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Abstract—The recent interest in runtime attestation requires 

modeling of a program’s runtime behavior to formulate its 

integrity properties. In this paper, we study the possibility of 

employing static source code analysis to derive integrity models 

of a commodity operating systems kernel. We develop a precise 

and static analysis-based global invariant detection tool that 

overcomes several technical challenges: field-sensitivity, array-

sensitivity, pointer analysis, and handling of assembly code. We 

apply our tool to Linux kernel 2.4.32 and identify 141,279 global 

invariants that are critical to its runtime integrity. Furthermore, 

comparison with the result of a dynamic invariant detector 

reveals 17,182 variables that can cause false alarms for the 

dynamic detector. Our experience suggests that static analysis is 

a viable option for automated integrity property derivation, and 

it can have very low false positive rate (1 out of 141,280 in our 

Linux kernel case study) and very low false negative rate (about 

0.013%). 

Keywords-integrity modeling; invariants detection; static 

analysis; tools 

I.  INTRODUCTION 

In a cooperative environment, trust among the participating 
computer systems is vital to the correct functioning of the 
entire system. However, the widespread exploitations of 
software vulnerabilities (e.g., buffer overflows) and security 
breaches undermine the trustworthiness of computer systems in 
a collaborate environment and thus may put other participating 
systems at great risk. Therefore, technologies are needed to 
gauge the trustworthiness of a running computer in a 
collaborate environment. 

Remote attestation is a promising technique that enables a 
computer system in a cooperative environment to decide 
whether a target computer (in the same environment) has 
integrity, e.g., whether it has the appropriate configuration and 
hardware/software stack, so it can be trusted. The idea of 
remote attestation has been widely accepted. For example, the 
trusted platform modules (TPM) [29] chip has become a 
standard component on modern computers. 

Early remote attestation techniques only ensure that a 
computer is bootstrapped from trusted hardware and software 
(e.g., operating systems and libraries), but there has been a 
consensus in recent years that such static attestation is not 

enough [18, 20]. This is because runtime attacks such as buffer 
overflow attacks can invalidate the result of static attestation 
during the execution of the target system, so a remote 
challenger cannot gain high confidence in a target system even 
if it is statically attested [18]. In order to regain high 
confidence, we must enhance traditional remote attestation with 
runtime attestation, or runtime integrity checking. 

One of the fundamental challenges for runtime attestation is 
the attestation criteria, i.e., the expected integrity properties, of 
the target system. Other than a few static program states (e.g., 
code segments and constant data), most of the runtime state 
space of a system (normal variables, stack, and heap) cannot be 
trivially characterized. This uncertainty about the criteria 
results in two classic attestation errors: false positives and false 
negatives. False positives happen when the remote challenger 
endorses an overly stringent criterion that a normal 
(uncompromised) system fails to meet; and false negatives 
happen when the challenger endorses an overly loose criterion 
that a compromised system can also meet (i.e., the remote 
challenger ends up trusting a corrupted computer). It is obvious 
that both kinds of errors are undesirable for remote attestation. 

The root cause for the attestation errors discussed above is 
the lack of precise specifications of expected integrity 
properties. While under-specification can reduce the rate of 
false positives by lowering the bar for a target system, it allows 
a compromised system to obtain trust. On the other hand, over-
specification ensures that no compromised system can pass the 
integrity check, but it may also raise too many false alarms. 

Since the integrity properties are attributes of the target 
system, a precise specification demands a thorough analysis of 
the target system. Several kinds of approaches have been taken 
to analyze a target system for its integrity properties. Manual 
analysis relies on domain expertise to specify and prove the 
correctness of integrity properties. It is applicable to well-
known properties such as the immutability of the Interrupt 
Descriptor Table (IDT), but it is not scalable to complex 
software such as the Linux kernel. Therefore, automated tools 
are much needed to assist a human expert. Dynamic analysis 
tools such as Gibraltar [7] and ReDAS [18] infer likely 
integrity properties (called invariants) of a system by reading 
the runtime states (e.g., memory snapshots that contain 
program variables) of the target system and hypothesizing 



whether some variables satisfy predefined invariant 
relationships. One example relationship is that a variable v 
must always have a constant value k at runtime. However, a 
well-known drawback of dynamic analysis is its inability to 
explore all possible program execution paths. As a result, 
dynamic analysis may generate false invariants. For example, 
Gibraltar generates about 4,673 false invariants for Linux 
kernel 2.4.20 [7]. A typical solution to overcome such 
shortcomings is to use a large set of test cases. For example, 
ReDAS created 70 training scenarios and 13,000 training 
sessions for the ghttpd server. However, how to systematically 
generate a large number of test cases that can trigger all 
execution paths in a program remains a challenging research 
problem in general. 

In this paper, we explore the application of static analysis 
for finding integrity properties. The basic idea is to use 
compiler technology to analyze the behavior of a program to 
derive its integrity properties, without actually running the 
program. Static analysis can overcome the limitations of 
dynamic analysis by exploring all execution paths. For 
example, if v=v+2 is found in the true or false branch of a 
conditional statement in the target program, then the property 
that “variable v always has a constant value at runtime” is 
likely false. However, a dynamic analysis tool will not be able 
to observe this assignment if the test cases do not satisfy the 
condition for the assignment; as a result, a dynamic analysis 
tool may conclude that v is an invariant.  Since static analysis 
has the source code of the program, it has the advantage to 
reveal all conditions for assignments to a variable, so it can be 
more precise. 

Specifically, we focus on the static detection of one class of 
integrity properties called global invariants. Global invariants 
are code or data that has constant value at runtime. They can 
represent critical system integrity properties such as the 
immutability of the Interrupt Descriptor Table (IDT) and the 
system call table. Therefore, they have been checked by state-
of-the-art integrity monitors [7, 18]. 

