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The Botnet Threat

• Botnet: a collection of compromised 
computers under the control of a malicious 
server or master.

• Malware (e.g., rootkits) on each bot has 
become increasingly sophisticated and 
stealthy to evade detection and removal.

• We are mainly interested in the stealthy 
hiding of malware in the kernel space
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Classification of Stealthy Control 

Flow Attacks in the Kernel

• Detour attacks

• Persistent control flow attacks (hooks)

• Transient control flow attacks

– Soft-timer-driven attacks
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The Soft-timer Queue

• A dynamic schedulable queue in the kernel

• Can be used to inject transient control flows

function

data

next

expires

function

data

next

expires

function

data

next

expires

…

tvec_bases

… … …

foo_tmout

add_timer

STIR: 
Soft-Timer 

Interrupt 
Request



7

Soft-timer-driven Control Flow 

Attacks 
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Proof of Concept Malware

• How do they work?
– Request the first STIR to interpose on the kernel 

control flow at break-in

– Execute when the first STIR expires (a callback)

– Before giving up control, request the next STIR

– Wait for the next callback to happen

• What can they do?
– Collect confidential information (stealthy key logger)

– Mount a DoS attack (stealthy cycle stealer)

– Schedule a hidden process (alter-scheduler)

STIR: Soft-Timer Interrupt Request
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The Stealthy Key Logger

• Runs in Linux kernel 2.6.16

• Periodically reads the TTY line discipline buffer 

in the kernel, which can keep a history of up to 

2,048 keystrokes

• Timer period is 1 second

TTY flip
buffer
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user 
app.

kernel space user space

keyboard
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Defending Soft-timer-driven 

Attacks

• Main idea: a soft-timer callback function and its 

callees (functions it calls) should always target 

the trusted code of the kernel during the 

execution of the callback function.

• By preserving such invariants, we can defeat 

soft-timer-driven attacks.

Trusted kernel 
code

Untrusted
kernel 
code

Q:

How can we 

draw the line 

between trusted 

and untrusted

parts of the 

kernel?

A:

Validate the 

targets of indirect 

control transfers. 

E.g., what can 

timer−>function
legally point to?
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Basic Defense Strategy

• Check the callback function against a 
white list of legitimate callback functions
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More Comprehensive Defense 

Strategy

• Check the callback function as well as the data pointer 
• Smarter malware may supply a legitimate callback 

function but a malicious data pointer (similar to the 
“jump-to-libc” style attacks).
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High-Level View of the Defense

function = ?

ab_cleanup dev_watchdog tcp_delack_timer zf_ping

data −>−>−>−> tx_timeout = ?

ace_watchdog e1000_tx_timeout…

…

…

Input: function, data

Output: yes/no

How do we build and use this whitelist tree ?
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STIR Summary Signatures

• summary_signature := <function, assertion>

• assertion := true | dpred AND assertion

• dpred := deref equals (functionlist)

• functionlist := function | function OR functionlist

• Example summary signature:

< dev_watchdog, data->tx_timeout equals
(e1000_tx_timeout OR xircom_tx_timeout) >

Constraint on 
the function 

pointer

Constraint on 
the data 
attribute
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Processing STIR Summary 

Signatures
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Static Analysis Overview

Top-Level Analysis

Transitive Closure 

Analysis

< function, assertion >

STIR summary signature
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Top-Level Analysis

• Traverse each assignment statement (lval = rval) 

in the kernel, if lval ends with a field named 

function within a structure of type timer_list, 
then rval is recognized as a soft timer callback 

function

/* Linux kernel 2.6.16/net/sched/sch_generic.c */

static void dev_watchdog_init(struct net_device *dev)
{

init_timer(&dev->watchdog_timer);
dev->watchdog_timer.data = (unsigned long)dev;

dev->watchdog_timer.function = dev_watchdog;
}
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Top-Level Analysis

• Traverse each assignment statement (lval = rval) 

in the kernel, if lval ends with a field named 

function within a structure of type timer_list, 
then rval is recognized as a soft timer callback 

function

/* Linux kernel 2.6.16/net/sched/sch_generic.c */

static void dev_watchdog_init(struct net_device *dev)
{

init_timer(&dev->watchdog_timer);
dev->watchdog_timer.data = (unsigned long)dev;

dev->watchdog_timer.function = dev_watchdog;
}

�
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Top-Level Analysis

• Traverse each assignment statement (lval = rval) 

in the kernel, if lval ends with a field named 

function within a structure of type timer_list, 
then rval is recognized as a soft timer callback 

function

/* Linux kernel 2.6.16/net/sched/sch_generic.c */

static void dev_watchdog_init(struct net_device *dev)
{

init_timer(&dev->watchdog_timer);
dev->watchdog_timer.data = (unsigned long)dev;

dev->watchdog_timer.function = dev_watchdog;
}
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Transitive Closure Analysis

static void 

dev_watchdog(unsigned long arg)

{

struct net_device *dev = (struct

net_device *)arg;

if (dev->qdisc != &noop_qdisc) {

…

printk(KERN_INFO “…%s…\n", 
dev->name);

dev->tx_timeout(dev);

…

}

• Objective: To 

identify the 

constraints on 

the “data”

attribute of a 

legitimate STIR
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Transitive Closure Analysis

tainted_vars:

static void 

dev_watchdog(unsigned long arg)

{

struct net_device *dev = (struct

net_device *)arg;

if (dev->qdisc != &noop_qdisc) {

…

printk(KERN_INFO “…%s…\n", 
dev->name);

dev->tx_timeout(dev);

