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ABSTRACT 
Cyber-spies rely on technologies such as rootkits to maintain a 
stealthy control of the victim kernel.  Current techniques can 
detect changes to kernel code (e.g., SecVisor) and data (e.g., 
SBCFI), but have difficulties with transient kernel control flow 
attacks that insert execution requests into interrupt or kernel work 
queues (K-queues) without changing kernel code or data.  Two 
examples implemented using Linux tasklets illustrate the 
effectiveness of K-queue attacks: key logger and CPU cycle 
stealer.  Possible defenses to protect the kernel against K-queue 
attacks are outlined. 

1. INTRODUCTION 
As power grid, a critical national infrastructure, becomes more 
intelligent, the attacks against it moves into the cyber space. 
Compared with their physical world counterpart, cyber attacks 
against the power grid can be more elusive and dangerous. For 
example, U.S. officials worry that cyber-spies could use their 
demonstrated access to take control of power plants during a time 
of crisis or war [6]. 

One characteristic of such cyber-spies is they rely on stealthy 
malware (e.g., rootkits [4, 7]) to stay hidden before the actual 
strike (e.g., shutting down the grid). Therefore, if we are to defeat 
such cyber-spies, we have to better understand their capabilities, 
e.g., the technologies that they can leverage to hide themselves. 
For example, a botnet enlists a compromised computer into a 
network of similar computers under the control of a bot master. 
Such a command-and-control infrastructure seems ideal for an 
adversary that dispatches cyber-spies into the target space so that 
they can be commanded to launch an attack later on. As a matter 
of fact, botnets have already become a major threat. Malware 
development tools such as rootkits help attackers to break-in and 
to maintain control of victim nodes.  The sheer size of successful 
botnets shows that: (1) they are able to break-in, and (2) they are 
able to provide useful work (for the attacker) while escaping 
detection and removal for a significant period of time after break-
in. This paper focuses on a method to maintain stealthy control of 
the kernel (the second part). 

We divide the malwares that attempt to maintain stealthy control 
of kernel (after successful break-in) into three broad classes.  The 
first class modifies kernel code on disk or in memory.  This class 
can be detected by virus scanners that scan memory and disk files 
for malware signatures or integrity monitors such as SecVisor 
[11] that detect unauthorized changes.  The second class, called 

persistent kernel control flow attacks, does not change code, but 
makes persistent modifications to kernel data (e.g., function 
pointers in the system call table).  Representative detectors for 
such modifications (such as SBCFI [9]) work by comparing the 
runtime value of the kernel data with known good values. 

This paper investigates the third class, transient kernel control 
flow attacks, that are capable of achieving continual malicious 
function execution without changing either kernel code or 
persistent function pointers. This class of attacks exploits dynamic 
schedulable work units in modern multi-threaded kernels.  For 
example, a device driver can request a dynamic soft timer to 
schedule the execution of a timed event handling callback 
function.  At the specified time, the kernel invokes the callback 
function, trusting its code.  We show that malware executing in 
kernel mode can insert a malicious callback function to maintain 
control of kernel and perform work for attackers. 

The main contribution of this paper is a detailed description of 
transient kernel control flow attacks based on dynamic 
schedulable kernel queues (K-queues).  This description includes: 
(1) an enumeration of dynamic kernel threads and kernel control 
flow transfers that can be used for maintaining stealthy kernel 
control, (2) a description of this kind of attacks, with two 
illustrative malware examples: a stealthy keylogger and a stealthy 
cycle stealer.  A case study with proposed defense mechanism is 
outlined (details can be found in [12]).   

The rest of the paper is organized as follows. Section 2 outlines 
the background information on kernel control flows and K-
queues.  Section 3 discusses an attack model that manipulates K-
queues for persistent execution of the malware, and describes two 
illustrative malware examples that use tasklets.  Section 4 
discusses possible mitigations and defenses for the K-queue-
driven attacks.  Section 5 concludes the paper. 

2. KERNEL CONTROL FLOWS AND 
SCHEDULABLE QUEUES 
2.1 KERNEL CONTROL FLOWS 
In this paper, we use Linux as a concrete and representative multi-
threaded kernel.  The Linux kernel can have a number of control 
flows (listed in Figure 1): exception handlers, interrupt service 
routines, Softirqs, and kernel threads such as work queues [3]. 

Of the various kinds of kernel control flows, exception and 
interrupt handlers execute at the highest priority, usually with 
interrupts disabled. Some exception and interrupt handler 
operations are interruptible and executed in Softirqs, for example, 
sending the keyboard line buffer to the terminal handler process.  
Softirqs are invoked in interrupt context (e.g. when the service 
routine for an I/O interrupt is finished), but with interrupt enabled. 
Furthest from hardware, kernel threads execute in process context 
and are therefore fully interruptible.  They  are  interleaved  with 
user processes, with the main difference being that kernel threads 
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Figure 1: Kernel Control Flows with Schedulable Queues 

execute in kernel context while user processes execute in user 
process context. 

