a corrupted one. 

Identifying integrity properties is critical to the effectiveness of any integrity 

measurement mechanism, because without a good set of integrity properties, the 

use of such mechanisms can be severely limited. For example, if the integrity 

properties only cover system call table, a new rootkit can manipulate other func-

tion pointers (such as those found in device driver jump tables) to achieve its goal 

and remain undetected. 

Therefore, in this chapter we study the problem of systematically identifying 

integrity properties given the target software, which can then be used as input to 

an integrity measurement mechanism. Specifically, we make the following contri-

butions:  

We propose scoped invariants as an important class of integrity properties. 

Scoped invariants are code or data that has constant value under some context 

(called their scope).  An example scoped invariant is the Interrupt Descriptor Ta-

ble (IDT) entry for page fault, which contains a constant function pointer once the 

system finishes its initialization. Scoped invariants are building blocks of more 

general integrity properties, and are amenable to integrity checking.  

Our second contribution is a dynamic analysis tool that detects scoped invari-

ants. Our tool runs the target program in a machine emulator and monitors 
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memory writes and events generated by the target program. Memory writes moni-

toring supports or rejects the hypothesis that a variable is an invariant, while event 

monitoring help decide the scopes in which hypotheses about invariants apply.  

Our third contribution is a scoped invariants case study of the Xen Virtual Ma-

chine Manager [14], which is the foundational software of many cloud providers. 

Our tool identifies 271 scoped invariants essential to Xen’s runtime integrity. One 

such invariant property, that the addressable memory limit of a guest OS must not 

include Xen’s code and data, is indispensable for Xen’s guest isolation mecha-

nism. The violation of this property demonstrates that the attacker only needs to 

modify a single byte in the Global Descriptor Table (GDT) to achieve his goal. 

The rest of the chapter is organized as follows. Section 6.2 gives background 

information about remote attestation and our security assumptions. Section 6.3 

discusses our modeling of software integrity, and proposes scoped invariants as an 

important class of integrity properties. Section 6.4 presents an automated scoped 

invariants detection scheme based on dynamic monitoring and statistical infer-

ence. Section 6.5 discusses our implementation of an automated tool for deriving 

scoped invariants. Section 6.6 evaluates our methodology and tool by studying 

scoped invariants of Xen. Section 6.7 discusses related work, and Section 6.8 con-

cludes the chapter. 

6.2 Background on remote attestation and integrity 

measurement 

In this section, we introduce remote attestation as a useful trust enhancement tech-

nology for cloud computing; then we discuss the importance of integrity modeling 

in remote attestation and our security assumptions. 

6.2.1 Remote attestation as a trust enhancement technology 

A customer of a cloud server may want to determine that the cloud server is 

“healthy” (free of virus, Trojan horses, worms, and so on), so it can be trusted to 

properly handle the customer’s data and computation; he may also want to keep 

track of the cloud server’s health status so that he can stop using the cloud server 

as soon as he suspects that the server is compromised, to minimize the damage or 

the delay for recovery. Trusted computing is a technology that can satisfy the 

needs of such a cloud customer. 

A major goal in trusted computing is to provide reliable knowledge about a sys-

tem to a user or a service provider. That knowledge is normally obtained by an 

evaluation of the identity and integrity of a system, and it serves as evidence that a 

target system will not engage in some class of misbehaviors, thus it can be trusted 
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[15]. To this end, the Trusted Computing Group [16] has introduced the concept 

of remote attestation. 

Remote attestation enables a computer system in a networked environment to 

decide whether a target computer has integrity, e.g., whether it has the appropriate 

configuration and hardware/software stack, so it can be trusted. The idea of remote 

attestation has been widely accepted. For example, the trusted platform modules 

(TPM) [17] chip has become a standard component on modern computers. 

An integrity measurement system (IMS) for remote attestation typically con-

sists of three components: the target system, the measurement agent, and the deci-

sion maker [2].  The target system is a computer system whose “healthiness” is 

being evaluated (e.g., a cloud server); the measurement agent is a software or 

hardware entity that reads or measures the status (e.g., memory content) of the 

target system; and the decision maker is an entity (e.g., a cloud customer) that 

draws a conclusion about the integrity of the target system, given the measure-

ments obtained by the measurement agent. Theoretically, a decision maker has 

some integrity model in mind, which determines the amount of measurements (or 

evidence) to be collected from the target system; and it is easy to understand that 

the integrity guarantee by an IMS is only as strong as the comprehensiveness of 

the integrity model. 

6.2.2 Security assumptions about the integrity measurement system 

Our first assumption is that the measurement agent is isolated from and inde-

pendent of the target system, therefore it has a true view of the internal states (in-

cluding code and data) of the target system. This is a realistic assumption due to 

the popularity of machine emulators such as QEMU [18], and it has also been 

shown that the measurement agent can run on dedicated hardware such as a PCI 

card [9].  Our second assumption is that measurement results are securely stored 

and transferred to the decision maker.  This can be supported by hardware such as 

a trusted platform module (TPM) [17]. The third assumption is that the target sys-

tem’s states (e.g., code and data) may be compromised by a powerful adversary 

who can make arbitrary modifications; therefore the decision maker can rely on 

very few assumptions about the trustworthiness of the target system. 