…

}

{arg}
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Transitive Closure Analysis

tainted_vars:

static void 

dev_watchdog(unsigned long arg)

{

struct net_device *dev = (struct

net_device *)arg;

if (dev->qdisc != &noop_qdisc) {

…

printk(KERN_INFO “…%s…\n", 
dev->name);

dev->tx_timeout(dev);

…

}

{arg}

{arg, dev}
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Transitive Closure Analysis

tainted_vars:
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Transitive Closure Analysis

tainted_vars:
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Transitive Closure Analysis

tainted_vars:

static void 

dev_watchdog(unsigned long arg)

{

struct net_device *dev = (struct

net_device *)arg;

if (dev->qdisc != &noop_qdisc) {

…

printk(KERN_INFO “…%s…\n", 
dev->name);

dev->tx_timeout(dev);

…

}

{arg, dev}

Question 1:

dev->tx_timeout = ?

Answer:

Find all legitimate functions 
that can be assigned to the 
“tx_timeout” field of a structure 
of type “net_device”

�top-level analysis
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Transitive Closure Analysis

static void 

dev_watchdog(unsigned long arg)

{

struct net_device *dev = (struct

net_device *)arg;

if (dev->qdisc != &noop_qdisc) {

…

printk(KERN_INFO “…%s…\n", 
dev->name);

dev->tx_timeout(dev);

…

}

Question 2:

How is the control flow of 

dev->tx_timeout influenced 

by dev?

Answer:

Perform a transitive closure 
analysis on the target function.

static void ariadne_tx_timeout(struct

net_device *dev)
{

volatile struct Am79C960 *lance = 
(struct Am79C960*)dev->base_addr;
…

}
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Processing STIR Summary 
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Checking STIRs

STIR
Analyzer

Runtime
symbol

information

Resolved 
STIR

Signature
Database

STIR Symbol
Resolver

STIR Symbol
Mapper

Guest VM

Security VM

Initialization TimeCompile Time

STIR 
Checker

STIR 
Dispatcher

Evaluation Time

Symbolic
STIR

Signatures

Linux
Kernel
Source



31

STIR Checking Architecture
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Implementation of the STIR 

Analyzer

• Based on CIL (C Intermediate Language)

• Comprised of several analysis modules

– A top-level analyzer

– A transitive closure analyzer

– A type analyzer

– Shell scripts to compose the modules
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Implementation of the STIR 

Checking

• On top of Xen 3.0.4

• Used the VT (virtualization technology) 
support of an Intel CPU

• Based on the Lares architecture
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Evaluation: Security Assumptions

• The VMM and the Security VM are part of 
the TCB (Trusted Computing Base).

• The legitimate kernel code in the guest 
VM’s memory can not be tampered with.

• The source code of the kernel and all 
kernel extensions are available for static 
analysis.

• The guest system can be booted into a 
known good state (e.g., secure boot).
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Evaluation: Static Analysis 

Results

• We found 365 top-level callback functions 
in 3,688 kernel source files analyzed.

• The majority of these STIR callback 
functions do not derive function pointers 
from the input parameter.

• 32 of them need transitive closure 
analysis.
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Evaluation: Effectiveness of 

Defense

• Attack experiments: can detect the sample 
malware.

• Can have no false negatives because it 
mediates every STIR execution and 
prevents the execution of all unknown, 
illegitimate STIRs.

• Can have no false positives because all 
potential legitimate STIRs are captured in 
the summary signature database.
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Evaluation: Execution Time 

Overhead

cat - read and display the content of 8,000 small files (with size ranging from 5K to 
7.5K bytes). 

ccrypt - encrypt a text stream of 64M bytes. 

gzip - compress a text file of 64M bytes using the --best option. 

cp - recursively copy a Linux kernel source tree. 

make - perform a full build of the Apache HTTP server (version 2.2.2) from source. 

81.661.447.346.346.9Callbacks/Sec

0.29%6.05%1.52%0%0.52%Overhead

218.5846.616.013.3020.96
STIR-aware 

(seconds)

217.9543.955.923.3020.85
Original 

(seconds)

makecpgzipccryptcat
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Evaluation: Network Throughput 

Overhead

• We used the Iperf-2.0.2 benchmark.
• The security VM ran the Iperf server and the guest VM ran the Iperf

client.
• The experiment was run for 60 seconds, using 64KB buffers and 10

concurrent connections.

717.9
688.4

0

100

200

300

400

500

600

700

800

Original STIR-Aware

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Performance 
drop: 4.1%

Callback 
frequency: 

287/second



40

Outline

• Soft timers and soft-timer-driven 

attacks

• Design of the STIR defense

• Implementation and evaluation

• Related work

• Conclusion



41

Related Work

• Focused on code changes
– Tripwire (a file system integrity checker)

– IMA (TCG-based, load-time kernel and application integrity 
checker)

– Copilot (coprocessor-based, run-time kernel integrity checker)

– Pioneer (purely software-based run-time integrity checker)

• Focused on data changes
– SBCFI (state-based control flow integrity), a sampling-based 

checker targeting persistent kernel control flow attacks

– CFI (control flow integrity), checking the dynamic execution 

flow of a program against a statically computed control flow 
graph
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Conclusions

• The Soft-timer mechanism of a modern 
kernel provides a novel hiding technique 
for the malware.

• We develop a white list approach for 
defending against such malware.

• We use static analysis to derive the white 
list.

• We use virtualization to implement the 
defense.


