
Flying Under the Radar:
Maintaining Control of Kernel without Changing Kernel Code or Persistent

Data Structures
Jinpeng Wei

Florida International University
weijp@cs.fiu.edu

Calton Pu
Georgia Institute of Technology

calton@cc.gatech.edu

Keke Chen
Wright State University
keke.chen@wright.edu

ABSTRACT
Cyber-spies rely on technologies such as rootkits to maintain a
stealthy control of the victim kernel. Current techniques can
detect changes to kernel code (e.g., SecVisor) and data (e.g.,
SBCFI), but have difficulties with transient kernel control flow
attacks that insert execution requests into interrupt or kernel work
queues (K-queues) without changing kernel code or data. Two
examples implemented using Linux tasklets illustrate the
effectiveness of K-queue attacks: key logger and CPU cycle
stealer. Possible defenses to protect the kernel against K-queue
attacks are outlined.

1. INTRODUCTION
As power grid, a critical national infrastructure, becomes more
intelligent, the attacks against it moves into the cyber space.
Compared with their physical world counterpart, cyber attacks
against the power grid can be more elusive and dangerous. For
example, U.S. officials worry that cyber-spies could use their
demonstrated access to take control of power plants during a time
of crisis or war [6].

One characteristic of such cyber-spies is they rely on stealthy
malware (e.g., rootkits [4, 7]) to stay hidden before the actual
strike (e.g., shutting down the grid). Therefore, if we are to defeat
such cyber-spies, we have to better understand their capabilities,
e.g., the technologies that they can leverage to hide themselves.
For example, a botnet enlists a compromised computer into a
network of similar computers under the control of a bot master.
Such a command-and-control infrastructure seems ideal for an
adversary that dispatches cyber-spies into the target space so that
they can be commanded to launch an attack later on. As a matter
of fact, botnets have already become a major threat. Malware
development tools such as rootkits help attackers to break-in and
to maintain control of victim nodes. The sheer size of successful
botnets shows that: (1) they are able to break-in, and (2) they are
able to provide useful work (for the attacker) while escaping
detection and removal for a significant period of time after break-
in. This paper focuses on a method to maintain stealthy control of
the kernel (the second part).

We divide the malwares that attempt to maintain stealthy control
of kernel (after successful break-in) into three broad classes. The
first class modifies kernel code on disk or in memory. This class
can be detected by virus scanners that scan memory and disk files
for malware signatures or integrity monitors such as SecVisor
[11] that detect unauthorized changes. The second class, called

persistent kernel control flow attacks, does not change code, but
makes persistent modifications to kernel data (e.g., function
pointers in the system call table). Representative detectors for
such modifications (such as SBCFI [9]) work by comparing the
runtime value of the kernel data with known good values.

This paper investigates the third class, transient kernel control
flow attacks, that are capable of achieving continual malicious
function execution without changing either kernel code or
persistent function pointers. This class of attacks exploits dynamic
schedulable work units in modern multi-threaded kernels. For
example, a device driver can request a dynamic soft timer to
schedule the execution of a timed event handling callback
function. At the specified time, the kernel invokes the callback
function, trusting its code. We show that malware executing in
kernel mode can insert a malicious callback function to maintain
control of kernel and perform work for attackers.

The main contribution of this paper is a detailed description of
transient kernel control flow attacks based on dynamic
schedulable kernel queues (K-queues). This description includes:
(1) an enumeration of dynamic kernel threads and kernel control
flow transfers that can be used for maintaining stealthy kernel
control, (2) a description of this kind of attacks, with two
illustrative malware examples: a stealthy keylogger and a stealthy
cycle stealer. A case study with proposed defense mechanism is
outlined (details can be found in [12]).

The rest of the paper is organized as follows. Section 2 outlines
the background information on kernel control flows and K-
queues. Section 3 discusses an attack model that manipulates K-
queues for persistent execution of the malware, and describes two
illustrative malware examples that use tasklets. Section 4
discusses possible mitigations and defenses for the K-queue-
driven attacks. Section 5 concludes the paper.