Our first contribution is a program analysis tool that can 
automatically derive global invariants from source code, using 
static analysis. Our tool applies compiler technology to analyze 
the control and data flows (e.g., assignments and function calls) 
of a target program and reason about the global variables that 
are invariants. In developing this tool, we have overcome 
several challenges in large-scale C program analysis, such as 
field-sensitivity, array-sensitivity, pointer analysis, and 
handling of assembly code. 

Our second contribution is a thorough study of global 
invariants detection for the Linux kernel using static analysis. 
To the best of our knowledge, there has not been a similar 
study. Linux kernel is a very complex piece of software posing 
great challenges for static analysis by its wide use of pointers 
and complex structures. Our tool is able to process 400,492 
lines of Linux kernel (version 2.4.32) code and identify 
141,279 global invariants essential to the Linux kernel’s 
runtime integrity. More importantly, by comparing with the 
results of a dynamic invariant analyzer, we find 17,182 
variables that can cause false alarms for the dynamic analyzer, 
while our static tool only misses 18 true invariants (with false 

negative rate 0.013%). We also develop an invariant monitor 
based on the result of the static analysis and the runtime 
evaluation of the monitor finds only one false invariant. Our 
experience suggests that static analysis is a viable option for 
automated integrity property derivation, and it can potentially 
have very low false positive and false negative rates. 

The rest of the paper is organized as follows. Section II 
discusses the modeling of global invariants as an important 
class of integrity properties. Section III presents an automated 
global invariants detection tool based on static analysis of 
source code. Section IV discusses a thorough evaluation of our 
invariant detection tool by applying it to the Linux kernel. 
Section V discusses related work, and Section VI concludes the 
paper. 

II. BACKGROUND ON GLOBAL INVARIANTS 

In this section, we first discuss the basics of integrity 
measurement and our assumptions; then we formally define 
global invariants as a class of integrity property. 

A. Background on Integrity Measurement and Security 

Assumptions 

An integrity measurement system typically consists of three 
components: the target system, the measurement agent, and the 
decision maker [20].  Our first assumption is that the 
measurement agent is isolated from and independent of the 
target system, therefore it has a true view of the internal states 
(including code and data) of the target system. This is a 
realistic assumption due to the popularity of virtual machine 
monitors [9] and machine emulators such as QEMU [10], and it 
has also been shown that the measurement agent can run on 
dedicated hardware such as a PCI card [22].  Our second 
assumption is that measurement results are securely stored and 
transferred to the decision maker.  This can be supported by 
hardware such as a Trusted Platform Module (TPM) [29]. The 
third assumption is that the target system’s states (e.g., code 
and data) may be compromised by a powerful adversary who 
can make arbitrary modifications; therefore the decision maker 
can rely on very few assumptions about the trustworthiness of 
the target system. 

Based on these assumptions, the decision maker is given a 
true view of the target system, and its task is to estimate the 
“healthiness” of the target system.  The healthiness include 
functional correctness (e.g., a function that is supposed to 
reduce the priority level of a task is not modified to actually 
increase the priority level), and non-functional correctness 
(e.g., the priority level can be modified by a privileged user 
instead of a normal user).  In the following subsections, we 
model the healthiness as integrity properties. 

Moreover, the healthiness of the target system may change 
over time, because it may be under constant attacks.  Therefore, 
the integrity of the target system may need to be periodically 
reevaluated. 

B. Definition of Global Invariants 

In theory, any software system can be modeled as an 
automaton with states and state transitions. For simplicity of 



presentation, we assume that the system can be in one of n 

possible states: nsss ...,, ,21 . Example states are initialization, 

entering a function, returning from a function, system 
termination, and so on. And each state is characterized by a 
particular combination of values of the system’s internal 
variables. Based on this general formalization, we can model 
runtime software integrity as a set of properties 

)}(),...,(),({ 21 sPsPsP m . A runtime property )(sPi  
is a function 

on state s that evaluates to true or false. If a system state s 

satisfies all iP ’s, we can say that s is a “healthy” state. 

Different runtime properties may have different structures, but 
each of them can be generalized to be a Boolean expression 

with the operators ∧(and), ∨(or), and ¬(not). More complex 
properties can be constructed out of primitive properties using 
the operators mentioned above. A primitive property has the 

form ))(),...,(),(( 21 svsvsvfunc l which takes variables 

)(),...,(),( 21 svsvsv l and returns ture or false (v(s) is the value 

of v in state s). func can have arithmetic operations inside as 

well as relationship operations such as ==, ≠, <, and >. 

One special class of primitive property has the form:
 

),[,)( 21 sstktv ∈== , where 1s  = “system initialized” and 2s = 

“system shutting down”. I.e., it stipulates that the value of 
variable v must be a known-good value k during the runtime of 
the system (assuming that there is a sequence of state 

transitions from 1s  to 2s ). We call such a primitive property a 

global invariant.  

C. Relevance in Integrity Protection 

Global invariants represent an important class of integrity 
properties. They may include critical internal control data of 
the system (e.g., function addresses) that are supposed to 
remain constant. Examples of such invariants include the 
Interrupt Descriptor Table (IDT). Another type of global 
invariants hold security policy data, and the violation of such 
invariants can directly defeat the corresponding security 
measures. For example, by tampering with the list of “bad” IP 
addresses, the attacker can defeat a blacklist-based IDS. 

Because of the importance of global invariants to integrity 
properties, they have been the popular targets for attack by 
rootkits such as SucKIT, Hacker defender, Turtle rootkit, 
enyelkm-1.3, Phalanx, AFX, NTIllusion, HE4Hook, and 
Vanquish. Common examples of such attacked invariants 
include system call table, System Service Descriptor Table, 
SYSENTER handler function, Interrupt Descriptor Table 
(IDT), NDIS handlers, and Interrupt Request Packet (IRP) 
handlers. It is interesting to note that over the years, the list of 
such invariants grows as the rootkits attempted to evade rootkit 
detectors that tried to catch up. The general trend of such 
growth is towards more sophistication and stealth [8]. On the 
other hand, global invariants are the basis for many rootkit 
detection systems such as ReDAS [18], Copilot [22], Livewire 
[14], and several commercial tools (e.g., [1, 2, 3, and 31]).  The 
fact that such invariants are not supposed to change makes it 
easier to check their integrity; for example, many rootkit 
detectors use a clean copy or hash value of a global invariant 

variable as the baseline to tell whether it has been tampered 
with by a rootkit. 

