gExtractor: Towards Automated Extraction of Malware Deception
Parameters

Mohammed Noraden Alsaleh*
Eastern Michigan University
Ypsilanti, Michigan
malsaleh@emich.edu

ABSTRACT

The lack of agility in cyber defense gives adversaries a significant
advantage for discovering cyber targets and planning their attacks
in stealthy and undetectable manner. While there has been signifi-
cant research on detecting or predicting attacks, adversaries can
always scan the network, learn about countermeasures, and de-
velop new evasion techniques. Active Cyber Deception (ACD) has
emerged as effective means to reverse this asymmetry in cyber war-
fare by dynamically orchestrating the cyber deception environment
to mislead attackers and corrupting their decision-making process.
However, developing an efficient active deception environment
usually requires human intelligence and analysis to characterize
the attackers’ behaviors (e.g., malware actions). This manual pro-
cess significantly limits the capability of cyber deception to actively
respond to new attacks (malware) in a timely manner.

In this paper, we present a new analytic framework and an im-
plemented prototype, called gExtractor, to analyze the malware
behavior and automatically extract the deception parameters us-
ing symbolic execution in order to enable the automated creation
of cyber deception schemes. The deception parameters are envi-
ronmental variables on which attackers depend to discover the
target system and reach their goals; Yet, they can be reconfigured
and/or misrepresented by the defender in the cyber environment.
Our gExtractor approach contributes to the scientific and system
foundations of reasoning about autonomous cyber deception. Our
prototype was developed based on customizing a symbolic execu-
tion engine for analyzing Microsoft Windows malware. Our case
studies of recent malware instances show that gExtractor can be
used to identify various critical parameters effective for cyber de-
ception.

1 INTRODUCTION

Malware attacks have evolved to be highly evasive against preven-
tion and detection techniques. It has been reported that at least
360, 000 new malicious files were detected every day and one ran-
somware attack was reported every 40 seconds in 2017 [25]. This

“Most of this research was performed while being a PhD student at UNC Charlotte

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SSPREW-8, December 3—4, 2018, San Juan, PR, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6096-8/18/12...$15.00
https://doi.org/10.1145/3289239.3289244

Jinpeng Wei, Ehab Al-Shaer, Mohiuddin Ahmed
University of North Carolina at Charlotte
Charlotte, NC
{jwei8,ealshaer,mahmed27}@uncc.edu

Attacker Environment Defender Attacker ~ Defender Environment

Discover p

p=u

Mismatch---g

i+-Mismatch -

(a) Mutation.
Figure 1: Attacker’s Dependency on System Parameters.

(b) Misrepresentation.

reveals severe limitations in the prevention and detection technolo-
gies, such as anti-virus, perimeter firewalls, and intrusion detection
systems. Active Cyber Deception (ACD) has emerged as an effec-
tive defense for cyber resilience [13] that can corrupt and steer
adversaries’ decisions to (1) deflect them to false targets, (2) distort
their perception about the environment, (3) deplete their resources,
and (4) discover their motives, tactics, and techniques [1, 14].

Advanced cyber threats often start with intensive reconnaissance
by interacting with cyber to learn the true values of its parame-
ters, such as keyboard layout, geolocation, hardware ID, IP address,
service type, OS/platform type, and registry keys to discover vul-
nerable targets and achieve their goals. We call such parameters
“Critical Parameters". ACD can be particularly effective during this
phase by providing false perceptions about the configuration of the
cyber environment [1]. There are two key mechanisms to accom-
plish this: (1) parameter mutation to frequently change the ground
truth, the real values of the system parameters, such as IP address
and route mutation [12, 16], or (2) parameter misrepresentation to
change only the values discovered by the attacker, while the ground
truth is intact. We call such critical parameters that can be feasi-
bly and cost-effectively mutated or misrepresented the “Deception
Parameters". Figure 1 shows the two deception mechanisms with
respect to the environment parameter p. It shows that the adversary
knowledge about p was falsified by either changing p to a new value
(mutation) or lying about its true value (misrepresentation). Both
mechanisms are needed in cyber deception because mutation can be
infeasible or too expensive, and misrepresentation can sometimes
be uncovered.

Effective planning of cyber deception may require a sequence
of mutations and/or misrepresentations of deception parameters
in order to steer the adversary, represented by malware code, to
desired deception goals (i.e., deflection, distortion, depletion, or
discovery). However, the key challenge that we address in this work
is to identify the most appropriate deception parameters against
given malware. For example, let us consider a Trojan horse that

https://doi.org/10.1145/3289239.3289244

SSPREW-8, December 3-4, 2018, San Juan, PR, USA Mohammed Noraden Alsaleh, Jinpeng Wei, Ehab Al-Shaer, and Mohiuddin Ahmed

steals trade secrets only if the victim computer’s keyboard layout
is for Brazil. If we want to feed the adversary misleading trade
information by running the Trojan in the United States, we have
to first make the victim machine’s keyboard layout appear to be
for Brazil, and then plant fake documents for the Trojan to fetch.
Our goal in this case is to automatically identify that the keyboard
layout, among others, is a candidate deception parameter.

In this paper, we present a systematic approach and automated
tool to analyze malware binary code and identify “what” decep-
tion parameters can accomplish the deception goals. This requires
deception-oriented analysis of malware behaviors, which goes be-
yond existing dynamic analysis that is usually tailored towards
attack detection. Thus, we extend the existing dynamic analysis
and symbolic execution frameworks, which track the execution
of malware symbolically, to analyze system and library API calls
that particularly entail interactions with the cyber environment.
We then identify the deception parameters that can impact the
malware decision-making. Since these parameters can be inter-
dependent and they might exhibit varying deception accuracy and
cost, our analysis selects consistent sets of parameters that creates
resilient and cost-effective deception schemes. We summarize our
contributions as follows:

o We present gExtractor, a deception-oriented malware analysis
tool that intercepts and tracks the malware interactions with the
environment, and maps them to specific deception parameters.

o We developed formal constraints to extract deception parameters
that constitute consistent, resilient, and cost-effective deception.

e We implemented gExtractor and evaluated it using various types
of malware codes. Our evaluation demonstrates the ability of
gExtractor to extract effective deception parameters.

While some previous work, such as Moving Target Defense
(MTD) 12,17, 33,35, 38,41, 42] and decoy technologies [3, 23, 34] at-
tempt to invalidate attacker’s perception, the deception parameters
and schemes were engineered manually, which significantly lim-
its the ability for creating deception actions automatically against
novel malware. The ultimate goal of this research is to automate ac-
tive cyber deception against malware attacks. Thus, unlike IPS/IDS,
our objective is to detect and deceive, rather than detect and block,
by enabling the malware to execute in a real or virtual deception en-
vironment configured based on the extracted deception parameters.
To the best of our knowledge, this is the first work that uses auto-
mated reasoning to infer deception parameters based on malware
analysis.

We implemented gExtractor on top of the Selective Symbolic
Execution engine (S?E) [7] with the assist of our custom plugins to
execute malware in a real controlled environment, intercept system
and library API calls, mark the relevant symbolic information, and
collect execution logs. This facilitates the construction of a compre-
hensive malware behavior model that covers all possible execution
paths. The constructed model is further processed to (1) prune out
execution paths that are not relevant to the deception goals, and
(2) eliminate the don’t-care symbolic variables that have no impact
on the deception goals.

To demonstrate the value of our approach, we used gExtractor
to analyze about 30 recent variants of three major malware fami-
lies: Cryptocurrency-mining malware, ransomware, and Credential-
stealing malware. We discuss in the evaluation section one represen-
tative for each family by modeling its behavior, extracting candidate
deception parameters, and showing how they can be used to design
different deception schemes for different goals. Our case studies
presented in this paper show that our approach can discover ef-
fective deception parameters. For example, the bitcoin miner case
study (Section 4.1) reveals multiple parameters including Windows
Script Host engine, win32_processor WMI (Windows Management
Instrumentation) class that can be used to deflect the malware by
misinforming false platform type, and the bitcoin hashing results
that can be used to corrupt the results in mining pool and depleting
the adversary resources (i.e., score).

The rest of this paper is organized as follows: In Section 2, we
present the process of constructing the malware behavior model
by executing the malware symbolically. Then, we present our ap-
proach to refine the malware behavior models and extract candidate
deception parameters in Section 3. Real malware case studies are
presented in Section 4. Finally, we discuss the related works and
conclude in Section 5 and 6, respectively.