2. KERNEL CONTROL FLOWS AND
SCHEDULABLE QUEUES
2.1 KERNEL CONTROL FLOWS
In this paper, we use Linux as a concrete and representative multi-
threaded kernel. The Linux kernel can have a number of control
flows (listed in Figure 1): exception handlers, interrupt service
routines, Softirqs, and kernel threads such as work queues [3].

Of the various kinds of kernel control flows, exception and
interrupt handlers execute at the highest priority, usually with
interrupts disabled. Some exception and interrupt handler
operations are interruptible and executed in Softirqs, for example,
sending the keyboard line buffer to the terminal handler process.
Softirqs are invoked in interrupt context (e.g. when the service
routine for an I/O interrupt is finished), but with interrupt enabled.
Furthest from hardware, kernel threads execute in process context
and are therefore fully interruptible. They are interleaved with
user processes, with the main difference being that kernel threads

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. CSIIRW '11, October 12-
14, Oak Ridge, Tennessee, USA Copyright © 2011 ACM 978-1-4503-
0945-5 ISBN ... $5.00

Figure 1: Kernel Control Flows with Schedulable Queues

execute in kernel context while user processes execute in user
process context.

2.2 K-QUEUES IN THE LINUX KERNEL
The kernel control flows outlined in Figure 1 are executed by the
kernel through kernel schedulable queues or K-queues for short.
These K-queues are implemented as linked lists. In this section,
we discuss four representative K-queues (with descending
execution priorities).

2.2.1 IRQ Action Queues
When an interrupt happens, the Interrupt Descriptor Table (IDT)
is used to find the corresponding Interrupt Service Routine (ISR),
which may in turn delegate the interrupt handling to several IRQ
actions. This is because multiple I/O devices can share an
interrupt pin; therefore each of them may have its own way of
handling the shared interrupt. The Linux kernel uses IRQ action
queues to support such interrupt sharing. Each element of an IRQ
action queue is a structure irqaction (Figure 2), which contains a
handler field, a dev_id field, a pointer to the next element in the
queue (the next field), and other information. The handler field is
a function pointer to the handler routine, and the dev_id field is
used to uniquely identify the device that provides the handler
routine. When an interrupt happens, the ISR invokes all handler
routine in the corresponding IRQ action queue.

2.2.2 Tasklet Queues
Compared to Interrupt Service Routines, tasklets are the preferred
way to implement deferrable functions in I/O device drivers
because executions of tasklets are interruptible; for example,
tasklets are suitable for implementing the expansion of receive
buffers by a gigabit network interface card driver, which can be
time consuming due to allocation of more kernel memory.

As Figure 3 shows, a tasklet request contains a callback function
pointer (in the func field) and a data pointer. In Linux, a tasklet

request is inserted into one of two tasklet queues (based on
whether tasklet_schedule or tasklet_hi_schedule is called),
implemented by two Softirqs (numbers 0 and 5). When the
do_softirq function comes across a tasklet structure (Figure 3)
during the traversal of the two queues, it invokes the callback
function and passes on the data field as the input parameter.

2.2.3 Soft Timer Queues
Dynamic soft timer is a well-established mechanism used by
many kernel components to schedule the execution of timed event
handling functions. In the Linux kernel, the requester of a soft
timer first prepares an instance of soft timer interrupt request
(STIR) of type struct timer_list, which contains information
about the callback function (the function field), a data pointer (the
data field), and the expiration time, among others. The
add_timer function is invoked to add this instance of STIR into a
linked list of pending timers: tvec_bases.

The soft timer queue is implemented by a Softirq (number 1) and
STIRs executed in interrupt context (Figure 1). When a STIR in
the linked list expires, it is removed from the list, its callback
function is invoked, and the data pointer is passed along to the
callback function as the input parameter. Typical callback
functions also create the next STIR at the end of request
processing.

2.2.4 Work Queues
Work queues are used to schedule kernel threads that interleave
with user processes. Compared to tasklets that execute in interrupt
context, work queues execute kernel threads in kernel context.

A work queue is a linked list of work requests (Figure 4),
dynamically inserted through functions such as queue_work.
Similar to a tasklet, each work request has a callback function (the
func field) and a data field. The server for a work queue is a
kernel thread such as events/0, which executes each element in the
list by invoking its callback function with the data field passed on
as the input parameter.

