
Soft-Timer Driven Transient Kernel

Control Flow Attacks and Defense

Jinpeng Wei, Bryan D. Payne,

Jonathon Giffin, Calton Pu

Georgia Institute of Technology

Annual Computer Security Applications Conference (ACSAC 2008)
Anaheim, CA. December 10, 2008.

2

The Botnet Threat

• Botnet: a collection of compromised
computers under the control of a malicious
server or master.

• Malware (e.g., rootkits) on each bot has
become increasingly sophisticated and
stealthy to evade detection and removal.

• We are mainly interested in the stealthy
hiding of malware in the kernel space

3

Outline

• Soft timers and soft-timer-driven

attacks

• Design of the STIR defense

• Implementation and evaluation

• Related work

• Conclusion

4

Outline

• Soft timers and soft-timer-driven

attacks

• Design of the STIR defense

• Implementation and evaluation

• Related work

• Conclusion

5

Classification of Stealthy Control

Flow Attacks in the Kernel

• Detour attacks

• Persistent control flow attacks (hooks)

• Transient control flow attacks

– Soft-timer-driven attacks

6

The Soft-timer Queue

• A dynamic schedulable queue in the kernel

• Can be used to inject transient control flows

function

data

next

expires

function

data

next

expires

function

data

next

expires

…

tvec_bases

… … …

foo_tmout

add_timer

STIR:
Soft-Timer

Interrupt
Request

7

Soft-timer-driven Control Flow

Attacks

function
data

expires

timer->function
(timer->data) {
...

}

1. schedule

3. callback

Legitimate

Driver
…

Soft Timer
Queue
Engine

Legitimate

Driver

4. run

…

2. wait

function
data

expires

Legitimate

Driver

function
data

expires

8

function
data

expires

Malware

Module

1. schedule

3. callback

Legitimate

Driver
…

Soft Timer
Queue
Engine

Legitimate

Driver

4. run

…

2. wait

function
data

expires

function
data

expires

timer->function
(timer->data) {
...

}

Soft-timer-driven Control Flow

Attacks

9

Proof of Concept Malware

• How do they work?
– Request the first STIR to interpose on the kernel

control flow at break-in

– Execute when the first STIR expires (a callback)

– Before giving up control, request the next STIR

– Wait for the next callback to happen

• What can they do?
– Collect confidential information (stealthy key logger)

– Mount a DoS attack (stealthy cycle stealer)

– Schedule a hidden process (alter-scheduler)

STIR: Soft-Timer Interrupt Request

10

The Stealthy Key Logger

• Runs in Linux kernel 2.6.16

• Periodically reads the TTY line discipline buffer

in the kernel, which can keep a history of up to

2,048 keystrokes

• Timer period is 1 second

TTY flip
buffer

line discipline
buffer

user
app.

kernel space user space

keyboard

11

Outline

• Soft timers and soft-timer-driven

attacks

• Design of the STIR defense

• Implementation and evaluation

• Related work

• Conclusion

12

Defending Soft-timer-driven

Attacks

• Main idea: a soft-timer callback function and its

callees (functions it calls) should always target

the trusted code of the kernel during the

execution of the callback function.

• By preserving such invariants, we can defeat

soft-timer-driven attacks.

Trusted kernel
code

Untrusted
kernel
code

Q:

How can we

draw the line

between trusted

and untrusted

parts of the

kernel?

A:

Validate the

targets of indirect

control transfers.

E.g., what can

timer−>function
legally point to?

13

Basic Defense Strategy

• Check the callback function against a
white list of legitimate callback functions

function

data

next

expires

function

data

next

expires

tx_timeout

…

tvec_bases

… …

dev_watchdog malicious_foo

……

el000_tx_timeout

14

More Comprehensive Defense

Strategy

• Check the callback function as well as the data pointer
• Smarter malware may supply a legitimate callback

function but a malicious data pointer (similar to the
“jump-to-libc” style attacks).

function

data

next

expires

function

data

next

expires

tx_timeout

…

tvec_bases

… …

dev_watchdog

tx_timeout

malicious_foo

……

el000_tx_timeout

15

High-Level View of the Defense

function = ?

ab_cleanup dev_watchdog tcp_delack_timer zf_ping

data −>−>−>−> tx_timeout = ?

ace_watchdog e1000_tx_timeout…

…

…

Input: function, data

Output: yes/no

How do we build and use this whitelist tree ?