2 MODELING ATTACK BEHAVIOR USING
BINARY SYMBOLIC EXECUTION

To extract the complete behavior of a cyber attack, we execute
its binaries (i.e., malware) symbolically and build a model that
represents its behavior with respect to selected system parameters.
Given that the correct set of system parameters is selected, symbolic
execution can cover all relevant execution paths. Before going
through the technical steps of the symbolic malware analysis, we
present the attack behavior model.

2.1 Attack Behavior Model

The attack behavior model describes how the attack behaves based
on the results of its interaction with the environment. The malware
interacts with its environment through system and user library
APIs characterized by their input and output arguments. Some of
these arguments may be attacker-specific variables and cannot be
controlled by the environment, while other parameters can be re-
configured or misrepresented. We assume that a mapping between
the selected system or library APIs’ arguments and the correspond-
ing parameters in the environment, such as files, registry entries,
system time, processes, keyboard layout, geolocations, hardware ID,
C&C, Internet connection, IP address or host name, and communi-
cation protocols, is given. For example, the from argument of the
recvfrom API can be mapped to a system parameter that represents
the IP address of the sender machine.

We define the attack behavior model as a graph of Points of
Interaction (Pol) nodes and Fork nodes. The Pols refer to the points
in the malware control flow at which the malware interacts with the
environment by invoking system or library APIs. The fork nodes
represent the points in the control flow at which the malware makes
a control decision based on the results of its interactions with the
environment.

gExtractor: Towards Automated Extraction of Malware Deception Parameters

send(fd, “tftp -i 1.2.3.4 GET msblast.exe”, ...)
1) Instruct the victim to request the worm
binary through TFTP

send() return Fork

value <=0 At 0x403728

terminate send() return value >0

recvfrom(fd, buf, ...)
Receive the download command

recvfrom() Fork

return value <=0 At 0x403917

terminate recvfrom() return value >0

block_size = fread(buf, ...)

Data dependency I/ Read a portion of the file

(buf, block_size) |
\ sendto(fd, buf, block_size, ...)
> Send the portion to the victim

send(fd,”start msblast.exe”, ...)
Attack Goal Send instruction to start the newly

downloaded replica

Figure 2: Example of Attack Behavior Model

To formally model the attack behavior, let I' be the set of selected
System and Library APIs, where each y € T takes a fixed number
of input augments (I, = {iy,...,in}) and returns a fixed number
of output arguments (Oy = {o1,...,0m}). We model the attack
behavior as the directed graph G = (P, y, E, v), where:

e P is a set of nodes that represent the Pol and Fork nodes. The
type function p : P — {Pol, Fork} x (T U 0) associates nodes
with their types. If the node represents a Pol, y further maps it
to the appropriate system and library API from the set I'.

e E C P X P is the set of edges that represents the dependency
between the nodes in P. A directed edge e = (p;, p;) is added
from node p; to node p; if there is a control or data dependency
between them. The dependency function v : E — L associates
each edge to a constraint expressed as a logic formula in the logic
Lo with support for quantifier-free integer, real, and bit-vector
linear arithmetic. Expressions in Lo are defined over the set of
output arguments O = U Oy.

yer

In Figure 2, we show an example of attack behavior model that
represents a portion of the Blaster worm that delivers a copy of
the worm to an exploited victim. Round nodes represent Pols and
square nodes represent fork points. The solid edges represent con-
trol dependency, while dashed ones represent data dependency. In
this model, the worm first sends an instruction to a remote com-
mand shell process running on the exploited victim through the
send library API, then it waits for a download request through the
recvfrom API call. The attack code checks if these operations are
executed successfully and terminates otherwise as depicted through
the conditions shown on the outbound edges from the fork nodes 2
and 5. At node 7, the worm starts reading its executable file from the
disk into a memory buffer, through fread, and sending the content
of the buffer to the remote victim, through the sendto API. There is
a data dependence between the third argument of the sendto call,
which represents the number of bytes to transmit, and the return
value of the fread call, which represents the number of bytes read
from the worm file.

SSPREW-8, December 3-4, 2018, San Juan, PR, USA

2.2 Malware Symbolic Execution

We utilize the S?E engine to symbolically execute malware bina-
ries. The path coverage and the progress of the executed program
depends on the correct marking of symbolic variables. Since we
are interested in the interactions of the malware with its environ-
ment through selected system and library APIs, we intercept these
calls and mark their output arguments as symbolic. This allows us
to capture the malware decisions based on those arguments and
track the corresponding execution paths. In the current version of
our implementation, we select about 130 APIs that cover activities
related to networking, file system and registry manipulation, sys-
tem information and configuration, system services control, and UI
operations. We list these APIs in Appendix A.

Marking Symbolic Variables. To mark the appropriate symbolic
variables, we take advantage of the Annotation plugin provided by
S2E, which combines monitoring and instrumentation capabilities
and executes user-supplied scripts, written in LUA language, at
run time when a specific annotated instruction or function call
is encountered. We define an annotation entry for each API. The
annotation entry consists of the module name, the address of the
API within the module, and the annotation function. We identified
the module names and addresses using static/dynamic code analysis
tools, such as IDA and Ollydbg. The annotation function is executed
at the exit of the intercepted call. It reads the addresses of the return
and output arguments of the call and marks the appropriate memory
locations and registers as symbolic. Note that output arguments
may have different sizes and structures. Hence, we need custom
scripts to mark each individual output argument of the intercepted
APIs. The return values of APIs are typically held in the EAX register
and we use special method provided by S?E to mark its value as
symbolic. It should be noted that system calls and user library
APIs are invoked by all applications in the environment, not only
the malware process. Therefore, our annotation functions check
the name of the process that invokes them and ignore calls from
irrelevant processes.

Building the Attack Behavior Model. After preparing the ap-
propriate annotation entries, we execute the malware using S°E
to collect the execution traces. We configured the annotation func-
tions to record the arguments, the call stack, and other meta-data,
such as the time-stamp and the execution path number for each in-
tercepted system and library call. By design, S?E intercepts branch
statements whose conditions are based on symbolic variables and
forks new states of the program for each possible branch. We collect
the traces and branching conditions of all execution paths and build
the attack behavior model as follows:

e We create a Pol node for each system or library API call logged
by our annotation functions. Similarly, the traces contain special
log entries for state forking operations. Those are used to create
the Fork nodes in our model.

e For each node in the model, we add a control dependency edge
from the node preceding it in the execution path. If the preceding
node is a Fork node, the edge will be associated with a branching
condition in terms of the symbolic variables.

o To capture the data dependency, we check the values of all the
input arguments upon the entry of each API call. If the value

SSPREW-8, December 3-4, 2018, San Juan, PR, USA Mohammed Noraden Alsaleh, Jinpeng Wei, Ehab Al-Shaer, and Mohiuddin Ahmed

is a symbolic expression, this implies that it is a transformation
of previously created symbolic variables. Hence, we add a data
dependency edge from the Pol nodes in which the symbols of
the expression were created.

3 DECEPTION PARAMETERS EXTRACTION

Given the attack behavior model generated through symbolic exe-
cution, we extract a set of system parameters that help in designing
effective deception schemes to meet the deception goals. Recall that
the attack behavior model describes the complete behavior of a
malware with respect to selected system parameters. However, that
does not mean that every parameter in the attack behavior model
is a feasible candidate for deception. That is, mutating or misrepre-
senting its value may not be sufficient to successfully deceive the
attacker. We analyze the attack behavior model to select the ap-
propriate set(s) of deception parameters that can help in designing
deception schemes without dictating particular ones.

We present the following four criteria (C1 - C4) that must be con-
sidered to decide on which parameters are appropriate for effective
deception and which are not:

e C1 (Goal Dependency): the selected deception parameters can
directly or indirectly affect the outcomes of the attack in terms of
whether the attacker can reach her goal. Hence, parameters that
are used only in execution paths that do not lead to particular
goals might be excluded.

C2 (Resilience): in cases where multiple attack paths lead to
particular goals, selected parameters must provide deception in
all the paths, not only one.

o (C3 (Consistency): the selected deception parameters must pre-
serve the integrity of the environment from the attacker’s point
of view. As system parameters may be interdependent, deception
schemes must take this into consideration, such that misrepre-
senting one parameter without misrepresenting its dependents
accordingly does not disclose the deception.

C4 (Cost-Effectiveness): although multiple parameters may exist
in the execution paths leading to particular goals, mutating or
misrepresenting different parameters may require different costs
and provide different benefits from the defender’s point of view.
Defenders must select the most cost-effective set of parameters
for deception.