2.2 K-QUEUES IN THE LINUX KERNEL 
The kernel control flows outlined in Figure 1 are executed by the 
kernel through kernel schedulable queues or K-queues for short.  
These K-queues are implemented as linked lists.  In this section, 
we discuss four representative K-queues (with descending 
execution priorities). 

2.2.1 IRQ Action Queues 
When an interrupt happens, the Interrupt Descriptor Table (IDT) 
is used to find the corresponding Interrupt Service Routine (ISR), 
which may in turn delegate the interrupt handling to several IRQ 
actions. This is because multiple I/O devices can share an 
interrupt pin; therefore each of them may have its own way of 
handling the shared interrupt. The Linux kernel uses IRQ action 
queues to support such interrupt sharing.  Each element of an IRQ 
action queue is a structure irqaction (Figure 2), which contains a 
handler field, a dev_id field, a pointer to the next element in the 
queue (the next field), and other information.  The handler field is 
a function pointer to the handler routine, and the dev_id field is 
used to uniquely identify the device that provides the handler 
routine.  When an interrupt happens, the ISR invokes all handler 
routine in the corresponding IRQ action queue. 

2.2.2 Tasklet Queues 
Compared to Interrupt Service Routines, tasklets are the preferred 
way to implement deferrable functions in I/O device drivers 
because executions of tasklets are interruptible; for example, 
tasklets are suitable for implementing the expansion of receive 
buffers by a gigabit network interface card driver, which can be 
time consuming due to allocation of more kernel memory. 

As Figure 3 shows, a tasklet request contains a callback function 
pointer (in the func field) and a data pointer.  In Linux, a tasklet 

request is inserted into one of two tasklet queues (based on 
whether tasklet_schedule or tasklet_hi_schedule is called), 
implemented by two Softirqs (numbers 0 and 5).  When the 
do_softirq function comes across a tasklet structure (Figure 3) 
during the traversal of the two queues, it invokes the callback 
function and passes on the data field as the input parameter.  

2.2.3 Soft Timer Queues 
Dynamic soft timer is a well-established mechanism used by 
many kernel components to schedule the execution of timed event 
handling functions. In the Linux kernel, the requester of a soft 
timer first prepares an instance of soft timer interrupt request 
(STIR) of type struct timer_list, which contains information 
about the callback function (the function field), a data pointer (the 
data field), and the expiration time, among others. The 
add_timer function is invoked to add this instance of STIR into a 
linked list of pending timers: tvec_bases. 

The soft timer queue is implemented by a Softirq (number 1) and 
STIRs executed in interrupt context (Figure 1).  When a STIR in 
the linked list expires, it is removed from the list, its callback 
function is invoked, and the data pointer is passed along to the 
callback function as the input parameter. Typical callback 
functions also create the next STIR at the end of request 
processing. 

2.2.4 Work Queues 
Work queues are used to schedule kernel threads that interleave 
with user processes. Compared to tasklets that execute in interrupt 
context, work queues execute kernel threads in kernel context.  

A work queue is a linked list of work requests (Figure 4), 
dynamically inserted through functions such as queue_work. 
Similar to a tasklet, each work request has a callback function (the 
func field) and a data field. The server for a work queue is a 
kernel thread such as events/0, which executes each element in the 
list by invoking its callback function with the data field passed on 
as the input parameter. 

3. CASE STUDIES OF K-QUEUE-DRIVEN 
ATTACKS 
3.1 Malware Architecture 
A stealthy malware can exploit the dynamic nature of K-queues to 
maintain stealthy control of kernel. We adopt an informal 
architecture of malwares that execute useful work for botnet 
owner/renter.  We divide such malwares into three steps: (1) 
break-in, (2) connect to the kernel control flow, and (3) continual 
execution of malicious functionality.  Break-in methods (step 1) 
such as buffer overflow [5] are well known and omitted here. 
After break-in, persistent kernel control flow attacks (e.g., the 
rootkits listed in [9]) change kernel data structures such as  

 
 

   struct work_struct { 
        unsigned long pending; 
        struct list_head entry;  
        void (*func)(void *); 
        void *data; 
        void *wq_data;   
        struct timer_list timer; 
   }; 
Figure 4: The Definition of work_struct

struct tasklet_struct 
{  
        struct tasklet_struct *next; 
        unsigned long state; 
        atomic_t count; 
        void (*func)(unsigned long); 
        unsigned long data; 
}; 

Figure 3: The Definition of tasklet_struct

struct irqaction {       
        irqreturn_t (*handler)(int, void *, 
struct pt_regs *); 
        unsigned long flags; 
        void *dev_id; 
        struct irqaction *next; 
        int irq;         
}; 

Figure 2: The Definition of irqaction 



permanent function pointers (step 2) so the kernel would regularly 
jump to malicious functionality and satisfy step 3. 