D. Existing Solutions 

Several kinds of approaches have been taken to analyze a 
target system for global invariants. Manual analysis relies on 
domain expertise to specify and prove the correctness of 
integrity properties. It is applicable to well-known properties 
such as the immutability of the Interrupt Descriptor Table 
(IDT), but it is not sustainable to counter novel attacks that 
move their targets to less-known places such as device driver 
jump tables. Eventually, manual analysis will reach a point 
where a human expert has difficulty understanding the logic of 
a system, which calls for automated tools to assist a human 
expert. Dynamic analysis tools such as Gibraltar [7] and 
ReDAS [18] infer likely global invariants of a system by 
reading the runtime states (e.g., memory snapshots that contain 
program variables) of the target system and hypothesizing 
whether some variables have constant values at runtime. One 
well-known drawback of dynamic analysis is its inability to 
explore all possible program execution paths. As a result, 
dynamic analysis may generate false invariants. Typical 
solution to overcome such shortcomings is to use a large set of 
test cases. For example, ReDAS [18] created 70 training 
scenarios and 13,000 training sessions for the ghttpd server. 
However, how to systematically generate a large number of test 
cases that can trigger all execution paths in a program is a 
challenging and open research problem by itself. 

III. AUTOMATED INFERENCE OF GLOBAL INVARIANTS 

THROUGH STATIC ANALYSIS 

A. Overview 

We have developed a static analysis-based system to detect 
global invariants for commodity operating systems kernels. 
Fig. 1 shows the overall architecture. We apply compiler 
technology to automatically analyze the control and data flows 
of a target kernel, e.g., assignments and function calls, to 
reason about the global variables that are invariants.  
Assignment recognition supports or rejects the hypothesis that 
a variable is an invariant, e.g., if a variable is assigned multiple 
times with different values, it is unlikely a global invariant. 

Our system recognizes two kinds of assignments: direct 
assignment and indirect assignment. Direct assignment 
recognition is straightforward. Indirect assignment is mainly 
made through pointers in a modern kernel implemented in the 

 

Figure 1.  Invariant analysis architecture 
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C language. In order to recognize indirect assignment through 
pointers, our system has a pointer analysis component, as 
shown in Fig. 1. 

Our system accepts the merged kernel source code as input, 
which is fed into the Pointer Analyzer and the Invariant 
Analyzer. The Pointer Analyzer processes the kernel code and 
generates the points-to graph, which records the points-to set 
(i.e., a set of variables) of any pointer variable. The Invariant 
Analyzer scans the kernel source code including variable 
declarations and kernel functions. Its major task is to recognize 
assignment statements, either direct ones or indirect ones. 

When it scans an indirect assignment statement such as *p=v, 
it queries the points-to graph generated by the Pointer Analyzer 

and gets the set of kernel variables that can be pointed to by p, 
and notes that all such variables are assigned once by this 
statement. Internally, the Invariant Analyzer has two functional 
components: assignment recognition (Section III.C) and 
invariant recognition (Section III.D).  

The output of our system is a report of invariant 
classification for all global variables in the input kernel. For 
variables that are not considered invariant, we also report the 
reason for that decision, e.g., the related assignment 
statement(s). We have made a sample of such a report available 
on our web site [34]. Another output of our system is the 
source code for an Invariant Monitor that can be installed in the 
analyzed system as a kernel module to monitor the invariants 
detected. More details of the Invariant Monitor are presented in 
Section IV.C.1. 

B. Design Goals 

The major goal for our invariant analysis is high precision, 
i.e., how to minimize false positive rate and false negative rate. 
As we discussed in Section I, both kinds of errors are 
undesirable for remote attestation. Below we discuss the 
technical challenges in both cases and our solutions, under the 
context of static analysis of C like programming languages. 

The major reasons for false negatives are a lack of fine-
granularity and imprecise pointer analysis. If the static analyzer 
is field-insensitive, e.g., it cannot differentiate individual fields 
in a C structure, it will regard an assignment to any field of a 
structure as an assignment to the entire structure; thus the entire 
structure may become a non-invariant. This means that even if 
some fields of that structure are invariant and hold critical data 
such as function pointers, they cannot be protected. This lack of 
precision obviously causes false negatives. Similarly, lack of 
support for array sensitivity, i.e., being unable to differentiate 
individual elements in an array, is another cause for false 
negatives. From our experience, in a modern kernel such as the 
Linux kernel, the majority of global data is within some 
structure or array, which means that a static analyzer that is 
field and array-insensitive is almost useless. Therefore, our 
invariant analyzer must be field and array-sensitive (Sections 
III.C.1 and III.C.2). Another cause of false negatives is the 
conservativeness of pointer analysis algorithms. If the pointer 
analysis algorithm is too conservative, e.g., a pointer can point 
to all global variables, the invariant analyzer would recognize 
many bogus (or impossible) assignments, and consider a global 
invariant as a non-invariant as a result. Therefore, we need to 

develop a precise pointer analysis algorithm. We employ a 
precise points-to algorithm in our design (Section III.C.3). 