To extract the parameters that satisfy the four criteria, we follow
two steps. First, we refine the attack behavior model to eliminate
irrelevant execution paths and symbolic variables, which ensures
that the refined model contains only parameters that satisfy C1.
Second, we construct a constraints optimization problem based on
the refined model. We add the appropriate constraints to extract the
parameters that satisfy C2 and C3. Further, we encode the estimated
costs of using the candidate deception parameters to select the most
cost-effective set that complies with C4.

3.1 Refining the Attack Behavior Model

The complete attack behavior model contains many execution paths
that may not be relevant to our deception analysis. In this refine-
ment step, we (1) identify the set of execution paths that are relevant
to deception and (2) eliminate the don’t-care symbolic variables.

Identifying Relevant Paths. Recall that deception is not about

blocking attacks, rather, it is about misleading and forcing them
to follow particular paths that serve the desired deception goals.
Hence, the selection of relevant execution paths from the attack
behavior model depends on the deception goal. Following our defini-
tions of the four goals of deception, the paths relevant to distortion
keep the malware misinformed about the environment to slow it
down or force it to make more environment checks. This is reflected
in the paths that exhibit aggressive interactions and queries with
and about the environment. On the other hand, the relevant paths
for depletion and discovery are those that lead the malware to in-
teract with the remote master or adversaries, while paths in which
the malware loses interest and abandons the system are relevant to

the deflection goal.
Definition 3.1 (Relevant Paths). A relevant path with respect

to a particular deception goal is an execution path that exhibits
particular patterns of interactions with the environment that can
be leveraged by the defender to achieve the deception goal.

Regardless of which deception goal is desired, it can be repre-
sented as a single call or a sequence of calls to system and library
APIs. To recognize deception goals, we can leverage existing tech-
niques that identify specific behaviors through patterns of call
sequences, such as [8, 29, 31]. Then, the Pol nodes in our attack
behavior model will be used to identify the execution paths that
exhibit that particular sequence of calls. By pruning out all other
paths that do not exhibit the desired sequence, we end up with a
portion of the original behavior model that contains only the paths
relevant to the deception goal. In Figure 3a, we show a simple exam-
ple of an attack behavior model that has two paths, one leads to the
desired goal and the other leads to attack termination. In this case,
the left path is considered irrelevant and it will be pruned out. For
a concrete real-world example, in order to deceive the FTP Creden-
tial Stealer malware in Section 4.2 with honey FTP passwords, the
environment must not run OllyDbg because otherwise the malware
would follow an execution path irrelevant to the deception goal.

Eliminating Don’t-Care Variables. To clarify this step, we need
first to define the execution path constraints. A path constraint is
a logical expression that captures the conditions on the selected
symbolic variables that need to be met in order for the execution to
follow that particular path. Recall that we associate a set of symbolic
variables to each Pol node p in the attack behavior model (p €
P, u(p) = Pol), which correspond to its output arguments. Later in
the execution, an expression will be generated for each branch at the
following forking nodes in terms of the symbolic variables causing
the fork. Those expressions are captured in the resulting edges of
the fork nodes and mapped through the dependency function v(.).

The constraint of an entire path in our attack behavior model is
simply the conjunction of the logical expressions associated with all
the edges that belong to the path. Formally, let # = {p1,p2,....pn},
where (Vi¢[1,n] * pi € P), represents a node path in the attack
behavior model. Further, let e; j € E denote the edge between the
nodes p; € P and p; € P. The path constraint of the execution
path represented by # can be computed as Aje[1, n—1] H(€i,i+1);
where p(e;, ;+1) is the expression of the edge e; j+1. We define the
don’t-care symbolic variables as follows.

Definition 3.2 (Don’t-Care Variables). A don’t-care variable with
respect to particular deception goal is a symbolic variable that is

gExtractor: Towards Automated Extraction of Malware Deception Parameters

1V —-=7p
1 , 1
Irrelevant | Don’t-care
Path Fork variable Fork
4
s v, =20 v; <0

V3

A
i v
; Goal Goal

(a) Relevant Path Selection.

v,
1
v

(b) Don’t-care Elimination.

Figure 3: Attack Behavior Model Refinement.

)

Candidate {\V1/~ 7
ets |
- I
1
N
e V3

Goal

(a) Resilient Deception. (b) Consistent Deception.

Figure 4: Deception Parameters Selection.

part of one or multiple execution path constraints and its value is
irrelevant to the desired deception goals.

As Figure 3b illustrates, although there is a decision taken based
on the symbolic variable v1, the desired goal will be reached re-
gardless of the variable’s value. This makes v; a don’t-care variable
with respect to the desired goal and it can be excluded from further
deception analysis.

After eliminating the irrelevant paths and the don’t-care vari-
ables, we end up with refined path constraints for the relevant paths.
Any parameter extracted based on this refined model complies with
C1 criteria.

3.2 Selecting Deception Parameters

In this step, we define a constraints optimization problem based
on the refined attack behavior model to find an optimal set of de-
ception parameters. Each Pol node in the refined attack behavior
model is associated with a set of symbolic variables, which repre-
sent the output arguments of the malware interactions with the
environment.

Although, the symbolic variables augment the attacker’s percep-
tion about the environment, extracting the deception parameters
out of them is not a trivial process due to the following. First, there
is no necessarily one-to-one mapping between the symbolic vari-
ables and the system parameters since the output of one interaction
may be determined by multiple system parameters. Hence, we need
to map the symbolic variables to the appropriate system parame-
ters utilizing experts knowledge of the system and the system and
library APIs. The documentation of the APIs can also be used to
extract this mapping as it normally specifies the possible outputs
of APIs and the cases in which each value is returned based on
the system and the environment states. Second, multiple candidate

SSPREW-8, December 3-4, 2018, San Juan, PR, USA

sets of deception parameters may exist in the model. As illustrated
in Figure 4a, selecting either {v;} or {vy, v3} satisfies C2 criteria,
but they might be associated with different costs. Third, the inter-
dependence between system parameters may mandate selecting
additional parameters to satisfy C3, which increases the cost of
deception. For example, in Figure 4b, although selecting {v;} is
sufficient to satisfy C2, we also need to select {v3} to satisfy C3
because of the dependency of v3 on v;. To satisfy C4, our selec-
tion must consider all possible candidate sets to find the optimal
cost-effective one.

To formalize the problem of selecting the optimal set of deception
parameters, let V be the set of system parameters and let S be the
set of symbolic variables in the refined attack behavior model. We
define the following mapping functions:

e 0(): S — 2V is the parameters assignment function that maps
each symbolic variable in the path constraints to the correspond-
ing system parameter(s).

e §(.) : V — Z* is the cost function that determines the cost
of deception through each system parameter. Z* is the set of
non-negative integers.

Based on these assumptions, the deception parameters selection is
defined as the problem of selecting a set of system parameters, such
that (1) at least one parameter is selected for each relevant path (to
comply with C2), (2) if a parameter is selected, all its dependent are
also selected (to comply with C3), and (3) the selected parameters
incur the minimum cost on the defender (to comply with C4).

To model this problem, we define the set of Boolean variables
{d1,d>, ...,dm} with a variable for each system parameter in V. This
set represents the decision variables of the constraints optimization
problem, where d; is set to 1 if the i-th parameter in V is selected for
deception and d; is set to 0 otherwise. Then, we unfold the refined
attack behavior model into the set 7 of paths, where each ¢t € 7" is
a sequence of symbolic variables (+ C S). The first constraint that at
least one deception parameter is selected for each path is expressed
as follows:

ANV Y »

teT \s€tiel(s)

where 0(s) is the parameters assignment function that returns the
indices of the system parameters associated with the symbolic vari-
able s. To calculate the total deception cost, we compute the value
C that represents the cumulative cost of all the selected deception
parameters.

C=), @i?8@) : 0))

i€[1,m]

where v; is the i-th element in the set V' of system parameters and
the notation (¢ ? vy : v2) represents the if-then-else construct that
evaluates to the value vy if is true, and to the value vy if ¢ is
false. We add another set of constraints to capture the dependency
between the system parameters. If a parameter is selected for decep-
tion, all the dependent parameters must also be selected. To capture
this set of constraints, let e(.) : V — 2V be a dependency function
that maps each system parameter to a set of dependent parameters.

SSPREW-8, December 3-4, 2018, San Juan, PR, USA Mohammed Noraden Alsaleh, Jinpeng Wei, Ehab Al-Shaer, and Mohiuddin Ahmed

Then, we represent the dependency constraints as follows:

Ald— A 4 3)

v; eV jee(v;)

After adding the constraints we can solve the constraints op-
timization problems using a solver (e.g. [10]). The optimization
objective in this problem is to minimize the cumulative deception
cost denoted by the variable C in Equation 2. The result will be a
set of system parameters that satisfies our four criteria to provide
resilient, consistent, and cost-effective deception.