Based on these assumptions, the decision maker is given a true view of the tar-

get system, and its task is to estimate the “healthiness” of the target system.  The 

healthiness include functional correctness (e.g., a function that is supposed to re-

duce the priority level of a task is not modified to actually increase the priority 

level), and non-functional correctness (e.g., the priority level can be modified by a 

privileged user instead of a normal user).  In the following subsections, we model 

the healthiness as integrity properties. 

Moreover, the healthiness of the target system may change over time, because 

it may be under constant attacks.  Therefore, the integrity of the target system may 

need to be periodically reevaluated. 
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6.3 Formal definition of scoped invariants 

In this section, we introduce and formally define scoped invariants as a class of 

integrity property; we also define dependencies among scoped invariants. 

6.3.1 Formalizing integrity properties 

In theory, any software system can be modeled as an automaton with states and 

state transitions. For simplicity of presentation, we assume that the system can be 

in one of n possible states: nsss ...,, ,21 . Example states are initialization, entering a 

function, returning from a function, system termination, and so on. And each state 

is characterized by a particular combination of values of the system’s internal var-

iables. Based on this general formalization, we can model runtime software integ-

rity as a set of properties )}(),...,(),({ 21 sPsPsP m . A runtime property )(sPi  is a 

function on state s that evaluates to true or false. If a system state s satisfies all 

iP ’s, we can say that s is a “healthy” state. Different runtime properties may have 

different structures, but each of them can be generalized to be a Boolean expres-

sion with the operators ∧(and), ∨(or), and ¬(not). More complex properties can be 

constructed out of primitive properties using the operators mentioned above. A 

primitive property has the form ))(),...,(),(( 21 svsvsvfunc l  which takes variables 

)(),...,(),( 21 svsvsv l  and returns true or false (v(s) is the value of v in state s). func 

can have arithmetic operations inside as well as relationship operations like ==, <, 

and >. 

6.3.2 Definition of scoped invariants 

Scoped invariants are one special class of primitive property with the form: 

)s,[stk,v(t) 21∈== . E.g., it stipulates that the value of variable v must be a specif-

ic value k when the system enters state 1s , and continue to be this value until the 

system enters another state 2s (assuming that there is a sequence of state transi-

tions from 1s to 2s ). We call such a primitive property a scoped invariant, and 

[ 1s , 2s ) is called its scope. An example scoped invariant is a global variable whose 

value does not change after initialization (e.g., once the system enters the running 

state). For example, the Interrupt Descriptor Table (IDT) entry for page fault is 

such a scoped invariant.  Scoped invariants can be regarded as a simplified form 

of temporal logic. 

Scoped invariants represent an important class of integrity properties. They 

may include critical internal control data of the system (e.g., function addresses) 
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that are supposed to remain constant. Examples of such scoped invariants include 

the Interrupt Descriptor Table (IDT), whose importance to system integrity has 

been well-understood. Another type of scoped invariant holds security policy data, 

and the violation of such invariants can directly defeat the corresponding security 

measures. For example, by tampering with the list of “bad” IP addresses, the at-

tacker can defeat a blacklist-based IDS (Intrusion Detection System). 

Note that the scopes of different invariants can vary significantly, depending on 

whether they are global variables, heap variables, or local variables. The scope of 

a global invariant can span as much as the entire execution of the program; the 

scope of a heap invariant must fall within the allocation and the freeing of the 

heap memory block; finally, the scope of an invariant that is a local variable in a 

function must be a subset of the interval between the entrance and the exit of the 

function. 

In this chapter, we focus on estimating the target system’s integrity from the 

measurement of scoped invariants. Other forms of integrity properties are subjects 

of future research. 

6.3.3 Using scoped invariants for integrity measurement: practical 

issues 

Scoped invariants fit conveniently into the software integrity measurement para-

digm because they are amenable to runtime attestation. Given a scoped invariant 

)s,[stk,v(t) 21∈== , the measurement agent can start to read the value of variable 

v once the system enters state 1s . Then the decision maker can verify if the meas-

urements of v are “good” until the system enters state 2s . The verification of v is 

simple – just comparing the runtime measurements of v against some known-good 

value k. Note that k may be difficult to obtain if it depends on something external 

to the target program, e.g., configuration parameters.  Here we assume that k has 

been determined somehow, e.g., using the dynamic detection technique discussed 

in Section 6.4. 

Although theoretically the definition of the scope of a scoped invariant is sim-

ple - just identifying the two boundary states, in a real system it is nontrivial, be-

cause typically we do not have an explicit and direct representation of program 

states. Instead, we can only infer program states from registers, main memory, or 

the file system. For example, if the program is sequential, the program counter 

(PC) can tell us the progress that has been made by the program since it is started. 

However, if there are loops in the program, PC alone may not be sufficient be-

cause the corresponding instruction may be part of a loop body and we do not 

know the number of iterations the program has gone through the loop body. In this 

case, we may need additional information such as the value of a loop guard varia-

ble to better infer the program state. Finally, when the program handles asynchro-



7 

nous events such as hardware interrupts, the program execution becomes non-

deterministic and it may be very hard to reliably infer the program states. 

Another related issue is the granularity of the program states, which influence 

the cost of integrity measurement. At one end of the spectrum, the program can 

have very coarse-grained states (e.g., initialization, running, and termination). 