16

STIR Summary Signatures

• summary_signature := <function, assertion>

• assertion := true | dpred AND assertion

• dpred := deref equals (functionlist)

• functionlist := function | function OR functionlist

• Example summary signature:

< dev_watchdog, data->tx_timeout equals
(e1000_tx_timeout OR xircom_tx_timeout) >

Constraint on
the function

pointer

Constraint on
the data
attribute

17

Processing STIR Summary

Signatures

STIR
Analyzer

Runtime
symbol

information

Resolved
STIR

Signature
Database

STIR Symbol
Resolver

STIR Symbol
Mapper

Guest VM

Security VM

Initialization TimeCompile Time

STIR
Checker

STIR
Dispatcher

Evaluation Time

Symbolic
STIR

Signatures

Linux
Kernel
Source

18

Static Analysis Overview

Top-Level Analysis

Transitive Closure

Analysis

< function, assertion >

STIR summary signature

19

Top-Level Analysis

• Traverse each assignment statement (lval = rval)

in the kernel, if lval ends with a field named

function within a structure of type timer_list,
then rval is recognized as a soft timer callback

function

/* Linux kernel 2.6.16/net/sched/sch_generic.c */

static void dev_watchdog_init(struct net_device *dev)
{

init_timer(&dev->watchdog_timer);
dev->watchdog_timer.data = (unsigned long)dev;

dev->watchdog_timer.function = dev_watchdog;
}

20

Top-Level Analysis

• Traverse each assignment statement (lval = rval)

in the kernel, if lval ends with a field named

function within a structure of type timer_list,
then rval is recognized as a soft timer callback

function

/* Linux kernel 2.6.16/net/sched/sch_generic.c */

static void dev_watchdog_init(struct net_device *dev)
{

init_timer(&dev->watchdog_timer);
dev->watchdog_timer.data = (unsigned long)dev;

dev->watchdog_timer.function = dev_watchdog;
}

�

21

Top-Level Analysis

• Traverse each assignment statement (lval = rval)

in the kernel, if lval ends with a field named

function within a structure of type timer_list,
then rval is recognized as a soft timer callback

function

/* Linux kernel 2.6.16/net/sched/sch_generic.c */

static void dev_watchdog_init(struct net_device *dev)
{

init_timer(&dev->watchdog_timer);
dev->watchdog_timer.data = (unsigned long)dev;

dev->watchdog_timer.function = dev_watchdog;
}

22

Transitive Closure Analysis

static void

dev_watchdog(unsigned long arg)

{

struct net_device *dev = (struct

net_device *)arg;

if (dev->qdisc != &noop_qdisc) {

…

printk(KERN_INFO “…%s…\n",
dev->name);

dev->tx_timeout(dev);

…

}

• Objective: To

identify the

constraints on

the “data”

attribute of a

legitimate STIR

23

Transitive Closure Analysis

tainted_vars:

static void

dev_watchdog(unsigned long arg)

{

struct net_device *dev = (struct

net_device *)arg;

if (dev->qdisc != &noop_qdisc) {

…

printk(KERN_INFO “…%s…\n",
dev->name);

dev->tx_timeout(dev);

…

}

{arg}

24

Transitive Closure Analysis

tainted_vars:

static void

dev_watchdog(unsigned long arg)

{

struct net_device *dev = (struct

net_device *)arg;

if (dev->qdisc != &noop_qdisc) {

…

printk(KERN_INFO “…%s…\n",
dev->name);

dev->tx_timeout(dev);

…

}

{arg}

{arg, dev}

25

Transitive Closure Analysis

tainted_vars:

static void

dev_watchdog(unsigned long arg)

{

struct net_device *dev = (struct

net_device *)arg;

if (dev->qdisc != &noop_qdisc) {

…

printk(KERN_INFO “…%s…\n",
dev->name);

dev->tx_timeout(dev);

…

}

{arg, dev}

26

Transitive Closure Analysis

tainted_vars:

static void

dev_watchdog(unsigned long arg)

{

struct net_device *dev = (struct

net_device *)arg;

if (dev->qdisc != &noop_qdisc) {

…

printk(KERN_INFO “…%s…\n",
dev->name);

dev->tx_timeout(dev);

…

}

{arg, dev}

27

Transitive Closure Analysis

tainted_vars:

static void

dev_watchdog(unsigned long arg)

{

struct net_device *dev = (struct

net_device *)arg;

if (dev->qdisc != &noop_qdisc) {

…

printk(KERN_INFO “…%s…\n",
dev->name);

dev->tx_timeout(dev);

…

}

{arg, dev}

Question 1:

dev->tx_timeout = ?

Answer:

Find all legitimate functions
that can be assigned to the
“tx_timeout” field of a structure
of type “net_device”

�top-level analysis

28

Transitive Closure Analysis

static void

dev_watchdog(unsigned long arg)

{

struct net_device *dev = (struct

net_device *)arg;

if (dev->qdisc != &noop_qdisc) {

…

printk(KERN_INFO “…%s…\n",
dev->name);

dev->tx_timeout(dev);

…

}

Question 2:

How is the control flow of

dev->tx_timeout influenced

by dev?