4 EVALUATION

We developed a prototype for gExtractor, consisting of two major
parts: (1) four new SE plugins and minor modifications to the S’E
core, in about 1,700 lines of C++ code; (2) annotation scripts for 130
system and library APIs, in 6,450 lines of LUA code. The optimal
deception parameter selection is under development.

We used gExtractor to analyze recent malware variants and
extracted candidate deception parameters for each of them. The
variants we analyzed represent most common types of malware,
including Cryptocurrency-mining malware, ransomware, worms,
spyware, and Credential-stealing malware. To demonstrate that
our systematic approach can indeed extract effective deception pa-
rameters, we selected five of the most prevalent malware, namely,
Bitcoin Miner, FTP Credential-Stealer, and three instances of ran-
somware (Cerber, Locky, and Gandcrab). We discuss in details the
process of building the attack behavior model, extracting deception
parameters, and we suggest deception schemes utilizing them.

4.1 Case Study I: Bitcoin Miner

We analyzed a recent bitcoin mining malware (MD5: efd1326e5289a-
9359195120fd6¢55290) that works in several stages. First, it drops
and runs a Visual Basic (VB) script. Second, the script queries the
Windows Management Instrumentation (WMI) service for the pro-
cessor’s information, such as the availability of GPU and the system
architecture (32-bit or 64-bit), to download the right executable file
for the target system from an external distribution website, winx-
cheats.tk. Third, the downloaded executable (csrs.exe) downloads
yet another executable (AudioHD.exe) from getsoed9.beget.tech. The
last program (AudioHD.exe) interacts with a bitcoin mining pool
server at xmr.pool. minergate.com to perform the mining on behalf
of an account, which is hard-coded in the executable.

Malware Behavior. Using gExtractor, we construct the behavior
model of this malware (see the simplified version in Figure 5), which
covers the malware execution stages. We use common patterns of
API calls to recognize significant malware activity. For example,
the use of APIs that create new processes (e.g., ShellExecuteExA and
WshShell. Run), indicates the beginnings of consecutive malware
stages. Moreover, interacting with a well-known bitcoin mining
pool server through networking and HTTP APIs reveals that one
goal of this malware is to use the victim machine to perform bitcoin
mining on behalf of the attacker. Therefore, we refine the malware
behavior model by recognizing the relevant paths that lead to that
goal and design deception schemes around it. After mapping the
symbolic variables of the relevant paths’ constraints to the system

CreateFileA(“.../x.vbs”)

Fail

Create and
execute a script
file to download
external code

Terminate(...)
Success

WriteFile(...)
ShellExecuteExA(“.../x.vbs”)

Failed Terminate(...)

Executed
CreateProcessW(...)

¥

IWbemServices::ExecQuery(...)

Check the processor
other architecture and
download the
appropriate payload

Incompatible
desired

HTTPDownload(...)

WshShell.Run(...)

Failed Terminate(...)

Executed

WriteFile(“AudioHD.exe ”) Create and run

CreateProcess(“AudioHD.exe the actual mining
... -u [username] -p ...”) binary

Figure 5: Simplified Behavior Model of the Bitcoin Miner

parameters, our analysis reveals the following necessary conditions
for successful mining:

1. The file C:\Windows\system32\wscript.exe exists.

2. Windows Script Host (WSH) engine is enabled to run Visual
Basic scripts.

3. WMI service and Microsoft Win32 WMI provider are running.

4. win32_processor WMI class reports the correct processor infor-
mation.

5. The distribution website (http://winxcheats.tk) is available and
hosts the executable file (under /miners/3/csrs.exe).

6. The second distribution site (getsoed9.beget.tech) is available
and hosts the second executable file (AudioHD.exe).

7. The bitcoin mining pool server (xmr.pool. minergate.
com) is still running correctly.

8. The hard-coded account (iden1930@mail.ru) is authenticated
successfully at the mining pool server.

9. The target system can run the file AudioHD.exe successfully.

To clarify how gExtractor facilitates the detection of such condi-
tions, let us take condition 2 as an example. We mark the output
parameter “Buffer” of the RegQueryValueExW API call, which is
required to successfully complete the second stage of the malware,
as symbolic. The API’s input parameter, hKey, refers to the registry
key “HKLM\SOFTWARE\Microsoft\Windows Script Host\Settings\”
and the other input parameter “ValueName” is set to “Enabled”.
Then we observe that “Buffer” is used in a conditional jump, and
in one path the message “Windows Script Host access is disabled
on this machine” is displayed before the process terminates, while
in another path we do not see this message. Alternatively, we see
multiple queries to the WMI service. The first path will be regarded
as irrelevant and pruned out by gExtractor and we will only con-
sider the later. Similarly, gExtractor can detect the dependence of
this malware on the remaining conditions by tracking the decisions
taken based on the associated symbolic variables and refining the
behavior model.

Deception Parameters. We analyzed the refined bitcoin miner

gExtractor: Towards Automated Extraction of Malware Deception Parameters

behavior model with respect to different deception goals: deflec-
tion, distortion, depletion, and discovery. We identified the major
deception parameter that satisfies our criteria defined in Section 3.2
and can be utilized to achieve each goal. In the following, we dis-
cuss a number of recommended deception schemes based on these
parameters and we provide a summary with estimated deception
costs in Table 1.

Deflection Schemes. For this purpose, we can enhance the desig-
nated script host C:\Windows\system32\wscript.exe. If the malicious
VB script initiates a connection to a critical server, the enhanced
wscript.exe can rewrite the VB script statement so that it connects to
a honey server instead. This scheme could have high development
cost because it requires a change to a Windows system utility, for
which we do not have a source code. In terms of operation cost,
this scheme can have high cost because it can confuse benign ap-
plications that need to run VB scripts, even if this is on a honeypot.
However, it has little configuration cost because the current Win-
dows OS does not have a configuration option to replace wscript.exe
with an alternative version.

Discovery Schemes. We can use the Windows Script Host (WSH)
engine to construct a discovery strategy against malware that needs
to run VB scripts. The WSH enables applications to run VB scripts
and JScripts, and it provides a configuration option (via Windows
registry) to enable/disable the VB script support. By enabling it, we
can observe malware behavior through its VB scripts and have a
better understanding of the malware. This strategy incurs only a
low configuration cost.

>

Distortion Schemes. Through the “win32_processor WMI class’
parameter, we can construct a distortion scheme that returns mis-
information about the system’s architecture in order to confuse
the malware (or the attacker behind the malware) who queries the
win32_processor class interface. This strategy requires a change to
the implementation of the win32_processor class interface, so there
can be some development cost, and it can have a low operation cost
if it is used on a honeypot.

Depletion Schemes. The last parameter in Table 1 is the resulting
hash, which the malware sends reliably to the mining pool server.
We can create a depletion strategy by corrupting the results so
that they become invalid. Deceiving the malware to send excessive
invalid results damages the attacker’s reputation or cause financial
losses (e.g., the mining pool server bans her account, freezes her
mining wallet, or applies a penalty to her account). This scheme
requires writing code to carry out the scheme, so it has some devel-
opment costs. It has no operation cost because it modifies only the
data of the malware.

We have experimentally confirmed the feasibility of depleting the
attacker by corrupting the resulting hashes. In order to profit from
mining on a victim machine, the attacker communicates with the
mining pool server under her mining username in order to receive
the credit. Therefore, at mining time, the attacker username must
be present on the victim machine. We leveraged this fundamental
“vulnerability” of this malware (i.e., revealing the mining username)
for an effective deception. Based on our study of multiple mining
pools, they establish various penalty policies for participants who
submit invalid hashes. In Table 2, we summarize the negative impact

SSPREW-8, December 3-4, 2018, San Juan, PR, USA

(@) Account status

Account balance: (00002398 &7C 2 Now mining: 0 Total mined: 0.00002447 BTC

acon Aeon coin 0.ossarssesizt ~0.00002305 BTC

You O Status: OFFLINE
Unconfirmed: 0.001008214145

Total mined: 0.067383779277

Good shares: 18,452 Bad shares: O

Blocks: 0

Figure 6: Account Status before Mining for Aeon Coin

() Account status

Acoount balance: (00001973 3 Now mining: Total mined: 0.00002015

co | o«

ason Aeon coin 0.ossarssssiat

You O

Unconfirmed: 0.001008214145

Status: OFFLINE
Good shares: 18,452 Bad shares: 0

Total mined: 0.067383779277 Blocks: O 47,545

Figure 7: Account Status after Submission of 40,000 Invalid
Shares for Aeon Coin

of submitting invalid shares to several public mining pools. We can
see that misbehaving users are often banned to some extent and
their wallets can even be locked.