3. CASE STUDIES OF K-QUEUE-DRIVEN
ATTACKS
3.1 Malware Architecture
A stealthy malware can exploit the dynamic nature of K-queues to
maintain stealthy control of kernel. We adopt an informal
architecture of malwares that execute useful work for botnet
owner/renter. We divide such malwares into three steps: (1)
break-in, (2) connect to the kernel control flow, and (3) continual
execution of malicious functionality. Break-in methods (step 1)
such as buffer overflow [5] are well known and omitted here.
After break-in, persistent kernel control flow attacks (e.g., the
rootkits listed in [9]) change kernel data structures such as

 struct work_struct {
 unsigned long pending;
 struct list_head entry;
 void (*func)(void *);
 void *data;
 void *wq_data;
 struct timer_list timer;
 };
Figure 4: The Definition of work_struct

struct tasklet_struct
{
 struct tasklet_struct *next;
 unsigned long state;
 atomic_t count;
 void (*func)(unsigned long);
 unsigned long data;
};

Figure 3: The Definition of tasklet_struct

struct irqaction {
 irqreturn_t (*handler)(int, void *,
struct pt_regs *);
 unsigned long flags;
 void *dev_id;
 struct irqaction *next;
 int irq;
};

Figure 2: The Definition of irqaction

permanent function pointers (step 2) so the kernel would regularly
jump to malicious functionality and satisfy step 3.

In contrast to persistent kernel modifications, transient kernel
control flow attacks insert a malicious request into a K-queue
(e.g., by supplying malicious callback function or data) in step 2.
The continual execution of malware (step 3) is achieved by
inserting a new malicious request into the K-queue at the end of
the callback function.

Advanced malware is actively misusing K-Queues to their
advantage. For example, the Rustock.C spam bot relies on two
Windows kernel timers to check whether it is being
debugged/traced [8], and the Storm/Peacomm spam bot invokes
PsSetLoadImageNotifyRoutine to register a malicious callback
function that disables security products [2]. Given such concrete
use cases, one interesting question is to what extent transient and
short execution units can carry out useful work for botnet
owners/renters. To answer this question, some illustrative designs
of transient kernel control flow attacks are described in this
section. For concreteness, the malicious functionality part uses
tasklets (Section 2.2.2) to achieve significant work, including
effective violation of confidentiality, integrity, and availability of
a running kernel.

In these examples, malicious functionality is implemented as a
Linux loadable kernel module with an initialization function that
requests the first tasklet. At break-in (details omitted due to the
changing methods of step 1), the malware is loaded, the kernel
invokes its initialization function, and the first tasklet is inserted
(step 2). The continual execution of malware (step 3) is achieved
by each malware tasklet scheduling a new tasklet at the end of the
callback function (e.g., using a timer as shown in Figure 5).

3.2 Stealthy Key Logger
A typical class of malware steals sensitive information from the
host node. A straightforward malware implementation intercepts
the kernel functions that process such sensitive information. For
example, a key logger [10] can replace the keyboard interrupt
handler with a malicious one that records the keyboard input. The
following implemented example shows that persistent kernel
modifications are unnecessary for such malicious functionality.

A tasklet-based key logger keeps kernel code and interrupt-related
data structures intact. It periodically peeps into various buffers in
the kernel, where the keyboard input information is stored. As
Figure 6 shows, when a key is pressed, the keyboard hardware
generates an interrupt. The keyboard interrupt handler fetches the

Figure 5: Skeleton of the stealthy key logger

key stroke information and temporarily stores it in the TTY flip
buffer before transferring it into the TTY line discipline buffer.
Finally, when a user-level application reads from the input device,
the key stroke information is copied into the user’s buffer.

A critical question about this sampling-based tasklet-driven key
logger is whether it can capture every key stroke, since it depends
on an effective sampling rate. The key logger can glean key
stroke information from the TTY flip buffer, the TTY line
discipline buffer, or the user’s buffer. The TTY flip buffer has a
very short retention time relative to the TTY line discipline
buffer, which is a circular buffer of significant size (by default
4,096 bytes). Since each key stroke generates 2 bytes of
information, the TTY line discipline buffer can keep information
on up to 2,048 key strokes. Since it takes minutes to hours for the
user to fill up the line discipline buffer, the key logger malware
only needs to sample from time to time (e.g., once per minute
should be good enough) to collect all keystrokes from the line
discipline buffer.

