
Static Analysis Based Invariant Detection for

Commodity Operating Systems

Jinpeng Wei, Feng Zhu

School of Computing and Information Sciences

Florida International University

Miami, FL, USA

{weijp, fzhu001}@cs.fiu.edu

Yasushi Shinjo

Department of Computer Science

University of Tsukuba

Tsukuba, Ibaraki, Japan

yas@cs.tsukuba.ac.jp

Abstract—The recent interest in runtime attestation requires

modeling of a program’s runtime behavior to formulate its

integrity properties. In this paper, we study the possibility of

employing static source code analysis to derive integrity models

of a commodity operating systems kernel. We develop a precise

and static analysis-based global invariant detection tool that

overcomes several technical challenges: field-sensitivity, array-

sensitivity, pointer analysis, and handling of assembly code. We

apply our tool to Linux kernel 2.4.32 and identify 141,279 global

invariants that are critical to its runtime integrity. Furthermore,

comparison with the result of a dynamic invariant detector

reveals 17,182 variables that can cause false alarms for the

dynamic detector. Our experience suggests that static analysis is

a viable option for automated integrity property derivation, and

it can have very low false positive rate (1 out of 141,280 in our

Linux kernel case study) and very low false negative rate (about

0.013%).

Keywords-integrity modeling; invariants detection; static

analysis; tools

I. INTRODUCTION

In a cooperative environment, trust among the participating
computer systems is vital to the correct functioning of the
entire system. However, the widespread exploitations of
software vulnerabilities (e.g., buffer overflows) and security
breaches undermine the trustworthiness of computer systems in
a collaborate environment and thus may put other participating
systems at great risk. Therefore, technologies are needed to
gauge the trustworthiness of a running computer in a
collaborate environment.

Remote attestation is a promising technique that enables a
computer system in a cooperative environment to decide
whether a target computer (in the same environment) has
integrity, e.g., whether it has the appropriate configuration and
hardware/software stack, so it can be trusted. The idea of
remote attestation has been widely accepted. For example, the
trusted platform modules (TPM) [29] chip has become a
standard component on modern computers.

Early remote attestation techniques only ensure that a
computer is bootstrapped from trusted hardware and software
(e.g., operating systems and libraries), but there has been a
consensus in recent years that such static attestation is not

enough [18, 20]. This is because runtime attacks such as buffer
overflow attacks can invalidate the result of static attestation
during the execution of the target system, so a remote
challenger cannot gain high confidence in a target system even
if it is statically attested [18]. In order to regain high
confidence, we must enhance traditional remote attestation with
runtime attestation, or runtime integrity checking.

One of the fundamental challenges for runtime attestation is
the attestation criteria, i.e., the expected integrity properties, of
the target system. Other than a few static program states (e.g.,
code segments and constant data), most of the runtime state
space of a system (normal variables, stack, and heap) cannot be
trivially characterized. This uncertainty about the criteria
results in two classic attestation errors: false positives and false
negatives. False positives happen when the remote challenger
endorses an overly stringent criterion that a normal
(uncompromised) system fails to meet; and false negatives
happen when the challenger endorses an overly loose criterion
that a compromised system can also meet (i.e., the remote
challenger ends up trusting a corrupted computer). It is obvious
that both kinds of errors are undesirable for remote attestation.

The root cause for the attestation errors discussed above is
the lack of precise specifications of expected integrity
properties. While under-specification can reduce the rate of
false positives by lowering the bar for a target system, it allows
a compromised system to obtain trust. On the other hand, over-
specification ensures that no compromised system can pass the
integrity check, but it may also raise too many false alarms.

Since the integrity properties are attributes of the target
system, a precise specification demands a thorough analysis of
the target system. Several kinds of approaches have been taken
to analyze a target system for its integrity properties. Manual
analysis relies on domain expertise to specify and prove the
correctness of integrity properties. It is applicable to well-
known properties such as the immutability of the Interrupt
Descriptor Table (IDT), but it is not scalable to complex
software such as the Linux kernel. Therefore, automated tools
are much needed to assist a human expert. Dynamic analysis
tools such as Gibraltar [7] and ReDAS [18] infer likely
integrity properties (called invariants) of a system by reading
the runtime states (e.g., memory snapshots that contain
program variables) of the target system and hypothesizing

whether some variables satisfy predefined invariant
relationships. One example relationship is that a variable v
must always have a constant value k at runtime. However, a
well-known drawback of dynamic analysis is its inability to
explore all possible program execution paths. As a result,
dynamic analysis may generate false invariants. For example,
Gibraltar generates about 4,673 false invariants for Linux
kernel 2.4.20 [7]. A typical solution to overcome such
shortcomings is to use a large set of test cases. For example,
ReDAS created 70 training scenarios and 13,000 training
sessions for the ghttpd server. However, how to systematically
generate a large number of test cases that can trigger all
execution paths in a program remains a challenging research
problem in general.