To prove the effectiveness of this depletion scheme, we built a
tool that deliberately send invalid hashes on behalf of a particu-
lar user. Different mining pool servers may implement different
protocols to authorize jobs and submit resulting hashes. However,
most of them use a protocol called STRATUM over HTTP [36] and
they define their own methods that can be used by the users to
log into the server, get new jobs, and submit resulting hashes. We
obtain the names and the required parameters of these methods
along with other communication settings by analyzing the mining
malware. Then, we submit a login request to the pool server. In
response, the pool server returns a job and an Id that corresponds
to the username. At that point, a legitimate miner will use the job
data to generate a hash and send it back to the server. However,
our tool will generate and send a random result instead, which will
most likely be recognized as an invalid hash by the pool server.

To confirm that the mining pool servers penalize users who
send invalid hashes, we created a user account at Minergate and
sent a large number of random hashes on behalf of our new user.
After submitting around 40, 000 invalid hashes, the account balance
decreases from 0.00002398 to 0.00001973 which complies with the
policy of Minergate. Figures 6 and 7 show the change in the account
state before and after we sent the random hashes. Note that we
have no means to verify whether a real attacker will be penalized
if her username is used, because we do not have access to her
account balance. However, when we perform the same actions
using the attacker’s username (iden1930@mail.ru) extracted from
the malware analysis, the response from the mining pool server
indicates that the submitted shares are detected as invalid. Since
our account is penalized in compliance with the policy, we believe
the attacker’s account should be punished as well.

SSPREW-8, December 3-4, 2018, San Juan, PR, USA Mohammed Noraden Alsaleh, Jinpeng Wei, Ehab Al-Shaer, and Mohiuddin Ahmed

Table 1: Deception Schemes Against the Bitcoin Mining Malware

(CC: configuration cost, OC: operation cost, DC: development cost)

Parameter Deception Goal Deception Action

Estimated Cost

Replace it with a version that rewrites the input VB script for

wscript.exe Deflection . No CC; High OC; High DC
better protection

WSH engine Discovery Enable its capability to run VB scripts Low CC; No OC; No DC

win32_processor WMI class Distortion C}.la.nge the way that it handles requests (e.g., returning No CC; Low O(; if used on a
misinformation about processors) honeypot; Medium DC

The resulting hash Depletion Corrupt the resulting hash No CC; No OC; High DC

Table 2: Negative Impact of Submitting Invalid Hashes

.. Payouts Balance
Mining Pool Banned locked reduced
moneroocean.stream For 1-10 min No No
xmrpool.net Yes No No
supportxmr.com Yes Yes No
www.viaxmr.com Temporary No No
minergate.com No No Yes
slushpool.com Yes No No
moriaxmr.com For 10 min No No
ratchetmining.com For 10 min No No

4.2 Case Study II: FTP Credential-Stealer

In this case study, we analyze a recent malware (MD5: 7572fb188134-
d141eac1751b19b79a70) that scans the victim system for sensitive
information, such as FTP login passwords and then sends the stolen
information to a remote server.

Malware Behavior. This malware consists of two processes. The
first process employs multiple methods to check whether the mal-
ware is being analyzed, then terminates immediately if the checking
result is positive. If no signs of analysis are detected, the first pro-
cess drops and launches another piece of malware, which collects
sensitive information from the victim system and sends it to a re-
mote server under the adversary’s control. A simplified version
of the behavior model of this malware, generated by gExtractor, is
shown in Figure 8.

The first malware process is heavily obfuscated and employs mul-
tiple tricks to evade analysis: (1) it tests whether the executable file’s
name contains any of the strings “sandbox”, “malware”, “virus”, or
“self”; (2) it scans the list of running processes for known dynamic
analysis tools, such as procmon.exe, procmoné4.exe, procexp.exe, olly-
dbg.exe, and windbg.exe; (3) it checks the BeingDebugged flag in its
PEB (Process Environment Block) [11] at multiple places of its code
section; (4) it checks whether it is running inside a virtual machine
by matching the result of the CPUID instruction with “KVMKVM,
“XenVMM”, “Microsoft Hv”, and “pri hyperv”; (5) it extracts the sec-
ond malware binary from its resource section, decrypts it, and then
uses process injection to launch it in a second process. If any sign of
malware analysis is detected, the malware immediately terminates.

In the second process, the malware collects sensitive information
from the Windows registry and the local file system, and sends
it to a remote site as follows. First, it searches certain Windows

GetModuleFileName(...) Perform
Process32First(...) multiple
Process32NextW(...) checks
Check CPUID to evade
Register Exception Handler analysis

Analysis Terminate(...)

No Analysis
CreateProcessW(...)

¥

CreateStreamOnHGlobal()(...) Scan for
FindFirstFileA(...) files with
FindNextFileA(...) specific
Match file name to a string names
No Match
Scan More Match Found
Write the file to the stream

Send to
Send stream content over Controller
HTTP

Figure 8: Simplified Model of the FTP Credential-Stealer

registry keys, which correspond to a specific list of FTP clients, for
saved login credentials. For example, to steal information related
to WinSCP, it searches for the key “Software\Martin Prikryl”. If
the key is found, it recursively enumerates the subkeys with the
names “HostName”, “UserName”, “Password”, “RemoteDirectory”, and
“PortNumber”, read their values, and stores them in a stream ob-
ject for later exfiltration. Strings such as “Software\Martin Prikryl”
and “HostName” are hard-coded in the malware. Second, it looks
up files whose path contains particular patterns (e.g., “WS_FTP”,
“LastSessionFile”, “FTPRush”, “Quick.dat”, and “History.dat”), and if
any such file exists, it stores the file’s path and content in the
stream object. To optimize the search, it focuses on known folders,
identified by their Constant Special Item ID List (CSIDL) values,
such as the users’ public documents, desktop, and local settings.
It also searches the folders of installed applications discovered
by their “UninstallString” registry values under the registry key
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall.
After collecting the targeted information, the malware extracts
the data from the stream object (via the API call sequence {GetHGlob-
alFromStream, GlobalLock}), then it constructs and sends a HTTP
POST message to “http://www.luxzar.com/drake/november/omg/hot/
gate.php”. The HTTP communication is conducted by the API call

gExtractor: Towards Automated Extraction of Malware Deception Parameters

Table 3: Defense Strategies against FTP Credential-Stealing Malware

(CC: configuration cost, OC: operation cost, DC: development cost)

SSPREW-8, December 3-4, 2018, San Juan, PR, USA

Parameter Deception Goal Deception Action Cost
Malware file name Discovery i\\fmd narr»ung "Ehe malv;/are sandbox.exe”, “malware.exe”, Low CC: 1o OC
virus.exe”, or “self.exe
Dynamic analysis tools Discovery Rename the dynamic analysis tools Low CC; no OC
. X . Deny that the true result is one of “KVMKVM”, Low CC; High OC;
Result of the CPUID instruction Discovery “XenVMM?, “Microsoft Hv”, and “pri hyperv” High DC
Registry entries of WinSCP Depletion Plant encrypted. and invalid FTP passwords Fo Wéste the energy of the Low CC; Low OC;
attacker who tries to decrypt and use those invalid passwords No DC
. . . . Plant honey FTP passwords to entice the attacker to Medium CC; Low

Regist t f WinSCP D

cgistry entries of Win 1scovery login to a honey FTP server OC; No DC
Regist: tries of applicati Low CC; High OC;

cBis Ty entries of apphications Depletion Plant encrypted and invalid login credentials oW & ’
that maintain login credentials High DC
Registry entries of applications . . . Medium CC; Low
that maintain login credentials Discovery Plant honey login credentials OC; No DC
Files that contain sensitive Depletion Plant Honey files with seemingly sensitive information to waste the Low CC; Low OC;
information P energy of the attacker who tries to act upon the content of the files No DC

Deflecti
Files that contain sensitive Diest(e)lcrtigz Depending on the meaning of the file content, plant crafted content that ~ Varying CC;
information Discover can help the defender achieve Deflection / Distortion / Discovery goals ~ Low OC; No DC
very

sequence {InternetCrackUrlA, ObtainUserAgentString, socket, con-
nect, setsocketopt, send, closesocket}.