This sampling key logger has been implemented on Linux to
collect key strokes on an X-window desktop. Figure 5 shows the
skeleton of this key logger, which leverages a soft timer to
periodically schedule new tasklets. Due to space limit, we do not
show the details of the function dump_keybuffer. Our key logger
captures keystrokes entered into X-window applications such as
the Firefox web browser. These applications handle many
interesting key strokes such as username and password in online
banking and credit card numbers in online shopping.

In case more frequent sampling is required, the key logger will
request faster soft timers (e.g., to collect information from the
TTY flip buffer). In this case, techniques for hiding the higher
resource consumption should be employed (see Section 3.3) to
keep the key logger stealthy.

3.3 Stealthy Denial of Service Attack (CPU
Cycle Stealer)
A second kind of typical attacks is denial of service (DoS, or
lowered quality of service). The attack becomes effective when
the DoS malware is able to hide itself and its effects from
detection for a significant amount of time. In a tasklet-based
attack, the callback function can perform computationally
intensive work to slow down the legitimate applications such as a
web server. Such a CPU cycle stealer has been implemented by
inserting a program to compute the factorial of a given number in
the callback function. By adjusting the value of the number and
the tasklet’s frequency, different slowdown factor can be
obtained. For example, when there is no other competing
workload and the tasklet is inserted once per second, if the
factorial of 41 is computed in the callback function, about 33% of
total CPU time is consumed by the malware. As the input number
increases, more and more CPU time are consumed by the
malware, and the CPU is saturated when the number reaches 48.
This experiment is performed on an Intel Xeon at 2.93GHz with
196MB memory and 6GB hard disk.

DECLARE_TASKLET(keylogger_tasklet, log_it, 0);
struct timer_list keylogger_timer =
 TIMER_INITIALIZER(sched_me, 0, 0);
static void sched_me(void){
 tasklet_schedule(&keylogger_tasklet); return;
}
static void log_it(unsigned long arg){

dump_keybuffer();
keylogger_timer.expires = jiffies + (HZ);
add_timer(&keylogger_timer);
return;

}

TTY flip
buffer

line discipline
buffer

user
app. keyboard

kernel space user space

Figure 6: Flow of Keyboard Input Information in Linux

One problem with such DoS attacks is that the CPU wastage can
be noticed by system tools such as top, because the kernel
maintains performance accounting information for different
sources of computation. For example, the CPU time consumed by
the above malicious callback function is attributed to “software
interrupt”. To hide the CPU wastage, the malicious callback
function further manipulates the kernel accounting data so that the
CPU time wasted by the malware factorial program is attributed
towards the idle CPU time. Therefore, it is not immediately
obvious why the system performance is degrading.

The CPU cycle stealer violates the availability of CPU resources
and the integrity of the performance accounting information.
However, since the performance accounting information is
dynamic, there is no easy notion of what is normal. Besides, there
can be many reasons for slowdown of the service (network
congestion, server overload, etc), so it is hard to locate the true
cause of the problem.

4. POSSIBLE DEFENSE AGAINST K-
QUEUE-DRIVEN MALWARE
What distinguishes K-queue-driven malwares (see the illustrative
examples in Section 3) is that they preserve kernel code and data
control flow integrity. The ability to insert K-queue requests
suffices for these attacks to work. An effective defense needs to
prevent such unauthorized executions.

Runtime kernel control flow integrity checking: One
possibility is to use defenses originally designed for persistent
kernel control flow attacks (CFI [1] and SBCFI [9]) for transient
kernel control flow attacks such as K-queue-driven malwares.
For example, SBCFI performs a garbage-collection style traversal
of kernel data structures to validate function pointers at runtime.
However, it is non-trivial to generalize the original SBCFI
proposal to cover K-queues. First, the dynamic scanning must
include all the K-queue data structures and the transitive closure
of their data [12]. Second, the frequency of scanning must be
increased to capture the transient K-queue requests, augmenting
the execution cost of this approach.