The major reason for false positives (i.e., fake invariants) is 
a failure to recognize legitimate assignments.  This can be 
caused by two reasons: implicit assignments and incomplete 
points-to analysis. One kind of implicit assignment is 
assignment by assembly code: since our static analyzer does 
not understand assembly code, it cannot capture such 
assignments. Another example of implicit assignment is 

structure-level assignment: if variables foo and bar are 

defined as struct{int a;int b}foo,bar; then the 

assignment foo = bar implicitly modifies both foo.a and 

foo.b. Another cause of missing assignment recognition is 
related to the precision of points-to analysis: if it returns an 
incomplete points-to set for a pointer, the analyzer may miss 
legal but indirect updates to some variables through that 
pointer; as a result, the analyzer may mistakenly classify those 
variables as invariants. In order to capture implicit assignments, 
we apply heuristics in our analyzer (Sections III.C.5, III.C.4, 
and III.C.1). In order to avoid incomplete pointer analysis, we 
employ a precise points-to analysis algorithm (Section III.C.3). 

C. Major Design Points of the Assignment Recognition 

One component of our invariant analyzer identifies 
assignments to variables. For programs written in C, 
modifications to a variable occur in two forms: direct 
assignment and indirect assignment. In the former case, the 
said variable is the left hand side of an assignment statement 
(e.g., v in v=k+3). In the latter, the said variable is assigned 
indirectly through a pointer that references it (e.g., 
p=&v,...,*p=k+3). In order to capture the second case, the 
detector needs to first find out the points-to set of the pointer 
(via a points-to analysis [5]), and then note that each target in 
the points-to set is assigned indirectly. 

In the rest of this section, we discuss how our design 
satisfies our goals outlined in Section III.B. 

1) Field Sensitivity 
To achieve the desired field sensitivity, our analyzer uses 

lexical names to disambiguate structure field references (e.g., 
p->a is considered a different memory location from p->b), in 
a way similar to Wagner [30]. This enables our analyzer to 
capture explicit assignments to structure fields. Moreover, our 
analyzer treats structure level assignments as implicit 
assignments to the individual fields. For example, if variables 
foo and bar are defined as struct{int a;int b}foo, 

bar;  then the assignment foo = bar; is translated into 

foo.a = bar.a; foo.b = bar.b. 

2) Array Sensitivity 
Array sensitivity is another method for our analyzer to 

achieve fine-granularity. The basic idea is to treat each element 
of an array as an independent variable. For example, the array 
int d[3] is treated as three variables d[0], d[1], and d[2]. 
Our analyzer can handle arrays of arbitrary dimension. Finally, 
our analyzer can recognize pointers into arrays. For example, if 
the analyzer sees int *p = d; it can interpret *(p + 1) as 

the same as d[1]. 



3) Pointer Analysis 
Our invariant analyzer performs points-to analysis in order 

to recognize indirect assignments through pointers. Based on 
the analysis in Section III.B, we know that the accuracy of the 
points-to analysis algorithm is the key for reducing false 
positives and false negatives. Therefore, our pointer analyzer is 
based on the generalized one level flow (GOLF) algorithm 
[11], which is among the most precise pointer analysis 
algorithms, achieving precision close to Anderson’s algorithm 
[5]. Our pointer analyzer is built on top of the field-sensitivity 
(Section III.C.1) and array-sensitivity (Section III.C.2) 
capabilities to return fine-grained points-to targets. For 

example, it would return individual structure field foo.b 

instead of the entire structure foo. Finally, it can also 
contribute to field-sensitivity and array-sensitivity. For 

example, in struct{int a;int b}bar, *p, if p’s points-to 

set includes bar, then an assignment to p->a is considered an 

indirect assignment to bar.a. 

4) Union Support 
Our analyzer also supports unions: each field of a union is 

treated as an alias of other fields in the same union. This means 
that an explicit assignment to one field of a union is an implicit 
assignment to all the other fields. Therefore, if one field of a 
union is not an invariant, other fields of the union are not 
invariants, either. 

For example, in union uarg{int a; int b}c, c.a and 

c.b are treated as different variables; if c.a is not an invariant, 

c.b is not an invariant, either. 

5) Heuristics-base Assignment Recognition 
The use of assembly code in the kernel poses difficulties to 

our static analysis. Because our analyzer only recognizes C 
code, variable reads or writes by assembly code are not visible 
to it. One prominent example is get_current(), which 
returns a pointer to the task structure of the current process. 
Because this function uses assembly code, several chains of 
pointer dependency are broken, and our static analysis suffers 
inaccuracy as a result. To overcome these inaccuracies caused 
by assembly code, we apply a function prototype-based 
heuristic. The basic idea is to summarize the effect (in terms of 
assignments to the input parameters) of assembly code inside a 
function body to bridge the “analysis gap”. For example, the 
function memcpy() copies a block of memory to another block 
of memory, so it can change the target memory and thus should 
be treated as a kind of implicit assignment. This list of 

functions includes copy_from_user, memset, memcpy, 

spin_lock, read_lock, write_lock, down, up, 

clear_bit, set_bit and their variants. We identify this kind 
of functions in two steps: first, our static analysis reports all 
functions that contain assembly code in their bodies; second, 
we manually analyze the reported functions to see if any 
assignment is performed in the assembly code. For function 
get_current(),we assume it can return a pointer to the global 

variable init_task_union.task. 

D. Invariant Recognition 

The second component of our invariant analyzer recognizes 
global invariants based on the assignments to each variable.  

Because the definition of global invariants only concerns 
the variables’ value after system initialization, we treat 
assignments during system initialization differently than those 
during normal execution of the system. Specifically, a global 
invariant can be assigned multiple possible values during 
initialization, as long as it is not assigned during normal 
execution. On the other hand, assignments at normal execution 
time typically indicate that a variable is not an invariant. Being 
assigned differently during system initialization is quite 
possible for some global invariants whose known-good values 
depend on hardware configuration; they can get several 
different values depending on the hardware features detected 
during system initialization.  

In our design, each global variable is associated with a flag 
that indicates whether it is an invariant and a legal value list 
that contains its possible values. In the beginning, all global 
variables are marked as invariants and all legal value lists are 
empty. 