Deception Parameters. We employ the methods discussed in Sec-
tion 3 to the behavior model we obtain from the above analysis. We
recognize a number of deception parameters that enable different
deception schemes, as summarized in Table 3.

Discovery Schemes. Since the malware applies many checks to
evade analysis, these checks can be used to inspire effective discov-
ery schemes that encourage the malware to run normally. Specif-
ically, we can rename common analysis tools and modify the be-
havior of the CPUID instruction so that it gives an impression that
the environment is not a virtual machine, which is commonly the
case for malware analysis. The cost of renaming common dynamic
analysis tools is low. However, the cost of manipulating the result
of the CPUID instruction can be high: it is cheap if the environment
has a way to intercept CPUID instructions in software (e.g., on top
of QEMU), but it is infeasible otherwise. Alternatively, the registry
entries of the FTP clients, such as WinSCP, can be leveraged to lure
the attacker to honeypots so we can learn more about its capabili-
ties and intents. We can create honey FTP accounts, save the honey
login credentials in WinSCP, and run the malware so it delivers the
honey login credentials to the attacker. The configuration cost of
this kind of scheme is medium because it is necessary to set up the
honey FTP server and deploy monitoring tools.

Depletion Schemes. The registry entries of the FTP clients can
also be leveraged to feed the attacker fake login credential and de-
plete her resources and effort. For example, we can install WinSCP
in the environment and save many sessions with fake values for the
information targeted by the attacker (e.g., username and password)
decreasing the likelihood of her landing on legitimate victims. An
even better scheme is to create an encrypted version of an invalid
password and save it in the Windows registry entry for WinSCP,
which will give the attacker an additional burden to decrypt the

password, thus further depleting the attacker’s resources.

Deception Schemes using the File System. Similar to registry
entries, files that contain sensitive information are useful parame-
ters for multiple goals: depletion, deflection, distortion and discov-
ery. For example, we can plant honey files with seemingly sensitive
but useless information to waste the energy of the attacker who
tries to act upon the content of the honey files. Although the gen-
eral idea is well known, the specific details as to which files should
be planted can be greatly informed by analyzing the malware deci-
sions. The cost of carrying out these kinds of strategies can vary
depending on the purposes of the files: it may require simple editing
of a file on one hand, or development of tools to create the files
on the other; the operation cost may also vary depending on the
purpose of the files: if they are used only by attackers, the cost is
low, but if they are used by benign users, the cost can be quite steep,
since the honey content can confuse benign users.

4.3 Case Study III: Cerber, Locky, and Gandcrab

Ransomware has moved from the 22nd most common variety of
malware in the 2014 data breach investigations report to the fifth
most common in 2017’s report [32]. We analyzed three instances
of this family using gExtractor: Cerber, Locky, and Gandcrab and
we summarize the analysis in the following. Since these instances
encrypt files on the compromised computers, one can expect that
their functionality relies heavily on file-related interactions. How-
ever, they share some functionality with traditional other types
of malware. First, during the initialization, they access the system
registry to setup the keys that guarantee persistence and they use
mutant-based infection markers. Second, they communicate with a
C&C server for key sharing and reporting. However, the communi-
cation is limited to information sharing and the server commands
do not normally change the main goal of those malware.

SSPREW-8, December 3-4, 2018, San Juan, PR, USA Mohammed Noraden Alsaleh, Jinpeng Wei, Ehab Al-Shaer, and Mohiuddin Ahmed

Table 4: Selected File-Related Interactions

Interaction System Parameter(s)
GetSystemDirectory System Directory Path
SearchPath File Existence
FindFirstFile File Existence
NtQueryInformationFile File Existence/Info
GetFileAttributes File Existence/Attributes
GetFileSize File Existence/Size
NtReadFile File Content
NtWriteFile File Content

Deception Parameters. In Table 4, we highlight the major inter-
actions with the file system and we map them to system parameters.
Note that some interactions depend on multiple parameters. For
example, GetFileSize will fail if the file no longer exists and it if
does, it will return the file size. Hence, it depends on both the ex-
istence of the file and its size. The persistence registry keys and
the mutant infection markers, the common folders (e.g., temp and
system directory), and the parameters in Table 4 (e.g., files names,
sizes, and attributes) were all part of the relevant paths that lead
to the goal and can be candidates for deception. In addition, after
refining the behavior models, we observed a difference between
Cerber and the Locky that confirms others’ manual observations.
Although Cerber called the sendto API to communicate with the
C&C server, the encryption process starts regardless of the success
of the communication. This means that the success of the sendto
call, manifested as a symbolic variable, was not part of the condi-
tions to reach the goal and it was pruned out. However, successful
communication was a condition to start encryption in the Locky
instance we evaluated.

Depletion Schemes. We developed a depletion scheme against
the adversary behind ransomware, specifically Gandcrab (MD5:
8a45b0941ec2af89bfd9ed3-3dae2053f). The malware sends encrypted
information about the victim to the C&C server, then receives a
response message derived from the message sent, which implies
that the C&C server has to process the message from the mal-
ware. Therefore, we can overwhelm the C&C server by sending
a substantial number of messages to it in a brief period. We have
experimentally verified that (1) it is possible to replay the same
message many times while the C&C server responds to each indi-
vidual message; (2) if we intentionally send a corrupted encrypted
message, the C&C server responds with an error, which implies that
it tries to decrypt the message but fails. Both confirm the feasibility
of our deception scheme.

4.4 Challenges and Future Work

Through our case studies, we recognized a few technical challenges
with respect to our approach. First, it is non-trivial to build a general
deception parameter extraction technique due to inherent limita-
tions of symbolic execution, for example, state space explosion.
Second, a naive use of symbolic execution cannot effectively dis-
cover interesting malware dependency on the environment because
the execution can slip into paths leading to other than the desired
goals, such as getting stuck in loops. We have implemented simple

10

heuristics to limit state forking inside code blocks that will be re-
peatedly executed and inside dynamically linked system libraries.
However, we plan to develop new plugins that would guide the
symbolic execution engine towards more meaningful paths leverag-
ing existing approaches that were previously proposed to address
similar challenges in dynamic taint analysis and mixed concrete and
symbolic execution [19, 30]. Finally, currently we specify coarse-
grained deception cost (e.g., Low or High); in future work we need
to quantitatively measure the cost of deception through different
system parameters.

5 RELATED WORK

Randomization and moving target defense are well-investigated
techniques toward agile cyber that can proactively disrupt advanced
attacks. Randomization techniques, such as instruction set random-
ization [28], compiler-generated software diversity [15] and address
space layout Randomization [35], introduce unpredictability to con-
fuse the adversary and invalidate her assumptions about the system.
Moving target defense techniques, such as [12, 18, 33, 41, 42], mu-
tate specific static system parameters proactively over time. For
example, NASR [2] randomizes IP addresses based on DHCP over
time. Similarly, the authors in [41] propose to periodically migrate
VMs to make it harder for adversaries to locate targeted VMs. In
another direction, deception techniques, such as honeynets and
honeypots [3, 20, 23, 34], divert attackers away from their targets
to consume their resources and protract their reconnaissance. Al-
though these techniques and many other similar ones have been
successful, within acceptable performance overheads, in deterring
and deceiving the targeted attacks, they were designed in an ad-
hoc manner to counteract specific attacks. Our proposed analytic
framework makes this process systematic and decrease the need
for manual intervention and the reliance on human intelligence to
design effective active cyber deception schemes.

Analyzing and exposing behaviors of malware is another re-
search topic that has been extensively discussed in the literature [4,
6, 24, 39, 40]. Forced execution [37] and X-Force [27] were designed
for brute-force exhausting path space without providing seman-
tics information for each path’s trigger condition. To discover the
trigger conditions, Brumley et al. [5] applied taint analysis and
symbolic execution to derive the condition of malware’s hidden
behavior. Moser [26] introduced a snapshot based approach that
could be applied to expose malware’s environment-sensitive behav-
iors. Hasten [21] was proposed as an automatic tool to identify and
skip malware’s stalling code. In [22], Kolbitsch et al. proposed a
multipath execution scheme for Java-script-based malware. Other
research [9, 37] proposed techniques to force the execution of dif-
ferent malware functionalities. While our work needs to analyze
malware, we have a different goal: to automatically discover sys-
tem parameters that can be mutated or misrepresented to deceive,
rather than detect, malware. We can benefit from all existing mal-
ware analysis techniques, and in this paper we choose symbolic
execution in particular.

gExtractor: Towards Automated Extraction of Malware Deception Parameters

6

CONCLUSION

We present the first analytic framework towards automated creation
of deception schemes based on rigorous malware binary code exe-
cution and automated reasoning of attack behaviors and decision-
making process. We have implemented a tool that models the com-
plete behavior of given malware in terms of its interactions with
and dependence on the environment. We further analyze the mal-
ware behavior beyond traditional dynamic and symbolic malware
analysis to track the malware decisions with respect to system pa-
rameters and identify those relevant to deception. Moreover, since
multiple competing parameters may be identified, we select the
optimal set of parameters that can be used to construct consistent,
resilient, and cost-effective deception. We demonstrated through
three detailed case studies how our deception-oriented analysis can
lead to effective deception schemes against major malware types:
cryptocurrency mining malware, credential-stealing malware, and
ransomware. In addition, we have experimentally verified the de-
ception schemes against bitcoin mining malware and ransomware.