Here the running state covers most of the program’s life span.  At the other end of 

the spectrum, the program can have very fine-grained states (e.g., one state per in-

struction execution or even multiple states within one instruction). While the most 

fine-grained states enable the integrity measurement agent to have the closest thus 

the clearest view of the target system, it is the most expensive. On the other hand, 

the coarse-grained states may lead the decision maker miss many important events 

(including integrity violations due to attacks), but it is cheaper for the decision 

maker to keep track of the program states. Therefore, there is a tradeoff between 

the granularity of program states and the effectiveness of integrity monitoring. 

The third issue is the tracking of program states by the measurement agent. As 

we mentioned in Section 6.2.2, an attacker may change the target program in arbi-

trary ways, so we cannot rely on the target program to notify the measurement 

agent about its states. Instead, we can only let the agent actively poll the state from 

a different domain. Specifically, the agent can run in a more privileged domain 

from which it can intercept the target program’s execution and inspect registers, 

memory, and files of the target program. As will be discussed in Section 6.4, a 

machine emulator is a good choice to run the measurement agent securely. 

One related issue is performance overhead introduced by integrity measure-

ment. As discussed above, a measurement agent needs to intercept the target pro-

gram’s execution, which causes delays in the target program. Obviously, the 

slowdown factor depends on the frequency (how often a measurement is taken) 

and duration (how long each measurement takes) of the measurements, and the 

duration depends on the number of invariants that need to be checked. 

6.3.4 Composition of scoped invariants 

Scoped invariants are building blocks of more general integrity properties. In this 

section, we discuss how we can evaluate more general integrity properties from 

the result of evaluating individual scoped invariants. The key observation is to 

look at the dependency relationship among integrity properties and build a hierar-

chy (represented in invariant dependency graphs or IDGs, defined shortly). We 

extend the definition of scoped invariant (see section 6.3.2) so that the variable v 

can be arbitrary object (e.g., a function, a code segment, or a data structure). 

In a complex target system such as an operating system, the integrity of differ-

ent functionality modules is often related. This is because a module may invoke 

functions provided by some external module (the callouts), and it may supply 

callback functions that are supposed to be called by an external module.  If an ex-

ternal function (e.g., init_timer in Fig. 6.1) that is called by a module (e.g., the 
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Xen scheduler) misbehaves, the control integrity of the calling module (e.g., the 

Xen scheduler) may be influenced. Similarly, if an external module (e.g., softIRQ) 

misbehaves by not invoking the callback function (e.g., schedule in Fig. 6.1) 

supplied by a module (e.g., the Xen scheduler calls open_softirq), that module 

may not get control as expected. 

Correspondingly, different scoped invariants can be correlated. Below we for-

mally define dependency between scoped invariants and a data structure (called 

Invariant Dependency Graph) that can be used to express the structural dependen-

cy relationship among a set of scoped invariants. 

Definition 1 (dependency between scoped invariants): a scoped invariant 1i  is 

said to depend on another scoped invariant 2i  if one of the following cases is true: 

1. 1i  and 2i  are both code and there is a callout from 1i  to 2i , or 1i  has a callback 

function supposed to be invoked by 2i . 

2. 1i  is code and 2i  is data, but whether control can go to 1i  depends on the value 

of 2i . 

3. 1i  and 2i  are both data and the evaluation of 1i  depends on the evaluation of 2i . 

 

Case 2 of definition 1 applies to the situation in which 2i  is a function pointer, 

and 1i  is the function that 2i  points to. 

 

Definition 2: An Invariant Dependency Graph (IDG) is a directed acyclic 

graph >=< EVG , , where each member of V represents a scoped invariant, and if 

ViVi ∈∈ 21 , , and 1i  depends on 2i , there is an edge Eiie ∈= ),( 21 . 

DEFINE_PER_CPU (struct schedule_data, schedule_data); 

static struct scheduler ops; 

…… 

static void vcpu_periodic_timer_fn(void *d){……} 

int sched_init_vcpu(struct vcpu *v, unsigned int processor){ 

  …… 

  init_timer(&v->periodic_timer,  vcpu_periodic_timer_fn, v, v->processor); 

  …… 

} 

static void schedule(void){……} 

void __init scheduler_init(void){ 

  …… 

  open_softirq(SCHEDULE_SOFTIRQ, schedule); 

  …… 

} 

Fig. 6.1 Code Snippet of the Xen scheduler ($XEN/xen/common/schedule.c) 
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An IDG thus is a convenient representation of scoped invariants and their rela-

tionship. An example IDG is shown in Fig. 6.1. 

An IDG also provides useful guidance in terms of how to evaluate the integrity 

of a target system in a bottom-up way: for example, if an integrity property i  de-

pends on ,,, 21 Lii and mi , then in order for i  to be true, ,,, 21 Lii and mi must all be 

true. Thus, a decision maker should evaluate ,,, 21 Lii and mi before evaluating i . 

6.4 Automated detection of scoped invariants 

In this section, we present a scoped invariants detection scheme based on dynamic 

profiling and statistical inference. We will discuss first the rationale (Section 

6.4.1), and then two technical components: memory write monitoring (Section 

6.4.2) and event monitoring (Section 6.4.3). 

6.4.1 Overview 

The inference of scoped invariants can be labor-intensive and error-prone if per-

formed manually.  Therefore, tools are needed to automate this process. 

By definition, a scoped invariant )s,[stk,v(t) 21∈== has a constant value k 

when the system state is between 1s  and 2s . Accordingly, the scoped invariant de-

tection must answer the following questions for each scoped invariant: (1) what 

are the starting and end states that define the scope? (2) which variable (v) is in-

volved? and (3) what is the known-good value (k)?  