In this paper, we explore the application of static analysis
for finding integrity properties. The basic idea is to use
compiler technology to analyze the behavior of a program to
derive its integrity properties, without actually running the
program. Static analysis can overcome the limitations of
dynamic analysis by exploring all execution paths. For
example, if v=v+2 is found in the true or false branch of a
conditional statement in the target program, then the property
that “variable v always has a constant value at runtime” is
likely false. However, a dynamic analysis tool will not be able
to observe this assignment if the test cases do not satisfy the
condition for the assignment; as a result, a dynamic analysis
tool may conclude that v is an invariant. Since static analysis
has the source code of the program, it has the advantage to
reveal all conditions for assignments to a variable, so it can be
more precise.

Specifically, we focus on the static detection of one class of
integrity properties called global invariants. Global invariants
are code or data that has constant value at runtime. They can
represent critical system integrity properties such as the
immutability of the Interrupt Descriptor Table (IDT) and the
system call table. Therefore, they have been checked by state-
of-the-art integrity monitors [7, 18].

Our first contribution is a program analysis tool that can
automatically derive global invariants from source code, using
static analysis. Our tool applies compiler technology to analyze
the control and data flows (e.g., assignments and function calls)
of a target program and reason about the global variables that
are invariants. In developing this tool, we have overcome
several challenges in large-scale C program analysis, such as
field-sensitivity, array-sensitivity, pointer analysis, and
handling of assembly code.

Our second contribution is a thorough study of global
invariants detection for the Linux kernel using static analysis.
To the best of our knowledge, there has not been a similar
study. Linux kernel is a very complex piece of software posing
great challenges for static analysis by its wide use of pointers
and complex structures. Our tool is able to process 400,492
lines of Linux kernel (version 2.4.32) code and identify
141,279 global invariants essential to the Linux kernel’s
runtime integrity. More importantly, by comparing with the
results of a dynamic invariant analyzer, we find 17,182
variables that can cause false alarms for the dynamic analyzer,
while our static tool only misses 18 true invariants (with false

negative rate 0.013%). We also develop an invariant monitor
based on the result of the static analysis and the runtime
evaluation of the monitor finds only one false invariant. Our
experience suggests that static analysis is a viable option for
automated integrity property derivation, and it can potentially
have very low false positive and false negative rates.

The rest of the paper is organized as follows. Section II
discusses the modeling of global invariants as an important
class of integrity properties. Section III presents an automated
global invariants detection tool based on static analysis of
source code. Section IV discusses a thorough evaluation of our
invariant detection tool by applying it to the Linux kernel.
Section V discusses related work, and Section VI concludes the
paper.

II. BACKGROUND ON GLOBAL INVARIANTS

In this section, we first discuss the basics of integrity
measurement and our assumptions; then we formally define
global invariants as a class of integrity property.

A. Background on Integrity Measurement and Security

Assumptions

An integrity measurement system typically consists of three
components: the target system, the measurement agent, and the
decision maker [20]. Our first assumption is that the
measurement agent is isolated from and independent of the
target system, therefore it has a true view of the internal states
(including code and data) of the target system. This is a
realistic assumption due to the popularity of virtual machine
monitors [9] and machine emulators such as QEMU [10], and it
has also been shown that the measurement agent can run on
dedicated hardware such as a PCI card [22]. Our second
assumption is that measurement results are securely stored and
transferred to the decision maker. This can be supported by
hardware such as a Trusted Platform Module (TPM) [29]. The
third assumption is that the target system’s states (e.g., code
and data) may be compromised by a powerful adversary who
can make arbitrary modifications; therefore the decision maker
can rely on very few assumptions about the trustworthiness of
the target system.

Based on these assumptions, the decision maker is given a
true view of the target system, and its task is to estimate the
“healthiness” of the target system. The healthiness include
functional correctness (e.g., a function that is supposed to
reduce the priority level of a task is not modified to actually
increase the priority level), and non-functional correctness
(e.g., the priority level can be modified by a privileged user
instead of a normal user). In the following subsections, we
model the healthiness as integrity properties.