REFERENCES

(1]

[2

=

=

>
&

[10

[11]

[12]

[13

[14]

[15

[16

Ehab Al-Shaer and Mohammad Ashiqur Rahman. 2015. Attribution, Temptation,
and Expectation: A Formal Framework for Defense-by-Deception in Cyberwar-
fare. In Cyber Warfare. Springer, 57-80.

Spyros Antonatos, Periklis Akritidis, Evangelos P Markatos, and Kostas G Anag-
nostakis. 2007. Defending against hitlist worms using network address space
randomization. Computer Networks 51, 12 (2007), 3471-3490.

Frederico Araujo, Kevin W. Hamlen, Sebastian Biedermann, and Stefan Katzen-
beisser. 2014. From Patches to Honey-Patches: Lightweight Attacker Misdirection,
Deception, and Disinformation. In Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS '14). ACM, New York, NY,
USA, 942-953. https://doi.org/10.1145/2660267.2660329

D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Kirda, and G. Vigna. 2010.
Efficient Detection of Split Personalities in Malware. In Proc of NDSS’10.

D. Brumley, C. Hartwig, Z. Liang, J. Newsome, P. Poosankam, D. Song, and H. Yin.
2008. Automatically Identifying Trigger-based Behavior in Malware. In Botnet
Analysis and Defense, W. Lee, C. Wang, and D. Dagon (Eds.). Vol. 36. Springer,
65-88.

P. Royal C. Song and W. Lee. 2012. Impeding Automated Malware Analysis with
Environment-sensitive Malware. In Proc. of HotSec’12.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012. The S2E plat-
form: Design, implementation, and applications. ACM Transactions on Computer
Systems (TOCS) 30, 1 (2012), 2.

Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. 2007. Mining
Specifications of Malicious Behavior. In Proceedings of the the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering (ESEC-FSE "07). ACM, New York, NY,
USA, 5-14. https://doi.org/10.1145/1287624.1287628

P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch, C. Krugel, and S. Zanero.
2010. Identifying Dormant Functionality in Malware Programs. In Proc. of S&P’10.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337-340.

Nicolas Falliere. 2007. Windows Anti-Debug Reference. https://www.symantec.
com/connect/articles/windows- anti- debug-reference. (2007). [Online; accessed
04-February-2018].

Syed Fida Hussain Gillani, Ehab Al-Shaer, Samantha Lo ?, Qi Duan, and
Mostafa Ammar ?and Ellen Zegura. 2015. Agile Virtualized Infrastructure to
Proactively Defend Against Cyber Attacks. In Infocom.

Harriet Goldman, Rosalie McQuaid, and Jeffrey Picciotto. 2011. Cyber resilience
for mission assurance. In Technologies for Homeland Security (HST), 2011 IEEE
International Conference on. IEEE, 236-241.

Kristin E Heckman, Frank J Stech, Roshan K Thomas, Ben Schmoker, and Alexan-
der W Tsow. 2015. Cyber denial, deception and counter deception. Springer.

Todd Jackson, Babak Salamat, Andrei Homescu, Karthikeyan Manivannan, Gregor
Wagner, Andreas Gal, Stefan Brunthaler, Christian Wimmer, and Michael Franz.
2011. Compiler-generated software diversity. In Moving Target Defense. Springer,
77-98.

Haadi Jafarian, Qi Duan, and Ehab Al-Shaer. 2016. Effective Address Mutation
Approach for Disrupting Reconnaissance Attacks. To appear in IEEE Transactions
on Information Forensics and Security (2016).

SSPREW-8, December 3-4, 2018, San Juan, PR, USA

[17] J. H. Jafarian, E. Al-Shaer, and Q. Duan. 2015. An Effective Address Mu-

tation Approach for Disrupting Reconnaissance Attacks. IEEE Transactions
on Information Forensics and Security 10, 12 (Dec 2015), 2562-2577. https:
//doi.org/10.1109/TIFS.2015.2467358

Sushil Jajodia, Anup K. Ghosh, V.S Subrahmanian, Vipin Swarup, Cliff Wang, and
Xiaoyang Sean Wang (Eds.). 2013. Moving Target Defense II - Application of Game
Theory and Adversarial Modeling. Advances in Information Security, Vol. 100.
Springer.

Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
2011. Dta++: dynamic taint analysis with targeted control-flow propagation.. In
NDSS.

Amanjot Kaur. 2013. Dynamic Honeypot Construction. (2013).

C. Kolbitsch, E. Kirda, and C. Kruegel. 2011. The Power of Procrastination:
Detection and Mitigation of Execution-Stalling Malicious Code. In Proc. of CCS’11.
C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. 2012. Rozzle: De-Cloaking
Internet Malware. In Proc. of S&P’12.

Sukwha Kyung, Wonkyu Han, Naveen Tiwari, Vaibhav Hemant Dixit, Lakshmi
Srinivas, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn. 2017. HONEYPROXY:
Design and Implementation of Next-Generation Honeynet via SDN. In IEEE
Conference on Communications and Network Security (CNS).

Martina L, Clemens K., and M.Paolo. 2011. Detecting Environment-Sensitive
Malware. In Proc. of RAID’11.

Kaspersky Lab. 2017. Kaspersky Security Bulletin. Overall statistics for 2017.
https://securelist.com/ksb-overall-statistics-2017/83453/. (2017).

A. Moser, C. Kruegel, and E. Kirda. 2007. Exploring Multiple Execution Paths for
Malware Analysis. In Proc. of S&P’07.

Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong
Su. 2014. X-Force: Force-Executing Binary Programs for Security Applications.
In Proceedings of the 2014 USENIX Security Symposium. San Diego, CA.
Georgios Portokalidis and Angelos D Keromytis. 2011. Global ISR: Toward a
comprehensive defense against unauthorized code execution. In Moving Target
Defense. Springer, 49-76.

Yong Qiao, Yuexiang Yang, Jie He, Chuan Tang, and Zhixue Liu. 2014.
CBM: Free, Automatic Malware Analysis Framework Using API Call Sequences.
Springer Berlin Heidelberg, Berlin, Heidelberg, 225-236. https://doi.org/10.1007/
978-3-642-37832-4_21

Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song. 2009.
Loop-extended symbolic execution on binary programs. In Proceedings of the
eighteenth international symposium on Software testing and analysis. ACM, 225-
236.

Madhu K. Shankarapani, Subbu Ramamoorthy, Ram S. Movva, and Srinivas
Mukkamala. 2011. Malware Detection Using Assembly and API Call Se-
quences. J. Comput. Virol. 7, 2 (May 2011), 107-119. https://doi.org/10.1007/
s11416-010-0141-5

Verizon Enterprise Solutions. 2017. 2017 Data Breach Investigations Report.
http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017/. (2017).
Nathaniel Soule, Borislava Simidchieva, Fusun Yaman, Ronald Watro, Joseph Loy-
all, Michael Atighetchi, Marco Carvalho, David Last, David Myers, and Capt Brid-
get Flatley. 2015. Quantifying & Minimizing Attack Surfaces Containing Moving
Target Defenses. (2015).

Jianhua Sun, Kun Sun, and Qi Li. 2017. CyberMoat: Camouflaging critical server
infrastructures with large scale decoy farms. In Communications and Network
Security (CNS), 2017 IEEE Conference on. IEEE, 1-9.

PaX Team. 2015. PaX address space layout randomization (ASLR). http://pax.
grsecurity.net/docs/aslr.txt. (2015). [Online; accessed 10-Feburary-2017].

Slush Pool Team. 2017. Stratum Mining Protocol Official Documentation.
https://slushpool.com/help/manual/stratum-protocol/. (2017).