Note that scoped invariants are with respect to their scopes, i.e., the same vari-

able can be an invariant in a narrower scope but not in a broader scope if the 

broader scope includes an operation that changes the value of the variable. There-

fore, we must first decide the scope and then decide whether a variable is an invar-

iant within that scope. 

Our invariant detection employs a dynamic profiling approach. Specifically, we 

run the target program in a machine emulator and monitor memory writes and 

events generated by the target program. Memory writes monitoring supports or re-

jects the hypothesis that a variable is an invariant, while event monitoring help de-

cide the scopes in which hypotheses about invariants apply. In the remainder of 

this section, we first discuss memory write monitoring, and then discuss event 

monitoring. 
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6.4.2 Memory writes monitoring 

By definition, a scoped invariant should not be modified other than the initializa-

tion. In other words, a variable that is modified multiple times is unlikely an invar-

iant. Based on this reasoning, we can detect invariants by observing how the target 

software modifies its variables: if a variable is modified multiple times, it is un-

likely an invariant; otherwise, it is an invariant. 

Using dynamic profiling, we run the target software and collect its modifica-

tions to variables, which translate to memory writes. There are multiple ways to 

do this, including program instrumentation and emulation.  Using emulation, we 

can run the target software in a machine emulator, which can intercept every 

memory write operation (e.g., a MOV instruction). With this capability, we can 

record the target memory address and the value written in each memory write op-

eration. The result of dynamic profiling is a sequence of tuples: n2,1 w,w,w L , 

where )v,(addrw iii = . 

Given a sequence n2,1 w,w,w L , we can compute the frequency ic  of updates 

to each unique address iaddr . Then, we can sort iaddr ’s at the ascending order of 

ic ’s, and the sorted list of iaddr ’s is a list of potential invariants with the most 

likely at the beginning and the most unlikely at the end. Note that the computation 

here captures addresses that are updated at least once; addresses that are not up-

dated in the sequence are automatically inserted at the beginning of the sorted list 

as the most likely invariants. 

6.4.3 Event monitoring 

In addition to memory writes, the machine emulator also intercepts other events 

that help define the scopes of the invariants. As discussed in Section 6.3.3, pro-

gram states can be defined at various granularities, with different tradeoff between 

integrity measurement precision and cost. We choose to monitor two types of such 

events: function calls and function returns. The reason is that functions can give 

semantic meaning for creating (by initialization) or re-creating (by updating) an 

invariant. In other words, we can say that the scope of an invariant is between 

when it gets its value in some function and when it is assigned a different value in 

another function. Tracking the invocations and returns from functions is thus im-

portant for determining the scopes of invariants. 

For example, the global variable opt_noirqbalance of Xen controls whether 

IRQ balance should be enabled, and Xen allows this configuration parameter to be 

modified by the hypercall platform_op. Obviously, this variable is an invariant 

between two consecutive platform_op hypercalls that modify it. 
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Fig. 6.2 Scoped invariant detection Architecture [19] 

6.5 Implementation 

We develop a prototype tool that can automatically derive invariants.  As Fig. 6.2 

shows, we first run the target software on top of QEMU [18], a CPU emulator, 

which enables us to log all memory write operations of the target software (by the 

MMU Arbitrator).  We also log important system events such as entering and exit-

ing a function, which represent program states that define invariant scopes. Then 

the Log Miner performs an offline processing of the log – given the sequence of 

memory write operations between two system events, ranking the memory loca-

tions based on the number of modifications to them (with the least modified on the 

top), and mapping the memory locations to global variables (using symbol infor-

mation). 

The output of the Log Miner is a list of candidate invariants, ranked from the 

most likely to the least likely.  If a variable is indeed an invariant, it will be ranked 

high in the candidate list – i.e., we will not miss the true invariants.  However, 

some non-invariant variables may be ranked high because the condition that leads 

to their updates is not satisfied during the limited profiling. This is a typical limita-

tion of dynamic analysis, which can be remediated by profiling the target program 

multiple times each with a different set of input.   We can also filter such non-

invariant variables using static analysis of the source code, which is out of the 

scope of this chapter. 

6.6 Evaluation 

To test the applicability of scoped invariants, this section takes Xen as the target 

system to do several case studies.  We first discuss the motivation of choosing 

Xen as the target system (Section 6.6.1); next we discuss a scoped invariant with 

GDT that is critical to Xen’s guest isolation mechanism (Section 6.6.2). In Section 
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Log 

QEMU 
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6.6.3 we describe a scoped invariant dependency study of the Xen scheduler. Sec-

tion 6.6.4 presents the result of an automated study of Xen’s global invariants. 

6.6.1 Choice of Xen as the subject of study 

Virtualization is the foundational technology for cloud computing, and Xen [14] is 

one representative VMM (virtual machine manager) that allows multiple operating 

systems (called guest OSes or simply guests) to share the same physical machine. 

As the lowest layer in the cloud computing software stack, the runtime integrity of 

Xen is the root of trust for a cloud computing environment. 

It is generally believed that Xen is more secure than commodity operating sys-

tems such as Windows and Linux because it is smaller and simpler. However, we 

cannot rule out the possibility of a malicious modification to Xen at runtime. For 

example, There could be vulnerabilities with Xen that can be exploited [20, 21]. 

Even if Xen is completely bug-free, there are environmental issues such as DMA 

and system management mode (SMM) [22] that can modify Xen at runtime. 