Answer:

Perform a transitive closure
analysis on the target function.

static void ariadne_tx_timeout(struct

net_device *dev)
{

volatile struct Am79C960 *lance =
(struct Am79C960*)dev->base_addr;
…

}

29

Processing STIR Summary

Signatures

STIR
Analyzer

Runtime
symbol

information

Resolved
STIR

Signature
Database

STIR Symbol
Resolver

STIR Symbol
Mapper

Guest VM

Security VM

Initialization TimeCompile Time

STIR
Checker

STIR
Dispatcher

Evaluation Time

Symbolic
STIR

Signatures

Linux
Kernel
Source

dev_watchdog, c02ae890
neigh_table_clear, c02a4810
……

30

Checking STIRs

STIR
Analyzer

Runtime
symbol

information

Resolved
STIR

Signature
Database

STIR Symbol
Resolver

STIR Symbol
Mapper

Guest VM

Security VM

Initialization TimeCompile Time

STIR
Checker

STIR
Dispatcher

Evaluation Time

Symbolic
STIR

Signatures

Linux
Kernel
Source

31

STIR Checking Architecture

Security VMGuest VM

STIR
Dispatcher

STIR
Checker

Resolved
STIR

Sig. DB

Xen

(function, data)yes / no
VMI

function = ?

ab_cleanup dev_watchdog tcp_delack_timer zf_ping

data −>−>−>−> tx_timeout = ?

ace_watchdog e1000_tx_timeout…

…

…

32

Outline

• Soft timers and soft-timer-driven

attacks

• Design of the STIR defense

• Implementation and evaluation

• Related work

• Conclusion

33

Implementation of the STIR

Analyzer

• Based on CIL (C Intermediate Language)

• Comprised of several analysis modules

– A top-level analyzer

– A transitive closure analyzer

– A type analyzer

– Shell scripts to compose the modules

34

Implementation of the STIR

Checking

• On top of Xen 3.0.4

• Used the VT (virtualization technology)
support of an Intel CPU

• Based on the Lares architecture

35

Evaluation: Security Assumptions

• The VMM and the Security VM are part of
the TCB (Trusted Computing Base).

• The legitimate kernel code in the guest
VM’s memory can not be tampered with.

• The source code of the kernel and all
kernel extensions are available for static
analysis.

• The guest system can be booted into a
known good state (e.g., secure boot).

36

Evaluation: Static Analysis

Results

• We found 365 top-level callback functions
in 3,688 kernel source files analyzed.

• The majority of these STIR callback
functions do not derive function pointers
from the input parameter.

• 32 of them need transitive closure
analysis.

37

Evaluation: Effectiveness of

Defense

• Attack experiments: can detect the sample
malware.

• Can have no false negatives because it
mediates every STIR execution and
prevents the execution of all unknown,
illegitimate STIRs.

• Can have no false positives because all
potential legitimate STIRs are captured in
the summary signature database.

38

Evaluation: Execution Time

Overhead

cat - read and display the content of 8,000 small files (with size ranging from 5K to
7.5K bytes).

ccrypt - encrypt a text stream of 64M bytes.

gzip - compress a text file of 64M bytes using the --best option.

cp - recursively copy a Linux kernel source tree.

make - perform a full build of the Apache HTTP server (version 2.2.2) from source.

81.661.447.346.346.9Callbacks/Sec

0.29%6.05%1.52%0%0.52%Overhead

218.5846.616.013.3020.96
STIR-aware

(seconds)

217.9543.955.923.3020.85
Original

(seconds)

makecpgzipccryptcat

39

Evaluation: Network Throughput

Overhead

• We used the Iperf-2.0.2 benchmark.
• The security VM ran the Iperf server and the guest VM ran the Iperf

client.
• The experiment was run for 60 seconds, using 64KB buffers and 10

concurrent connections.

717.9
688.4

0

100

200

300

400

500

600

700

800

Original STIR-Aware

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Performance
drop: 4.1%

Callback
frequency:

287/second

40

Outline

• Soft timers and soft-timer-driven

attacks

• Design of the STIR defense

• Implementation and evaluation

• Related work

• Conclusion

41

Related Work

• Focused on code changes
– Tripwire (a file system integrity checker)

– IMA (TCG-based, load-time kernel and application integrity
checker)

– Copilot (coprocessor-based, run-time kernel integrity checker)

– Pioneer (purely software-based run-time integrity checker)

• Focused on data changes
– SBCFI (state-based control flow integrity), a sampling-based

checker targeting persistent kernel control flow attacks

– CFI (control flow integrity), checking the dynamic execution

flow of a program against a statically computed control flow
graph

42

Outline

• Soft timers and soft-timer-driven

attacks

• Design of the STIR defense

• Implementation and evaluation

• Related work

• Conclusion

43

Conclusions

• The Soft-timer mechanism of a modern
kernel provides a novel hiding technique
for the malware.

• We develop a white list approach for
defending against such malware.

• We use static analysis to derive the white
list.

• We use virtualization to implement the
defense.