In contrast to persistent kernel modifications, transient kernel 
control flow attacks insert a malicious request into a K-queue 
(e.g., by supplying malicious callback function or data) in step 2. 
The continual execution of malware (step 3) is achieved by 
inserting a new malicious request into the K-queue at the end of 
the callback function. 

Advanced malware is actively misusing K-Queues to their 
advantage. For example, the Rustock.C spam bot relies on two 
Windows kernel timers to check whether it is being 
debugged/traced [8], and the Storm/Peacomm spam bot invokes 
PsSetLoadImageNotifyRoutine to register a malicious callback 
function that disables security products [2]. Given such concrete 
use cases, one interesting question is to what extent transient and 
short execution units can carry out useful work for botnet 
owners/renters.  To answer this question, some illustrative designs 
of transient kernel control flow attacks are described in this 
section.  For concreteness, the malicious functionality part uses 
tasklets (Section 2.2.2) to achieve significant work, including 
effective violation of confidentiality, integrity, and availability of 
a running kernel. 

In these examples, malicious functionality is implemented as a 
Linux loadable kernel module with an initialization function that 
requests the first tasklet. At break-in (details omitted due to the 
changing methods of step 1), the malware is loaded, the kernel 
invokes its initialization function, and the first tasklet is inserted 
(step 2).  The continual execution of malware (step 3) is achieved 
by each malware tasklet scheduling a new tasklet at the end of the 
callback function (e.g., using a timer as shown in Figure 5). 

3.2 Stealthy Key Logger 
A typical class of malware steals sensitive information from the 
host node. A straightforward malware implementation intercepts 
the kernel functions that process such sensitive information.  For 
example, a key logger [10] can replace the keyboard interrupt 
handler with a malicious one that records the keyboard input.  The 
following implemented example shows that persistent kernel 
modifications are unnecessary for such malicious functionality. 

A tasklet-based key logger keeps kernel code and interrupt-related 
data structures intact.  It periodically peeps into various buffers in 
the kernel, where the keyboard input information is stored.  As 
Figure 6 shows, when a key is pressed, the keyboard hardware 
generates an interrupt. The keyboard interrupt handler fetches the 

 
Figure 5: Skeleton of the stealthy key logger 

key stroke information and temporarily stores it in the TTY flip 
buffer before transferring it into the TTY line discipline buffer. 
Finally, when a user-level application reads from the input device, 
the key stroke information is copied into the user’s buffer. 

A critical question about this sampling-based tasklet-driven key 
logger is whether it can capture every key stroke, since it depends 
on an effective sampling rate.  The key logger can glean key 
stroke information from the TTY flip buffer, the TTY line 
discipline buffer, or the user’s buffer.  The TTY flip buffer has a 
very short retention time relative to the TTY line discipline 
buffer, which is a circular buffer of significant size (by default 
4,096 bytes).  Since each key stroke generates 2 bytes of 
information, the TTY line discipline buffer can keep information 
on up to 2,048 key strokes.  Since it takes minutes to hours for the 
user to fill up the line discipline buffer, the key logger malware 
only needs to sample from time to time (e.g., once per minute 
should be good enough) to collect all keystrokes from the line 
discipline buffer. 

 
 

This sampling key logger has been implemented on Linux to 
collect key strokes on an X-window desktop. Figure 5 shows the 
skeleton of this key logger, which leverages a soft timer to 
periodically schedule new tasklets. Due to space limit, we do not 
show the details of the function dump_keybuffer. Our key logger 
captures keystrokes entered into X-window applications such as 
the Firefox web browser. These applications handle many 
interesting key strokes such as username and password in online 
banking and credit card numbers in online shopping. 

In case more frequent sampling is required, the key logger will 
request faster soft timers (e.g., to collect information from the 
TTY flip buffer).  In this case, techniques for hiding the higher 
resource consumption should be employed (see Section 3.3) to 
keep the key logger stealthy. 

3.3 Stealthy Denial of Service Attack (CPU 
Cycle Stealer) 
A second kind of typical attacks is denial of service (DoS, or 
lowered quality of service).  The attack becomes effective when 
the DoS malware is able to hide itself and its effects from 
detection for a significant amount of time.  In a tasklet-based 
attack, the callback function can perform computationally 
intensive work to slow down the legitimate applications such as a 
web server.  Such a CPU cycle stealer has been implemented by 
inserting a program to compute the factorial of a given number in 
the callback function. By adjusting the value of the number and 
the tasklet’s frequency, different slowdown factor can be 
obtained.  For example, when there is no other competing 
workload and the tasklet is inserted once per second, if the 
factorial of 41 is computed in the callback function, about 33% of 
total CPU time is consumed by the malware.  As the input number 
increases, more and more CPU time are consumed by the 
malware, and the CPU is saturated when the number reaches 48. 
This experiment is performed on an Intel Xeon at 2.93GHz with 
196MB memory and 6GB hard disk. 