Therefore we feel it useful to choose Xen as the target system to perform an integ-

rity study. The particular Xen version studied in this chapter is a pre-release of 

Xen 3.0.4. 

6.6.2 Study of the GDT scoped invariant 

One essential security goal of Xen is guest isolation, e.g., a guest operating system 

should not have access to information about other guests on the same platform, 

nor should a guest have access to Xen’s internal state information. 

This guest isolation goal is achieved by scoped invariants associated with some 

entries of the Global Descriptor Table (GDT) [23].  Specifically, to avoid unau-

thorized access to its internal state from guests, Xen leverages the standard IA-32 

segmentation and protection rings architecture: a guest operating system runs in 

ring 1 and guest processes run in ring 3, and four special guest segments are de-

fined for them. For example, the data segment for ring 3 has the selector 0xe033 in 

the GDT. The “limit” of these guest segments is intentionally made smaller than 

4GB such that Xen’s code and data are excluded (Xen’s code and data reside at 

the top of every address space). 

Such a configuration is represented in the form of scoped invariants because in-

formation about these guest segments is stored in memory, in a data structure 

called gdt_table.  Setting of the proper descriptor values for gdt_table is per-

formed in the initialization phase of Xen, and after that the “limit” fields of the 

relevant entries are not supposed to change, in other words, they are scoped invar-

iants. 
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It is easy to understand that a runtime modification to the gdt_table entries 

(e.g., setting the “limit” field to 4GB) could undo the effect of Xen’s initialization 

and expose the complete 4 GB address space back to the guests.  Then suddenly a 

guest can freely read Xen’s data, violating the guest isolation security goal. 

We have experimentally confirmed that modifying the “limit” field of the 

gdt_table entries at runtime enables a para-virtualized guest to read Xen’s data 

and retrieve the list of domains on the platform by loading its DS register with 

0xe033. This means that our hypothesis is valid.  And it turns out that only one 

byte needs to be modified (from 0x67 to 0xFF). We should note that Xen virtual-

izes the GDT table for each guest domain, which means that each guest domain 

has its own GDT.  However, each guest GDT derives its entries for the guest seg-

ments from the same gdt_table. Therefore, a modification to the gdt_table 

applies to all guest domains. 

The GDT example demonstrates how a particular scoped invariant can influ-

ence Xen’s high level security goals – i.e. guest isolation. Therefore, this invariant 

must be checked by a decision maker. 

6.6.3 Integrity Dependency Analysis of the Xen Scheduler 

In this section, we perform an integrity dependency analysis of the Xen scheduler. 

We will demonstrate the dependencies among scoped invariants. We choose the 

scheduler because it is one of the most important functionalities of Xen, which al-

lows multiple operating systems to share the physical CPU. The quality of this 

sharing is determined by the scheduler. Besides, if we can verify the integrity of 

the scheduler, we can trust it to run other security measures such as integrity 

monitors for the guest kernel. 

The security goal that we choose is complete mediation. Under the context of 

scheduling it means that no task should be able to use the CPU without the per-

mission from the scheduler. In other words, the scheduler should always be able to 

control when and for how long a particular task can use the CPU. 

Fig. 6.4 shows the invariant dependency graph associated with the Xen sched-

uler.  Below we will discuss the reasoning behind this graph. 

In order to fulfill complete mediation, the scheduler needs two necessary condi-

tions: (1) when running, the scheduler correctly implements a scheduling algo-

rithm (e.g., the credit-based scheduling algorithm in Xen); (2) the scheduler can 

have a chance to run when it needs to. Condition (1) can be satisfied by guarantee-

ing the integrity of the scheduler code. Satisfying condition (2) is challenging, be-

cause from time to time the scheduler has to give up CPU so that the normal tasks 

can make progress, but it must be able to regain control of the CPU to do its job. If 

these two necessary conditions are not guaranteed, we say that the security goal of 

complete mediation for the scheduler is not achieved. Therefore, we have derived 

from the security goal two integrity properties: (1) the scheduler code is not com-
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promised, or equivalently, the scheduler code is a scoped invariant (#1 in Table 

6.1); and (2) the scheduler is able to get control when it should.  

In order to achieve integrity property (2), Xen scheduler relies on the Timer 

functionality (Fig. 6.3), which guarantees that control will go to a callback func-

tion supplied by the scheduler after some amount of time into the future. For ex-

ample, when the scheduler decides to let a task run, it starts a timer which will ex-

pire after an interval equal to that task’s time slice. The callback function 

(s_timer_fn) associated with this timer forces a decision to be made concerning 

which task runs next. This timer helps to avoid the situation where a task exces-

sively occupies CPU and nobody can stop it. 

Xen scheduler has to trust the Timer facility mentioned above to work as ex-

pected (e.g., the Timer should guarantee precision of some degree); otherwise Xen 

scheduler cannot achieve its goals. Therefore, the Timer is a scoped invariant (#2 

in Table 6.1), and the integrity of Xen scheduler is dependent on the integrity of 

the Timer facility. 

The timer facility in turn relies on the soft IRQ mechanism of Xen (Fig. 6.3). 

Different from hard IRQs (hardware interrupts), which can interrupt the currently 

running task at almost any point, soft IRQs do not directly interrupt currently run-

ning task.  Instead, they are piggy-backed in the hardware interrupt handling pro-

cedure, e.g., after an interrupt has been served but before the interrupt handler re-

turns. Specifically, the interrupt handler procedure calls do_softirq, which in 

turn checks the presence of soft IRQs and calls their respective handler functions. 