Moreover, the healthiness of the target system may change
over time, because it may be under constant attacks. Therefore,
the integrity of the target system may need to be periodically
reevaluated.

B. Definition of Global Invariants

In theory, any software system can be modeled as an
automaton with states and state transitions. For simplicity of

presentation, we assume that the system can be in one of n

possible states: nsss ...,, ,21 . Example states are initialization,

entering a function, returning from a function, system
termination, and so on. And each state is characterized by a
particular combination of values of the system’s internal
variables. Based on this general formalization, we can model
runtime software integrity as a set of properties

)}(),...,(),({ 21 sPsPsP m . A runtime property)(sPi
is a function

on state s that evaluates to true or false. If a system state s

satisfies all iP ’s, we can say that s is a “healthy” state.

Different runtime properties may have different structures, but
each of them can be generalized to be a Boolean expression

with the operators ∧(and), ∨(or), and ¬(not). More complex
properties can be constructed out of primitive properties using
the operators mentioned above. A primitive property has the

form))(),...,(),((21 svsvsvfunc l which takes variables

)(),...,(),(21 svsvsv l and returns ture or false (v(s) is the value

of v in state s). func can have arithmetic operations inside as

well as relationship operations such as ==, ≠, <, and >.

One special class of primitive property has the form:

),[,)(21 sstktv ∈== , where 1s = “system initialized” and 2s =

“system shutting down”. I.e., it stipulates that the value of
variable v must be a known-good value k during the runtime of
the system (assuming that there is a sequence of state

transitions from 1s to 2s). We call such a primitive property a

global invariant.

C. Relevance in Integrity Protection

Global invariants represent an important class of integrity
properties. They may include critical internal control data of
the system (e.g., function addresses) that are supposed to
remain constant. Examples of such invariants include the
Interrupt Descriptor Table (IDT). Another type of global
invariants hold security policy data, and the violation of such
invariants can directly defeat the corresponding security
measures. For example, by tampering with the list of “bad” IP
addresses, the attacker can defeat a blacklist-based IDS.

Because of the importance of global invariants to integrity
properties, they have been the popular targets for attack by
rootkits such as SucKIT, Hacker defender, Turtle rootkit,
enyelkm-1.3, Phalanx, AFX, NTIllusion, HE4Hook, and
Vanquish. Common examples of such attacked invariants
include system call table, System Service Descriptor Table,
SYSENTER handler function, Interrupt Descriptor Table
(IDT), NDIS handlers, and Interrupt Request Packet (IRP)
handlers. It is interesting to note that over the years, the list of
such invariants grows as the rootkits attempted to evade rootkit
detectors that tried to catch up. The general trend of such
growth is towards more sophistication and stealth [8]. On the
other hand, global invariants are the basis for many rootkit
detection systems such as ReDAS [18], Copilot [22], Livewire
[14], and several commercial tools (e.g., [1, 2, 3, and 31]). The
fact that such invariants are not supposed to change makes it
easier to check their integrity; for example, many rootkit
detectors use a clean copy or hash value of a global invariant

variable as the baseline to tell whether it has been tampered
with by a rootkit.

D. Existing Solutions

Several kinds of approaches have been taken to analyze a
target system for global invariants. Manual analysis relies on
domain expertise to specify and prove the correctness of
integrity properties. It is applicable to well-known properties
such as the immutability of the Interrupt Descriptor Table
(IDT), but it is not sustainable to counter novel attacks that
move their targets to less-known places such as device driver
jump tables. Eventually, manual analysis will reach a point
where a human expert has difficulty understanding the logic of
a system, which calls for automated tools to assist a human
expert. Dynamic analysis tools such as Gibraltar [7] and
ReDAS [18] infer likely global invariants of a system by
reading the runtime states (e.g., memory snapshots that contain
program variables) of the target system and hypothesizing
whether some variables have constant values at runtime. One
well-known drawback of dynamic analysis is its inability to
explore all possible program execution paths. As a result,
dynamic analysis may generate false invariants. Typical
solution to overcome such shortcomings is to use a large set of
test cases. For example, ReDAS [18] created 70 training
scenarios and 13,000 training sessions for the ghttpd server.
However, how to systematically generate a large number of test
cases that can trigger all execution paths in a program is a
challenging and open research problem by itself.