DECLARE_TASKLET(keylogger_tasklet, log_it, 0); 
struct timer_list keylogger_timer  = 
    TIMER_INITIALIZER(sched_me, 0, 0);  
static void sched_me(void){ 
    tasklet_schedule(&keylogger_tasklet);   return; 
} 
static void log_it(unsigned long arg){ 

dump_keybuffer(); 
keylogger_timer.expires = jiffies + (HZ); 
add_timer(&keylogger_timer); 
return; 

} 

TTY flip
buffer 

line discipline 
buffer 

user 
app. keyboard 

kernel space user space

Figure 6: Flow of Keyboard Input Information in Linux



One problem with such DoS attacks is that the CPU wastage can 
be noticed by system tools such as top, because the kernel 
maintains performance accounting information for different 
sources of computation. For example, the CPU time consumed by 
the above malicious callback function is attributed to “software 
interrupt”. To hide the CPU wastage, the malicious callback 
function further manipulates the kernel accounting data so that the 
CPU time wasted by the malware factorial program is attributed 
towards the idle CPU time. Therefore, it is not immediately 
obvious why the system performance is degrading. 

The CPU cycle stealer violates the availability of CPU resources 
and the integrity of the performance accounting information. 
However, since the performance accounting information is 
dynamic, there is no easy notion of what is normal. Besides, there 
can be many reasons for slowdown of the service (network 
congestion, server overload, etc), so it is hard to locate the true 
cause of the problem. 

4. POSSIBLE DEFENSE AGAINST K-
QUEUE-DRIVEN MALWARE 
What distinguishes K-queue-driven malwares (see the illustrative 
examples in Section 3) is that they preserve kernel code and data 
control flow integrity.  The ability to insert K-queue requests 
suffices for these attacks to work.  An effective defense needs to 
prevent such unauthorized executions. 

Runtime kernel control flow integrity checking: One 
possibility is to use defenses originally designed for persistent 
kernel control flow attacks (CFI [1] and SBCFI [9]) for transient 
kernel control flow attacks such as K-queue-driven malwares.  
For example, SBCFI performs a garbage-collection style traversal 
of kernel data structures to validate function pointers at runtime.  
However, it is non-trivial to generalize the original SBCFI 
proposal to cover K-queues.  First, the dynamic scanning must 
include all the K-queue data structures and the transitive closure 
of their data [12].  Second, the frequency of scanning must be 
increased to capture the transient K-queue requests, augmenting 
the execution cost of this approach. 

Complete mediation of K-queues: Another possible defense is to 
verify and validate each K-queue request (e.g, STIR) before 
transferring control to its callback function [12].  The validation, 
for example, can check the address of the callback function 
against a white list of legitimate callback functions.  First, the 
determination of the white list can be achieved through automated 
static analysis of the whole kernel source code (including the 
device drivers).  Second, a reference monitor can be added to the 
K-queue scheduling logic to validate a request for execution, 
using the white list.  For soft timers in the Linux 2.6.16 kernel, an 
analysis of 3,688 source files found 365 legitimate STIR callback 
functions. We also implemented a checker for soft timer driven 
malwares based on virtualization [12]. 

5. CONCLUSION 
With the continued deployment of cyber infrastructures for the 
national power grid, maintaining a stealthy control of the kernels 
(with the help of stealthy malware) in the power grid cyber space 
has become an important strategy for the adversaries. Malwares 
that change kernel code or data can be detected by currently 
known techniques such as virus scanners (code changes) and 
SBCFI (data changes).  In this paper, we describe a third class of 
malware, transient kernel control flow attacks, which manipulate 

dynamic schedulable kernel queues (K-queues) to achieve 
continual malicious function execution while remaining 
undetected by existing detection tools, because they do not 
modify either kernel code or persistent function pointers. As a 
result, such malware poses a significant threat to power grid 
infrastructure security. 
A concrete implementation of transient kernel control flow 
attacks is to insert a malware execution request into one of kernel 
interrupt handling or work queues (a K-queue attack).  Two 
illustrative examples of such attacks have been implemented 
using tasklets in Linux: a key logger and a CPU cycle stealer.  
These examples show the feasibility and potential effectiveness of 
K-queue attacks. 
Since K-queue attacks use facilities that are supported by all 
multi-threaded modern operating system kernels, they have the 
potential to become significant threats for systems such as the 
power grid.  Potential defenses against K-queue attacks are non-
trivial, since the defense must prevent unauthorized execution of 
K-queue requests by distinguishing legitimate requests from 
malware threats.  This paper includes an outline of such a defense, 
details of which have been published. 
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