Therefore the code of do_softirq should be a scoped invariant (#3 in Table 6.1). 

For the soft IRQ mechanism to work, several preconditions must hold. One of 

them is that do_softirq must be invoked in the interrupt handling procedure. 

This is an issue because do_softirq is not invoked by hardware, but the inter-

rupt handling procedures which are code in the memory. Therefore, the integrity 

of interrupt handling code is a precondition for the integrity of Xen’s soft IRQ 

mechanism. In other words, the interrupt handling code is a scoped invariant (#4 

in Table 6.1). 

Table 6.1 Scoped invariants associated with the Xen scheduler. RC means Runtime Code, KGC 
means Known Good Code, RD means Runtime Data, and KGD means Known Good Data 

1 RCscheduler [initialization, termination] = KGCscheduler 

2 RCtimer [initialization, termination] = KGCtimer 

3 RCdo_softirq [initialization, termination] = KGCdo_softirq 

4 RCinthandler [initialization, termination] = KGCinthandler 

5 RDidt [initialization, termination] = KGDidt 

6 RDgdt [initialization, termination] = KGDgdt 

7 RDtss [initialization, termination] = KGDtss 

8 RDpgtable [initialization, termination] = KGDpgtable 

9 RDsoftirq_handlers [initialization, termination] = KGDsoftirq_handlers 
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Fig. 6.3 Module Structure Related to the Xen Scheduler 
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In normal execution mode, an IDT entry refers to code in memory in terms of a 

segment selector and an offset. Each memory segment has a base address and a 

limit, and the information about the segments is stored in the Global Descriptor 

Table (GDT). When an interrupt happens, the handler function’s segment selector 

and offset are fetched from the IDT. Then the segment selector is used to get the 

base address from the GDT, and the offset is added to the base address to form the 

linear address of the interrupt handling function. Therefore, the GDT entry must 

give the correct base address in order for the right interrupt handling function to be 

located. In other words, the relevant GDT entries are scoped invariants (#6 in Ta-

ble 6.1), because they are used to evaluate (the linear address of) the interrupt 

handling code. 

Furthermore, some interrupts are handled by task gates (e.g., double fault), 

whose details (such as handler function entry and stack pointer) are stored in Task 

State Segments (TSS). So according to our model, there is a dependency relation-

ship from the IDT entry to the relevant TSS, so the TSS becomes a scoped invari-

ant (#7 in Table 6.1). 

Finally, there is another layer of indirection due to modern CPU’s paging 

mechanism. Specifically, an interrupt handling function address derived from IDT, 

GDT and perhaps TSS is a linear address, and the paging mechanism of the under-

lying hardware maps this linear address to physical address in physical memory, 

where the handler code resides. But software can control the mapping by supply-

ing page tables, and the page tables are again in memory which can be modified. 

Therefore, the integrity of page tables is essential to the interrupt handling process 

of Xen, and due to all the above description, the integrity of the Xen scheduler. So 

the relevant page table entries are also scoped invariants (#8 in Table 6.1). 

In Fig. 6.4, the dependency edges from GDT, IDT and TSS to page tables are 

due to the fact that on the Intel architecture, GDT, IDT and TSS are known to the 

CPU in terms of linear addresses. In order to evaluate such data structures, the 

CPU needs to go through the paging mechanism controlled by the page tables. 

As mentioned above, in order for the soft IRQ mechanism to work, several pre-

conditions must hold. We have described one of them: that do_softirq be in-

voked in the interrupt handling process. But we need one more precondition. Spe-

cifically, do_softirq consults a function pointer array (softirq_handlers) 

for the handler of a particular soft IRQ, so the content of this array must not be 

compromised. In other words, the relevant entries in the softirq_handlers ar-

ray are scoped invariants (#9 in Table 6.1). For example, Xen scheduler registers a 

function schedule for soft IRQ 1, meaning that schedule will be called when 

soft IRQ 1 is raised (see Fig. 6.1). But if an attacker modifies the function pointer 

for soft IRQ 1, some other function instead of schedule will be called. Then Xen 

scheduler is essentially bypassed. 

Another important soft IRQ is the timer soft IRQ, which implement the Timer 

facility. We have mentioned that Xen scheduler relies on it. The Timer facility 

registers timer_softirq_action as the call back function. 

We can summarize the integrity analysis of Xen scheduler with the Invariant 

Dependency Graph in Fig. 6.4. 
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6.6.4 A comprehensive detection of Xen scoped invariants 

We have performed a comprehensive study of scoped invariants for Xen, using the 

QEMU-based profiler and the Log Miner in Fig. 6.2. 

We first ran Xen in the profiler, and used the Log Miner to generate the candi-

date scoped invariants list.  Then we did a static analysis to confirm the real 

scoped invariants. Our static analysis scans the source code of Xen to locate all 

statements that write to a candidate invariant. We found that most of the candidate 

invariants have only one such statement (for initialization).  

Our analysis suggests that most of the Xen global variables are scoped invari-

ant at runtime. If we only consider the number of variables declared, 75% of them 

(271 out of 362) turn out to be invariants.  If we also consider the size of the vari-

ables, then more than 90% of the memory locations corresponding to these global 

variables are invariant at runtime. 