Our invariant analyzer first scans global variable 
declarations and initialization functions (e.g., those with 
“__init” directives). If a global variable, which is marked as 
an invariant, is assigned a constant value, the analyzer adds this 
value into the variable’s legal value list. On the other hand, if a 
global variable is assigned a non-constant value, the analyzer 
marks it as a non-invariant.  

After this scan, if a global variable's legal value list is still 
empty, the analyzer adds a default value into the list, based on 
the type of the variable (e.g., 0 for an integer variable). 

Next, the invariant analyzer scans the remaining kernel 
functions. If a global variable, which is marked as an invariant, 
is assigned a non-constant value, or a constant value but the 
value is not in its legal value list, the analyzer marks it as a 
non-invariant. 

At the end of the kernel code scanning, our analyzer 
generates a report about the invariant status of all global 
variables, based on their flags. For those non-invariants, the 
report also includes the reason, e.g., the related assignment 
statement(s) in the kernel source code, for in-depth 
investigation by a human expert. 

E. Implementation 

We implement a static invariant detector based on the C 
Intermediate Language (CIL) [21]. Our pointer analyzer is 
implemented in 5,000 lines of Ocaml code, and our invariant 
analyzer is implemented in 3,500 lines of Ocaml code. 

IV. EVALUATION 

In this section, we report a large-scale evaluation of our 
invariant detection tool, using Linux kernel 2.4.32 as the input 
kernel. Our evaluation mainly focuses on the precision of the 
detected invariants. We also briefly report performance of our 
detection tool at the end. 

A. Metrics, Methodology, and Test Cases 

We choose two common metrics to evaluate the precision 
of the detected global invariants for the Linux kernel: 



• False positives happen when variables that can legally 
change their values are mistakenly recognized as 
invariants.  A monitor can generate false alarms when 
such “fake” invariants change their values during 
normal execution. 

• False negatives happen when a true invariant is not 
recognized as such. As a result of false negatives, a 
monitor may fail to detect rootkits that modify thus 
violate the true invariants. In other words, a rootkit can 
evade detection as a result of false negatives. 

We measure the false positive and false negative rates of 
the static invariant detection in two ways: (1) comparing with 
the result of a dynamic invariant detector, and (2) running 
against real software (benign or malicious). 

Table I shows the set of benign test programs that we ran. 
Worth noting among all the programs is the Linux Test Project 
(ltp version 2005), which includes more than 700 test cases that 
test the Linux kernel in many aspects (such as system calls and 
file system functionality), and more than 60 test cases that 
exercise the basic functionalities of the network. 

We also tried to run rootkits in our test environment. Since 
the Linux kernel version that we analyzed is relatively old 
(2.4.32), most of the publicly available rootkits were not able to 
run on this kernel. In fact, we were able to run only the SucKIT 
2 rootkit. 

B. Comparing with a Dynamic Invariant Detector 

We develop a dynamic invariant detector (as a loadable 
kernel module, or LKM) that periodically reads the values of 
the global variables of the kernel during a training phase and 
finally reports those variables whose values do not change 
during the training; these variables are the dynamically-
detected invariants. In order to increase the accuracy of the 
result, we run the test programs in Table I to trigger 
modifications to the global variables. 

Table II summarizes the invariant analysis results for the 

.data and the .rodata segments of Linux kernel 2.4.32. The 
second column is the total number of global variables (with 
field and array-sensitivity). The third column shows the 
number of statically-detected invariants out of all the variables, 
and the fourth column shows the number of dynamically-
detected invariants out of all the variables. 

 

TABLE I.  TEST PROGRAMS USED IN THE EVALUATION 

Test program Description 

ltp-2005 Linux Test Project: open source test suites that 

validate the reliability, robustness, and stability of 

Linux 

Iperf [33] A network testing tool that measures the throughput 

of a network, thus exercising the network subsystem 

of the kernel 

Andrew benchmark  A file system benchmark 

Miscellaneous  Kernel compilation, ssh, scp, common commands 

TABLE II.  OVERALL RESULT OF THE INVARIANT DETECTION 

Segment # Variables # Static inv. # Dynamic inv. 

.data 154,132 136,778 153,978 

.rodata 4,502 4,502 4,502 

TABLE III.  COMPARISON OF THE STATIC AND DYNAMIC ANALYSIS 

RESULTS FOR THE .data SEGMENT (FN: FALSE NEGATIVE; FP: FALSE POSITIVE). 

Category Total # # Error static # Error dyna. 

S.NI, D.NI 154 0 0 

S.NI, D.I 17,200 18(FN) 17,182(FP) 

S.I, D.NI 0 0 0 

S.I, D.I 136,778 1(FP) 1(FP) 

From Table II we can see that both static and dynamic 

invariant detection achieve 100% accuracy on the .rodata 

segment, which is expected because variables in the .rodata 
segment are supposed to remain constant.  

The dynamic invariant detector reports that 99.9% of the 

variables in the .data segment are invariant. This is not very 
surprising, because our test cases may not be able to trigger 
every possible update to a global variable, so there may be 
many false invariants in the dynamically-detected set. 
Comparatively, static analysis reports 88.7% of the variables in 
the .data segment as invariants. 

Table III gives a more in-depth comparison of the results of 
the static and dynamic analyzers for the .data segment. We 
classify each global variable according to how the two kinds of 
analyzers think about its invariant status. Since each variable 
can be considered invariant or non-invariant by each of the 
analyzer, there are four combinations. For example, the 
category “S.NI, D.I” includes all variables that are considered 
non-invariant by the static analyzer but invariant by the 
dynamic analyzer.  

We can see that there are in total 154 variables that both 
analyzers agree to be non-invariants. We are confident about 
the correctness of the results because the dynamic analyzer 
classifies a variable as non-invariant only if it observes that the 
value of the variable does change at runtime. Therefore, the 
non-invariants reported by the dynamic analyzer must be truly 
non-invariants. 