III. AUTOMATED INFERENCE OF GLOBAL INVARIANTS

THROUGH STATIC ANALYSIS

A. Overview

We have developed a static analysis-based system to detect
global invariants for commodity operating systems kernels.
Fig. 1 shows the overall architecture. We apply compiler
technology to automatically analyze the control and data flows
of a target kernel, e.g., assignments and function calls, to
reason about the global variables that are invariants.
Assignment recognition supports or rejects the hypothesis that
a variable is an invariant, e.g., if a variable is assigned multiple
times with different values, it is unlikely a global invariant.

Our system recognizes two kinds of assignments: direct
assignment and indirect assignment. Direct assignment
recognition is straightforward. Indirect assignment is mainly
made through pointers in a modern kernel implemented in the

Figure 1. Invariant analysis architecture

Kernel Source

Code

Pointer

Analyzer

Invariant

Analyzer
points-to

 graph

Monitor

Source Code

Invariant

Report

C language. In order to recognize indirect assignment through
pointers, our system has a pointer analysis component, as
shown in Fig. 1.

Our system accepts the merged kernel source code as input,
which is fed into the Pointer Analyzer and the Invariant
Analyzer. The Pointer Analyzer processes the kernel code and
generates the points-to graph, which records the points-to set
(i.e., a set of variables) of any pointer variable. The Invariant
Analyzer scans the kernel source code including variable
declarations and kernel functions. Its major task is to recognize
assignment statements, either direct ones or indirect ones.

When it scans an indirect assignment statement such as *p=v,
it queries the points-to graph generated by the Pointer Analyzer

and gets the set of kernel variables that can be pointed to by p,
and notes that all such variables are assigned once by this
statement. Internally, the Invariant Analyzer has two functional
components: assignment recognition (Section III.C) and
invariant recognition (Section III.D).

The output of our system is a report of invariant
classification for all global variables in the input kernel. For
variables that are not considered invariant, we also report the
reason for that decision, e.g., the related assignment
statement(s). We have made a sample of such a report available
on our web site [34]. Another output of our system is the
source code for an Invariant Monitor that can be installed in the
analyzed system as a kernel module to monitor the invariants
detected. More details of the Invariant Monitor are presented in
Section IV.C.1.

B. Design Goals

The major goal for our invariant analysis is high precision,
i.e., how to minimize false positive rate and false negative rate.
As we discussed in Section I, both kinds of errors are
undesirable for remote attestation. Below we discuss the
technical challenges in both cases and our solutions, under the
context of static analysis of C like programming languages.

The major reasons for false negatives are a lack of fine-
granularity and imprecise pointer analysis. If the static analyzer
is field-insensitive, e.g., it cannot differentiate individual fields
in a C structure, it will regard an assignment to any field of a
structure as an assignment to the entire structure; thus the entire
structure may become a non-invariant. This means that even if
some fields of that structure are invariant and hold critical data
such as function pointers, they cannot be protected. This lack of
precision obviously causes false negatives. Similarly, lack of
support for array sensitivity, i.e., being unable to differentiate
individual elements in an array, is another cause for false
negatives. From our experience, in a modern kernel such as the
Linux kernel, the majority of global data is within some
structure or array, which means that a static analyzer that is
field and array-insensitive is almost useless. Therefore, our
invariant analyzer must be field and array-sensitive (Sections
III.C.1 and III.C.2). Another cause of false negatives is the
conservativeness of pointer analysis algorithms. If the pointer
analysis algorithm is too conservative, e.g., a pointer can point
to all global variables, the invariant analyzer would recognize
many bogus (or impossible) assignments, and consider a global
invariant as a non-invariant as a result. Therefore, we need to

develop a precise pointer analysis algorithm. We employ a
precise points-to algorithm in our design (Section III.C.3).

The major reason for false positives (i.e., fake invariants) is
a failure to recognize legitimate assignments. This can be
caused by two reasons: implicit assignments and incomplete
points-to analysis. One kind of implicit assignment is
assignment by assembly code: since our static analyzer does
not understand assembly code, it cannot capture such
assignments. Another example of implicit assignment is

structure-level assignment: if variables foo and bar are

defined as struct{int a;int b}foo,bar; then the

assignment foo = bar implicitly modifies both foo.a and

foo.b. Another cause of missing assignment recognition is
related to the precision of points-to analysis: if it returns an
incomplete points-to set for a pointer, the analyzer may miss
legal but indirect updates to some variables through that
pointer; as a result, the analyzer may mistakenly classify those
variables as invariants. In order to capture implicit assignments,
we apply heuristics in our analyzer (Sections III.C.5, III.C.4,
and III.C.1). In order to avoid incomplete pointer analysis, we
employ a precise points-to analysis algorithm (Section III.C.3).