Table 6.2 shows some of the identified invariants.  We have classified them 

based on an informal reasoning about why they should be invariants.  Below we 

give details of some of these scoped invariants: 

• sched_sedf_def is a data structure that stores the addresses of several func-

tions that together implement the simple earliest deadline first (SEDF) algo-

rithm of Xen. These functions are invoked when a virtual CPU is initialized, 

suspended, resumed, and so on. Obviously, they should be scoped invariants 

because otherwise an attacker can modify them to induce Xen’s control flow to 

a malicious scheduling algorithm. Conceptually, sched_sedf_def is similar 

to the IDT. From Table 6.2 we can see that there are 27 more such scoped in-

variants in Xen. 

• opt_sched holds the value of a boot-time parameter, which selects one of the 

built-in scheduling algorithms to be used by Xen.  Since Xen does not support 

on-the-fly change of its scheduling algorithm, this variable should be a scoped 

invariant. 

 

Table 6.3 gives more information about the invariants idle_pg_table, 

idle_pg_table_l2 and idt_table identified in Table 6.2.  First, since only 

part of such data structures (arrays) are invariants, Table 6.3 gives the range in-

formation. We have used macros (e.g., DIRECTMAP_VIRT_START) from Xen 

source code because their exact values depend on the hardware configuration (e.g., 

whether Physical Address Extension [23] is enabled). Second, the column denoted 

“Initialized By” shows the last function that sets the value of a particular scoped 

invariant. The goal of identifying functions in the “Initialized By” column is to 

specify the start of the scope of a scoped invariant, because since then the value of 

the scoped invariant is supposed to be constant. 
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6.6.5 Discussion 

The degree to which a set of scoped invariants can approximate runtime integrity 

of a software system remains a research question. For example, the invariants that 

we identified are all necessary conditions, but they may not be sufficient. Assum-

ing that a right set of scoped invariants is at hand, we can estimate the runtime in-

tegrity of the system by verifying them. If all of them are verified, we have more 

confidence about the system’s integrity. But if some of them do not pass the veri-

fication, we know that the system has lost its integrity. 

Table 6.2 Sample scoped invariants (global variables) identified for Xen 

Type Total 

Number 

Examples 

Static variables that 

are definitely 

invariants 

63 schedulers, large_digits, small_digits 

Effectively static 

structures (e.g., 

contains important 

function pointers) 

28 sched_bvt_def, sched_sedf_def,  

ioapic_level_type, ioapic_edge_type, 

amd_mtrr_ops, apic_es7000, 

hvm_mmio_handlers, exception_table,  

hypercall_table               

Variables that are 

effectively invariant 

given a particular 

boot configuration 

17 opt_badpage, opt_sched, opt_conswitch, 

opt_console, acpi_param, debug_stack_lines, 

lowmem_emergency_pool_pages, 

dom0_nrpages 

Variables that are 

effectively invariant 

given a hardware 

configuration 

102 new_bios, ioapic_i8259, 

mp_bus_id_to_pci_bus, 

boot_cpu_logical_apicid, es7000_plat, 

dmi_ident,  hpet_address, vmcs_size, 

max_cpus, max_page, cpu_present_map,  

vector_irq, irq_vector 

Variables that are 

effectively invariant 

given a software 

configuration 

4 softirq_handlers, gdt_table, change_point_list, 

key_table 

Arrays whose 

entries are mostly 

invariant 

7 idle_pg_table, idle_pg_table_l2, e820, 

e820_raw, irq_2_pin cpu_sibling_map, 

cpu_core_map, idt_table 
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Table 6.3 More information of idle_pg_table, idle_pg_table_l2, and idt_table  

Table 
name 

Start offset Number of entries Initialized By 

idle_pg_
table 0 4 

xen/arch/x86/boot/x86_32.S 

idle_pg_
table_l2 

DIRECTMAP_VIR
T_START /  (1<< 
L2_PAGETABLE_
SHIFT) 

DIRECTMAP_PHYS_END /  
(1<< 2_PAGETABLE_SHIFT) 

__start in 
xen/arch/x86/boot/head.S 

idle_pg_
table_l2 

0 16MB / (1<< 
L2_PAGETABLE_SHIFT) 

__start in 
xen/arch/x86/boot/head.S 

idle_pg_
table_l2 

FRAMETABLE_V
IRT_START /  
(1<<L2_PAGETAB
LE_SHIFT) 

(FRAMETABLE_MBYTES 
<<20) / (1<< 
L2_PAGETABLE_SHIFT) 

init_frametable in 
xen/arch/x86/mm.c 

idle_pg_
table_l2 

RDWR_MPT_VIR
T_START 
>>L2_PAGETABL
E_SHIFT 

(max_page * 
BYTES_PER_LONG) >> 
L2_PAGETABLE_SHIFT 

paging_init in 
xen/arch/x86/x86_32/mm.c 

idle_pg_
table_l2 

RO_MPT_VIRT_S
TART >> 
L2_PAGETABLE_
SHIFT 

(max_page * 
BYTES_PER_LONG) >> 
L2_PAGETABLE_SHIFT 

paging_init in 
xen/arch/x86/x86_32/mm.c 

idle_pg_
table_l2 

IOREMAP_VIRT_
START >> 
L2_PAGETABLE_
SHIFT 

IOREMAP_MBYTES >> 
(L2_PAGETABLE_SHIFT – 
20) 

paging_init in 
xen/arch/x86/x86_32/mm.c 

idt_table 
0 128 

init_IRQ in 
xen/arch/x86/i8259.c, 
apic_intr_init in 
xen/arch/x86/apic.c, trap_init 
in xen/arch/x86/traps.c, 
percpu_traps_init in xen/arch/                     
x86/x86_32/traps.c 129 127 

idt_table 128 1 dom0 kernel    

6.7 Related work 

In this section, we give a survey of existing research related to our work, grouped 

into different topic areas. 