Next, we see from Table III that 17,200 variables are 
classified as non-invariants by the static analyzer but invariants 
by the dynamic analyzer. Here we cannot trust the dynamic 
analyzer because it may not observe a legal but conditional 
assignment due to the incompleteness of the test cases, and we 
cannot trust the static analyzer, either, because its points-to 
analysis is conservative.  

To find the ground truth about these 17,200 variables, we 
manually verify whether they are indeed non-invariants. This 
verification task seems daunting, but it is actually made much 
easier by the following facts about our static analyzer: (1) if a 
variable is directly modified, the assignment statement logged 
in the analysis report is straightforward evidence that the 
variable is a non-invariant; (2) if a variable is only indirectly 
modified through a pointer, our analyzer outputs the relevant 
statements from the source code that support the points-to 
relationship, which is relatively straightforward to verify by a 



human (e.g., Fig. 2 is a portion of our analysis report that 

shows why ctrl_map[2] can be indirectly modified through 

the pointer variable key_map); (3) because our analysis is array 
sensitive, we can generalize from one confirmed non-invariant 
array element to all other elements in the same array. E.g., 

given an array arr of size 1024, if we confirm that arr[0] is a 

non-invariant due to an assignment to arr[i], then we can 

conclude that arr[1] through arr[1023] are all non-
invariants. In other words, we can confirm non-invariants in 
batches, which significantly speed up the verification. Because 
of the above reasons, it takes one graduate student about 20 
hours to finish the verification of these 17,200 variables. As a 
result, we are able to confirm that 17,182 of such variables are 
non-invariants, i.e., they can be modified by assignments at 
runtime. Below we outline some examples: 

• struct kbdiacr accent_table[256] stores the 
accented symbols (or characters) of the console 

keyboard and can be changed by an ioctl system call 
with command 0x4B4B, specifically, 
copy_from_user(accent_table,a->kbdiacr, 

ct*sizeof(struct kbdiacr) in drivers/char/vt.c. 
However, the dynamic invariant analyzer reports this 
entire array as invariants because our test cases do not 
make such an ioctl system call. 

• The array static char buf[1024] in panic.c is 

used to hold kernel panic messages whenever panic() 
is called. Specifically, it is written into by 
vsnprintf(buf, sizeof(buf), fmt, args). 
Therefore, this array is obviously not invariant. 
However, since our dynamic analysis test cases do not 
trigger a kernel crash, it cannot see any changes to 
buf; so it mistakenly concludes that the entire array 

buf is invariant. 

• Fig. 2 shows how ctrl_map[2] can be indirectly 
modified through a pointer. 

Fig. 3 shows the distribution of the two kinds of evidence 
(direct assignment and indirect assignment) applicable to the 
17,336 non-invariants confirmed (including the 154 non-
invariants in the “S.NI, D.NI” category).  We have merged  the  

 

Figure 2.  Snippet of the analysis report that shows why ctrl_map[2] can be 

indirectly modified through the pointer key_map 

 
Figure 3.  Distribution of evidence applicable to the 17,336 non-invariants 

confirmed 

non-invariants recognized via heuristics (Section III.C.5) into 
the direct or indirect group depending on whether the address 
of the target variable is directly taken. Note that more than one 
kinds of evidence may be applicable to a variable depending on 
how the kernel modifies it. 

From Fig. 3 we can see that 76% (13,191 out of 17,336) of 
the confirmed non-invariants can be modified only indirectly 
through a pointer. This confirms the wide-scale use of pointers 
in the Linux kernel to manipulate memory and it also means 
that for any static invariant detector of the Linux kernel, the 
points-to analysis part is critical for the overall precision. 

We further look at the type and meaning of the 17,182 
confirmed non-invariants in the “S.NI, D.I” group to see 
whether the classification makes sense. We coarsely divide 
them into several categories, such as list heads, locks, 
accounting information (e.g., counters), auditing data, resource 
management information (e.g., page tables and memory zone 
lists), configuration data, and driver-specific data. Table IV 
shows example variables for each category.  

From this analysis, we feel that the static analysis results 
make sense. For example, list heads, locks, and performance 
counters should be dynamic, so they should not be invariants. 
Unfortunately, our dynamic analyzer classifies this large group 
of non-invariants in the wrong way, due to the incompleteness 
of test cases. We believe that these 17,182 non-invariants 
highlight the relative advantage of static analysis over dynamic 
analysis. 

The 18 false negatives in the “S.NI, D.I” group are the 
fields of a global structure called i810_fops (e.g., 

i810_fops.ioctl, i810_fops.read, i810_fops.write, 
etc). For them, our static analyzer does not provide convincing 
evidence for the points-to relationship and our manual analysis 
indicates that they should be invariants. These false negatives 
illustrate the limitation of points-to analysis, which has been 
shown to be undecidable in general [16]. Given the total 
number of real invariants (141,297), our static analyzer has a 
false negative rate of 0.013% (18 out of 141,297).  

Continue on Table III, we see that no variable is classified 
as invariants by the static analyzer but non-invariants by the 
dynamic analyzer. Such variables, if they exist, would be false 
positives for the static analyzer. The absence of such variables 
suggests that our static invariant detector has low false positive 
rate. 

The last row of Table III shows that both analyzers believe 
that 136,778 kernel variables should be invariants. Since our 
static analyzer does not provide evidence for invariants, we 
cannot verify the correctness statically. Similarly, the dynamic 
analyzer does not provide  evidence to prove  invariants, either.  

Direct 

assignment 

2615 

Indirect 

assignment 

13191 
1530 

 

<Name>ctrl_map[2]</Name> 

<Invariant>No</Invariant> 

<Reason1> 

*(key_map + 0) = (unsigned short )(((2 << 8) | 126) ^ 61440);  

vt.c:224, Indirectly modified through key_map. 