J. Wilhelm and T. Chiueh. 2007. A forced sampled execution approach to kernel
rootkit identification.. In Proc. of RAID07.

Jun Xu, Z. Kalbarczyk, and R. K. Iyer. 2003. Transparent runtime randomization
for security. In 22nd International Symposium on Reliable Distributed Systems,
2003. Proceedings. 260-269. https://doi.org/10.1109/RELDIS.2003.1238076
Z.Xu, L. Chen, G. Gu, and C. Kruegel. 2012. PeerPress: Utilizing Enemies’ P2P
Strength against Them. In Proc.of CCS’12.

Zhaoyan Xu, Jialong Zhang, Guofei Gu, and Zhigiang Lin. 2014. GoldenEye:
Efficiently and Effectively Unveiling Malware’s Targeted Environment. In Pro-
ceedings of the 17th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID’14).

Yulong Zhang, Min Li, Kun Bai, Meng Yu, and Wanyu Zang. 2012. Incentive
Compatible Moving Target Defense against VM-Colocation Attacks in Clouds. In
Information Security and Privacy Research, Dimitris Gritzalis, Steven Furnell, and
Marianthi Theoharidou (Eds.). IFIP Advances in Information and Communication
Technology, Vol. 376. Springer Berlin Heidelberg, 388-399. https://doi.org/10.
1007/978-3-642-30436-1_32

Quanyan Zhu and Tamer Basar. 2013. Game-theoretic approach to feedback-
driven multi-stage moving target defense. In Decision and Game Theory for
Security. Springer, 246-263.

https://doi.org/10.1145/2660267.2660329
https://doi.org/10.1145/1287624.1287628
https://www.symantec.com/connect/articles/windows-anti-debug-reference
https://www.symantec.com/connect/articles/windows-anti-debug-reference
https://doi.org/10.1109/TIFS.2015.2467358
https://doi.org/10.1109/TIFS.2015.2467358
https://doi.org/10.1007/978-3-642-37832-4_21
https://doi.org/10.1007/978-3-642-37832-4_21
https://doi.org/10.1007/s11416-010-0141-5
https://doi.org/10.1007/s11416-010-0141-5
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://doi.org/10.1109/RELDIS.2003.1238076
https://doi.org/10.1007/978-3-642-30436-1_32
https://doi.org/10.1007/978-3-642-30436-1_32

SSPREW-8, December 3-4, 2018, San Juan, PR, USA Mohammed Noraden Alsaleh, Jinpeng Wei, Ehab Al-Shaer, and Mohiuddin Ahmed

A APPLICATION PROGRAM INTERFACES

Table 5 shows the complete list of the APIs we intercept and mark their output arguments as symbolic.

Table 5: The complete list of APIs Intercepted by gExtractor

Library API | Library API | Library API

kernel32.dll GetComputerNameA kernel32.dll GetComputerNameW kernel32.dll GetTimeZonelnformation
kernel32.dll GetDiskFreeSpaceW kernel32.dll GetDiskFreeSpaceExW kernel32.dll GetSystemTime
kernel32.dll GetTickCount kernel32.dll GetSystemTimeAsFileTime kernel32.dll ~ GetFileAttributesExW
kernel32.dll ~ SearchPathW kernel32.dll GetSystemDirectoryW kernel32.dll ~ SetFileTime

kernel32.dll GetTempPathW kernel32.dll GetFileType kernel32.dll CreateDirectoryW
kernel32.dll GetSystemDirectoryA kernel32.dll SetFileInformationByHandle | kernel32.dll GetFileInformationByHandleEx
kernel32.dll ~ CopyFileW kernel32.dll SetFilePointer kernel32.dll CopyFileA

kernel32.dll GetSystemWindowsDirectoryW | kernel32.dll SetFilePointerEx kernel32.dll CopyFileExW
kernel32.dll ~ SetFileAttributesW kernel32.dll ~ CreateDirectoryExW kernel32.dll GetFileSize

kernel32.dll GetSystemWindowsDirectoryA | kernel32.dll GetFileInformationByHandle | kernel32.dll DeleteFileW

kernel32.dll GetFileAttributesW kernel32.dll RemoveDirectoryW kernel32.dll FindFirstFileExA
kernel32.dll MoveFileWithProgressW kernel32.dll SetEndOfFile kernel32.dll RemoveDirectoryA
kernel32.dll FindFirstFileExW kernel32.dll GetFileSizeEx kernel32.dll GetSystemlInfo
kernel32.dll GetNativeSystemInfo kernel32.dll SetErrorMode secur32.dll GetUserNameExW
secur32.dll GetUserNameExA ntdlldll NtQueryAttributesFile ntdll.dll NtQueryFullAttributesFile
ntdIldll NtOpenFile ntdll.dll NtReadFile ntdIldll NtWriteFile

ntdll.dll NtQuerySystemInformation ntdll.dll NtQueryMultipleValueKey version.dll GetFileVersionInfoW
version.dll GetFileVersionInfoExW version.dll GetFileVersionInfoSizeExW version.dll GetFileVersionInfoSizeW
user32.dll GetSystemMetrics user32.dll RegisterHotKey user32.dll EnumWindows
user32.dll FindWindowExA user32.dll GetForegroundWindow user32.dll LoadStringA

user32.dll DrawTextExW user32.dll FindWindowW user32.dll LoadStringW

user32.dll FindWindowExW user32.dll FindWindowA user32.dll DrawTextExA

user32.dll GetAsyncKeyState user32.dll SetWindowsHookExA user32.dll SetWindowsHookExW
user32.dll GetKeyboardState user32.dll GetKeyState user32.dll UnhookWindowsHookEx
crypt32.dll CertControlStore crypt32.dll CertOpenSystemStoreA crypt32.dll CertOpenStore
crypt32.dll CertCreateCertificateContext crypt32.dll CertOpenSystemStoreW netapi32.dll NetUserGetLocalGroups
netapi32.dll NetUserGetInfo netapi32.dll NetShareEnum advapi32.dll GetUserNameW
advapi32.dll GetUserNameA advapi32.dll LookupAccountSidW advapi32.dll EnumServicesStatusW
advapi32.dll StartServiceW advapi32.dll OpenServiceA advapi32.dll CreateServiceA
advapi32.dll OpenSCManagerW advapi32.dll OpenServiceW advapi32.dll ControlService
advapi32.dll ~ StartServiceA advapi32.dll DeleteService advapi32.dll OpenSCManagerA
advapi32.dll CreateServiceW advapi32.dll EnumServicesStatusA advapi32.dll LookupPrivilegeValueW
advapi32.dll RegCreateKeyExW advapi32.dll RegDeleteKeyA advapi32.dll RegEnumValueW
advapi32.dll RegCloseKey advapi32.dll RegCreateKeyExA advapi32.dll RegSetValueExW
advapi32.dll RegQueryInfoKeyW advapi32.dll RegQueryValueExA advapi32.dll RegEnumKeyExW
advapi32.dll RegOpenKeyExW advapi32.dll RegSetValueExA advapi32.dll RegDeleteValueW
advapi32.dll RegEnumValueA advapi32.dll RegEnumKeyW advapi32.dll RegDeleteKeyW
advapi32.dll RegOpenKeyExA advapi32.dll RegDeleteValueA advapi32.dll RegEnumKeyExA
advapi32.dll RegQueryInfoKeyA advapi32.dll RegQueryValueExW srvelidll NetShareEnum
wininet.dll InternetGetConnectedState wininet.dll InternetReadFile wininet.dll InternetOpen

wininet.dll InternetConnect wininet.dll ~ HttpOpenRequest wininet.dll ~ HttpSendRequest
wininet.dll InternetQueryOption wininet.dll InternetSetOption wininet.dll ~ HttpQueryInfo
wininet.dll InternetQueryDataAvailable ws2_32.dll WSAStartup ws2_32.dll sendto

ws2_32.dll recvirom ws2_32.dll send ws2_32.dll bind

ws2_32.dll select ws2_32.dll connect

12

	Abstract
	1 Introduction
	2 Modeling Attack Behavior using Binary Symbolic Execution
	2.1 Attack Behavior Model
	2.2 Malware Symbolic Execution

	3 Deception Parameters Extraction
	3.1 Refining the Attack Behavior Model
	3.2 Selecting Deception Parameters

	4 Evaluation
	4.1 Case Study i: Bitcoin Miner
	4.2 Case Study ii: FTP Credential-Stealer
	4.3 Case Study iii: Cerber, Locky, and Gandcrab
	4.4 Challenges and Future Work

	5 Related Work
	6 Conclusion
	References
	A application program interfaces