Complete mediation of K-queues: Another possible defense is to
verify and validate each K-queue request (e.g, STIR) before
transferring control to its callback function [12]. The validation,
for example, can check the address of the callback function
against a white list of legitimate callback functions. First, the
determination of the white list can be achieved through automated
static analysis of the whole kernel source code (including the
device drivers). Second, a reference monitor can be added to the
K-queue scheduling logic to validate a request for execution,
using the white list. For soft timers in the Linux 2.6.16 kernel, an
analysis of 3,688 source files found 365 legitimate STIR callback
functions. We also implemented a checker for soft timer driven
malwares based on virtualization [12].

5. CONCLUSION
With the continued deployment of cyber infrastructures for the
national power grid, maintaining a stealthy control of the kernels
(with the help of stealthy malware) in the power grid cyber space
has become an important strategy for the adversaries. Malwares
that change kernel code or data can be detected by currently
known techniques such as virus scanners (code changes) and
SBCFI (data changes). In this paper, we describe a third class of
malware, transient kernel control flow attacks, which manipulate

dynamic schedulable kernel queues (K-queues) to achieve
continual malicious function execution while remaining
undetected by existing detection tools, because they do not
modify either kernel code or persistent function pointers. As a
result, such malware poses a significant threat to power grid
infrastructure security.
A concrete implementation of transient kernel control flow
attacks is to insert a malware execution request into one of kernel
interrupt handling or work queues (a K-queue attack). Two
illustrative examples of such attacks have been implemented
using tasklets in Linux: a key logger and a CPU cycle stealer.
These examples show the feasibility and potential effectiveness of
K-queue attacks.
Since K-queue attacks use facilities that are supported by all
multi-threaded modern operating system kernels, they have the
potential to become significant threats for systems such as the
power grid. Potential defenses against K-queue attacks are non-
trivial, since the defense must prevent unauthorized execution of
K-queue requests by distinguishing legitimate requests from
malware threats. This paper includes an outline of such a defense,
details of which have been published.

6. REFERENCES
[1] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. 2005.

Control-flow integrity. In Proceedings of the 12th ACM
Conference on Computer and Communications Security.

[2] Boldewin, F. 2007. Peacomm.C - Cracking the nutshell. Anti
Rootkit. http://www.antirootkit.com/articles/eye-of-the-
storm-worm/Peacomm-C-Cracking-the-nutshell.html.

[3] Bovet, D. and Cesati, M. 2002. Understanding the Linux
Kernel, Second Edition. O'Reilly. ISBN: 0-596-00213-0.

[4] Brumley, D. 1999. Invisible intruders: rootkits in practice.
USENIX login.

[5] Cowan, C., Pu, C., et al. 1998. StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow
Attacks. In Proc. of the 7th USENIX Security Symposium.

[6] Gross, G. 2009. Cybercriminals Can Shut Down U.S.
Electrical Grid.
http://www.cio.com/article/488716/Cybercriminals_Can_Sh
ut_Down_U.S._Electrical_Grid

[7] Hultquist, S. 2007. Rootkits: The next big enterprise threat?
http://www.infoworld.com/d/security-central/rootkits-next-
big-enterprise-threat-781

[8] Kwiatek, L. and Litawa, S. 2008. Yet another Rustock
analysis... Virus Bulletin.

[9] Petroni, N. and Hicks, M. 2007. Automated Detection of
Persistent Kernel Control-Flow Attacks. In Proc. of the 14th
ACM Conference on Comp. and Comm. Security.

[10] Phrack Inc. 2002. Writing Linux Kernel Keylogger. Phrack
Volume 0x0b, Issue 0x3b, Phile #0x0e of 0x12.

[11] Seshadri, A., Luk, M., Qu, N., and Perrig, A. 2007.SecVisor:
A tiny hypervisor to provide lifetime kernel code integrity
for commodity OSes. In Proceedings of SOSP.

[12] Wei, J., Payne, B. D., Giffin, J., and Pu, C. 2008. Soft-timer
driven transient kernel control flow attacks and defense. In
Proceedings of the 24th Annual Computer Security
Applications Conference (ACSAC).