 

Path from ctrl_map[2] to key_map: 

<Label>ctrl_map[2]</Label> 

<STMT>ctrl_map=&ctrl_map[2]  defkeymap.c:65</STMT> 

<Label>l_473154</Label> 

<STMT>key_maps[4]=ctrl_map  defkeymap.c:141</STMT> 

<Label>l_479876</Label> 

<STMT>key_map = key_maps[tmp.kb_table];vt.c:174  

</STMT> 



TABLE IV.  EXAMPLES OF NON-INVARIANTS 

Category Example variables 

List heads acpi_bus_drivers.next 

arp_tbl.gc_timer.list.next 

console_callback_tq.list.next 

random_read_wait.task_list.next 

tcp_tw_timer.list.next 

Locks context_task_wq.lock.lock 

dev_base_lock.lock 

exec_domains_lock.lock 

floppy_usage_lock.lock 

hash_table_lock.lock 

Auditing 

information 

kernel_module.archdata_end 

kernel_module.archdata_start 

kernel_module.ex_table_end 

kernel_module.ex_table_start 

kernel_module.kallsyms_end 

kernel_module.kallsyms_start 

Accounting 

information 

console_sem.count.counter 

con_buf_sem.count.counter 

dev_probe_sem.count.counter 

init_fs.count.counter 

init_mm.mm_user.counter 

Resource mgmt 

data 

contig_page_data.node_zonelists[0].zones[0] 

contig_page_data.node_zones[0].free_area[0].map 

contig_page_data.node_zones[0].nr_cache_pages 

contig_page_data.node_zones[0].nr_inactive_pages 

contig_page_data.node_zones[0].nr_active_pages 

Configuration 

data 

FDC2,FLOPPY_DMA,FLOPPY_IRQ, 

can_use_virtual_dma,fifo_depth 

Driver-specific 

data 

eth0_dev.allmulti, eth0_dev.dev_addr[0] 

eth0_dev.tx_queue_len, eth1_dev.change_mtu, 

eth1.base_addr, eth1.broadcast[0] 

 

Therefore, we decide to experimentally verify the invariant 
results. 

C. Experimental Evaluation  

1) Implementation of the Invariant Monitor 
We implement an Invariant Monitor (in the form of a 

LKM) that periodically checks the 141,280 statically detected 
invariants in the memory of a Linux kernel 2.4.32 (the kernel 
that our static tool analyzed). The monitor loops over all the 
identified invariants and for each invariant variable, it 
compares the runtime value of the variable against its known-
good value. The monitor emits a warning message if any 
comparison returns false. The list of invariants as well as their 
known-good values is derived by the static invariant analyzer 
presented in Section III. 

One practical difficulty that our Invariant Monitor 
overcomes is the semantic gap between the monitor as a LKM 
and the rest of the kernel – not all global variables are exposed 
to the monitor as symbols. For example, msg_ctlmax is an 
unresolved symbol when we try to load the monitor. For this 
reason and for better portability (e.g., running the monitor from 
a hypervisor in the future), our monitor refers to the invariants 
by their runtime addresses rather than symbolic names. 
However, our static invariant analyzer reports invariants by 
names. Therefore, we need to bridge the gap between names 
and runtime addresses. To solve this problem, we use the 

information contained in the System.map file, a standard file 

generated during the kernel compilation process, which 
contains a mapping from kernel variable names to their runtime 
addresses. 

A related difficulty brought by the semantic gap is the lack 
of offset information when our monitor makes fine-grain 
memory accesses to individual fields of structure variables or 
array elements, because System.map only provides the 
starting address of a structure or array variable but our monitor 
needs to look inside it. One naïve approach is to manually 
count the byte offset into a block of memory based on the type 
information, but this is not a scalable approach because our 
monitor needs to read hundreds of thousands of global 
variables (Table II). Instead, we leverage the power of static 
analysis to automatically generate code for the monitor. 
Specifically, the static analyzer generates code that declares 
pointer variables of the appropriate type, uses pointer 
dereferencing expressions to represent fine-grain memory 
accesses, and lets the compiler find out the correct offset 
information. For example, the static analyzer generates the 
code snippet in Fig. 4 for the invariant 

timedia_data[3].num where timedia_data is an array 

whose elements are of type struct timedia_struct that 

has a field named num. Here 0xc0272420 is the runtime address 

of the timedia_data array. Note that the known-good value 8 

that is compared in the if statement is automatically supplied 
during the code generation because it is available to the static 
invariant analyzer by the time of code generation (i.e., in the 
legal value list). 

2) Evaluation of false positives 
To estimate the false positive rate of our invariant analyzer, 

we run the test programs in Table I while our Invariant Monitor 
is running in the background. The goal is to find whether the 
test programs can trigger legitimate updates to any global 
variable that our invariant analyzer believes to be invariant. If 
that’s the case, our Invariant Monitor should generate 
warnings. While the non-existence of such warnings cannot be 
used as a proof that our invariants are all real, existence of such 
warnings does show that some of our invariants are false. In 
order to maximize the detection probability of false invariants, 
we choose the set of test programs in Table I that to our 
knowledge exercise all important subsystems of the kernel. 

We ran these test programs after the kernel (version 2.4.32) 
was fully booted and our Invariant Monitor module was 
loaded. During the long time execution of the test programs, 
our checker reported warning messages about only one 
variable, which we categorize as a false positive by our 
invariant analyzer in the last row of Table III. This variable is 
ipv4_devconf_dflt.rp_filter. We carry out a manual 
investigation to understand why our invariant analyzer does not 
recognize legal assignments to this variable, and we find that 
our invariant analyzer misses it mainly due to a very subtle 
pointer arithmetic operation by the Linux kernel. We believe 
that this false positive can be eliminated by modifying our 
static analyzer. Overall, we are happy to see that our invariant 
analyzer has almost no false positives (1 out of 141,280 
invariants monitored). 



 

Figure 4.  One example of automatically generated code for checking 

invariants at runtime 

3) Evaluation of false negatives 
Having false negatives means that our invariant detection 

does not recognize some variables that are actually invariants; 
if a rootkit manipulates such variables, our Invariant Monitor 
will not be able to detect it. One way to estimate the impact of 
false negatives is to run real-world rootkits on a system with 
our Invariant Monitor installed, and see whether our Invariant 
Monitor can detect them.  