6.7.1 Invariants detection 

The Daikon invariant detector [24] generates likely invariants using program exe-

cution traces collected during sample runs. Daikon is the closest to our work in 

theory, but the two are different: Daikon instruments the program source code to 
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emit data traces at specific program points, while our tool transparently intercepts 

program execution from a machine emulator. 

6.7.2 Integrity measurement mechanisms 

There has been a long line of research on integrity measurement. Approaches such 

as IMA [12] use hashing or digital signatures to measure the software at load time. 

Recently, ReDAS [25] and DynIMA [5] advance the state of the art by supporting 

software integrity measurement at runtime. Other related work includes [2, 6, 9, 

10, 11, and 13]. These approaches generally focus on the mechanism for meas-

urement, but not the integrity properties. 

Copilot [9] is a co-processor based integrity checker for the Linux kernel. The 

properties that Copilot prototype checked were kernel code, module code, and 

jump tables of kernel function pointers. Although Copilot later provided a specifi-

cation language [10], its focus was not on deriving integrity properties. We work 

out the properties from analyzing the target software itself. 

Livewire [6] leverages a VMM (a modified version of VMware workstation) to 

implement a host-based intrusion detection system. It can inspect and monitor the 

states of a guest OS for detecting intrusions, and interposes on certain events, such 

as interrupts and updates to device and memory state. Like Copilot, Livewire does 

not focus on the identification of integrity properties but only checks known prop-

erties. 

LKIM [2] produces detailed records of the states of security relevant structures 

within the Linux kernel using the concept of contextual inspection. However, the 

identification of security relevant structures relies on domain knowledge. This 

chapter proposes an approach for systematically finding such structures. 

6.7.3 Specialized integrity property measurement 

Some specialized integrity properties have been measured, such as control flow in-

tegrity [3] and Information flow integrity [26]. [3] checks if the control transfer 

from one function to the next is consistent with a pre-computed control flow 

graph, so we can think of it as checking a sequence property of the target software. 

[26] checks the integrity of a system by reasoning about information flows, but it 

assumes that there is no direct memory modification attack, e.g., information 

flows are triggered by well-defined interfaces (function calls or file reads). 
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6.7.4 Rootkits detection and recovery 

As we mentioned, there has been a lot of research on rootkits. A nice survey of 

rootkits and detection software is given in [9]. From [27] you can also find a list of 

popular rootkits. The integrity measurement mechanisms (such as [6, 9, 11, and 

13]) mentioned above all can be used for rootkit detection. Some work such as [7] 

and [8] attempts to detect rootkits and recover the software from known-good cop-

ies. 

6.7.5 Trusted computing 

The Trusted Computing Group [16] has proposed several standards for measuring 

the integrity of a software system and storing the result in a TPM (trusted platform 

module) [17] whose state cannot be corrupted by a potentially malicious host sys-

tem. Industry vendors such as Intel have embedded TPM in their hardware. Such 

standards and technologies have provided the root of trust for secure booting [28], 

and enabled remote attestation [15]. There has been a consistent effort in building 

a small Trusted Computing Base (with hardware support such as TCG and appli-

cation level techniques such as AppCore [29]). A small Trusted Computing Base 

facilitates integrity analysis and monitoring. 

6.8 Conclusion 

In this chapter, we have discussed remote attestation as a critical and useful trust 

enhancing technology for cloud computing. We studied one important aspect of 

remote attestation that is often ignored, the problem of systematically modeling 

the runtime integrity of a target system, e.g., a cloud server. We proposed scoped 

invariants as an important class of integrity properties, and we designed and im-

plemented automated tools that can derive scoped invariants out of the target 

software. 

To evaluate our methodology, we applied our tools to the Xen VMM and iden-

tified 271 scoped invariants that are critical to Xen’s runtime integrity. We exper-

imentally confirmed some of these invariants, including one that can be violated to 

defeat Xen’s guest isolation mechanism. 
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Key Definitions 

• Integrity: trustworthiness of data or resources, usually phrased in terms of pre-

venting improper or unauthorized change. 

• Integrity modeling: the process of specifying the expected properties of a sys-

tem in order to detect improper change. 

• Scoped invariant: the property that a certain object has a known-good value 

between two system events. 

• Invariant dependency graph: a graph that concisely represents the dependen-

cy relationships among scoped invariants. 

• Invariants detection: the process of deriving scoped invariant specifications 

from a program. 
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• Remote attestation: a trusted computing technique that enables a computer 

system in a networked environment to decide whether a target computer has in-

tegrity, e.g., whether it has the appropriate configuration and hardware/software 

stack, so it can be trusted. 

• Emulation: the act of using hardware and/or software to duplicate the func-

tions of a first computer system in a different second computer system, so that 

the behavior of the second system closely resembles the behavior of the first 

system. 

• Trusted computing: technologies and proposals for resolving computer securi-

ty problems through hardware enhancements (such as Trusted Platform Mod-

ules) and associated software modifications. 