We selected several real-world rootkits for this purpose; 
they are Adore, Mood-nt, Phalanx-b6, Enyelkm-1.3, SuckIT 2, 
and Knark. Because the kernel version that we analyzed is 
relatively old (2.4.32), we were able to run only the SucKIT 2 
rootkit. But our Invariant Monitor successfully detected this 
rootkit; the invariant that is violated is sys_call_table[59], 

whose known-good value should be sys_olduname. 

D. Performance of the invariant analyzer 

All our experiments are performed on a server with a 2.93 
GHz, 8-core Intel Xeon CPU and 16 GB of RAM. And our 
invariant monitor and runtime analyzer run in a virtual machine 
with 2GB of RAM and 20GB of disk, running a Linux 2.4.32 
kernel. 

Our static analyzer takes a merged Linux 2.4.32 kernel with 
400,492 lines of C code as input, and produces the invariant 
report and the source code of the invariant monitor. The whole 
process takes 272 minutes and 4.3GB memory on average. In 
more detail, the pointer analyzer takes 151 minutes on average, 
and the invariant analyzer takes 121 minutes on average. Since 
the static invariant detection only needs to run offline, we have 
not aggressively optimized our static analyzer for speed. 

E. Discussion 

The degree to which a set of global invariants can 
approximate runtime integrity of a kernel remains a research 
question. For example, the invariants that we identified are all 
necessary conditions, but they may not be sufficient. Assuming 
that a right set of global invariants is at hand, we can estimate 
the runtime integrity of the kernel by verifying them. If all of 
them are verified, we have more confidence about the kernel’s 
integrity. But if some of them do not pass the verification, we 
know that the kernel has lost its integrity. 

V. RELATED WORK 

Invariants detection 

The Daikon invariant detector [13] generates likely 
invariants using program execution traces collected during 
sample runs. Daikon is a dynamic invariant detector, and its 
idea has been incorporated into Gibraltar [7] and ReDAS [18]. 

Integrity measurement mechanisms 

There has been a long line of research on integrity 
measurement. Approaches such as IMA [25] use hashing or 
digital signatures to measure the software at load time. 
Recently, ReDAS [18] and DynIMA [12] advance the state of 
the art by supporting software integrity measurement at 
runtime. Other related work includes [14, 20, 22, 23, 24, and 
32]. These approaches generally focus on the mechanism for 
measurement, but not the integrity properties. 

Copilot [22] is a co-processor based integrity checker for 
the Linux kernel. The properties that Copilot prototype checked 
were kernel code, module code, and jump tables of kernel 
function pointers. Although Copilot later provided a 
specification language [23], its focus was not on deriving 
integrity properties. We work out the properties from analyzing 
the target software itself. 

Livewire [14] leverages a VMM (a modified version of 
VMware workstation) to implement a host-based intrusion 
detection system. It can inspect and monitor the states of a 
guest OS for detecting intrusions, and interposes on certain 
events, such as interrupts and updates to device and memory 
state. Like Copilot, Livewire does not focus on the 
identification of integrity properties but only checks known 
properties. 

LKIM [20] produces detailed records of the states of 
security relevant structures within the Linux kernel using the 
concept of contextual inspection. However, the identification of 
security relevant structures relies on domain knowledge. 

Specialized integrity property measurement 

Some specialized integrity properties have been measured, 
such as control flow integrity [4] and Information flow 
integrity [17]. CFI [4] checks if the control transfer from one 
function to the next is consistent with a pre-computed control 
flow graph, so we can think of it as checking a sequence 
property of the target software.  PRIMA [17] checks the 
integrity of a system by reasoning about information flows. But 
it assumes that there is no direct memory modification attack, 
e.g., information flows are triggered by well-defined interfaces 
(function calls or file reads). 

Rootkits detection and recovery 

As we mentioned, there has been a lot of research on 
rootkits. A nice survey of rootkits and detection software is 
given in [22]. From [1] you can also find a list of popular 
rootkits. The integrity measurement mechanisms (such as [14, 
22, 24, and 32]) mentioned above all can be used for rootkit 
detection. Some work such as [15] and [19] attempts to detect 
rootkits and recover the software from known-good copies. 

Trusted computing  

The Trusted Computing Group [28] has proposed several 
standards for measuring the integrity of a software system and 
storing the result in a TPM (Trusted Platform Module) [29] 
whose state cannot be corrupted by a potentially malicious host 
system. Industry vendors such as Intel have embedded TPM in 
their hardware. Such standards and technologies have provided 
the root of trust for secure booting [6], and enabled remote 

p=(struct timedia_struct*)0xc0272420; 

 

if (((struct timedia_struct*)p)[3].num!=8) 

 {printk(KERN_WARNING "Bad invariant 

timedia_data[3].num \n");}; 



attestation [26]. There has been a consistent effort in building a 
small Trusted Computing Base (with hardware support such as 
TPM and application level technique such as AppCore [27]). A 
small Trusted Computing Base facilitates integrity analysis and 
monitoring. 

VI. CONCLUSION 

In this paper, we have studied the application of static 
source code analysis to derive integrity properties of an 
operating system kernel. We design and implement automated 
tools that can derive global invariants out of the target kernel 
without running it. 

To evaluate our methodology, we apply our tools to the 
Linux kernel 2.4.32 and identify 141,279 global invariants that 
are critical to Linux’s runtime integrity. Furthermore, we 
compare the invariant list generated by our static analyzer with 
the one generated by a dynamic invariant analyzer, and find a 
large number of variables that can cause false alarms for the 
dynamic analyzer. Our experience suggests that static analysis 
is a viable option for automated integrity property derivation, 
and it can potentially have very low false positive and false 
negative rates. 
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