C. Major Design Points of the Assignment Recognition

One component of our invariant analyzer identifies
assignments to variables. For programs written in C,
modifications to a variable occur in two forms: direct
assignment and indirect assignment. In the former case, the
said variable is the left hand side of an assignment statement
(e.g., v in v=k+3). In the latter, the said variable is assigned
indirectly through a pointer that references it (e.g.,
p=&v,...,*p=k+3). In order to capture the second case, the
detector needs to first find out the points-to set of the pointer
(via a points-to analysis [5]), and then note that each target in
the points-to set is assigned indirectly.

In the rest of this section, we discuss how our design
satisfies our goals outlined in Section III.B.

1) Field Sensitivity
To achieve the desired field sensitivity, our analyzer uses

lexical names to disambiguate structure field references (e.g.,
p->a is considered a different memory location from p->b), in
a way similar to Wagner [30]. This enables our analyzer to
capture explicit assignments to structure fields. Moreover, our
analyzer treats structure level assignments as implicit
assignments to the individual fields. For example, if variables
foo and bar are defined as struct{int a;int b}foo,

bar; then the assignment foo = bar; is translated into

foo.a = bar.a; foo.b = bar.b.

2) Array Sensitivity
Array sensitivity is another method for our analyzer to

achieve fine-granularity. The basic idea is to treat each element
of an array as an independent variable. For example, the array
int d[3] is treated as three variables d[0], d[1], and d[2].
Our analyzer can handle arrays of arbitrary dimension. Finally,
our analyzer can recognize pointers into arrays. For example, if
the analyzer sees int *p = d; it can interpret *(p + 1) as

the same as d[1].

3) Pointer Analysis
Our invariant analyzer performs points-to analysis in order

to recognize indirect assignments through pointers. Based on
the analysis in Section III.B, we know that the accuracy of the
points-to analysis algorithm is the key for reducing false
positives and false negatives. Therefore, our pointer analyzer is
based on the generalized one level flow (GOLF) algorithm
[11], which is among the most precise pointer analysis
algorithms, achieving precision close to Anderson’s algorithm
[5]. Our pointer analyzer is built on top of the field-sensitivity
(Section III.C.1) and array-sensitivity (Section III.C.2)
capabilities to return fine-grained points-to targets. For

example, it would return individual structure field foo.b

instead of the entire structure foo. Finally, it can also
contribute to field-sensitivity and array-sensitivity. For

example, in struct{int a;int b}bar, *p, if p’s points-to

set includes bar, then an assignment to p->a is considered an

indirect assignment to bar.a.

4) Union Support
Our analyzer also supports unions: each field of a union is

treated as an alias of other fields in the same union. This means
that an explicit assignment to one field of a union is an implicit
assignment to all the other fields. Therefore, if one field of a
union is not an invariant, other fields of the union are not
invariants, either.

For example, in union uarg{int a; int b}c, c.a and

c.b are treated as different variables; if c.a is not an invariant,

c.b is not an invariant, either.

5) Heuristics-base Assignment Recognition
The use of assembly code in the kernel poses difficulties to

our static analysis. Because our analyzer only recognizes C
code, variable reads or writes by assembly code are not visible
to it. One prominent example is get_current(), which
returns a pointer to the task structure of the current process.
Because this function uses assembly code, several chains of
pointer dependency are broken, and our static analysis suffers
inaccuracy as a result. To overcome these inaccuracies caused
by assembly code, we apply a function prototype-based
heuristic. The basic idea is to summarize the effect (in terms of
assignments to the input parameters) of assembly code inside a
function body to bridge the “analysis gap”. For example, the
function memcpy() copies a block of memory to another block
of memory, so it can change the target memory and thus should
be treated as a kind of implicit assignment. This list of

functions includes copy_from_user, memset, memcpy,

spin_lock, read_lock, write_lock, down, up,

clear_bit, set_bit and their variants. We identify this kind
of functions in two steps: first, our static analysis reports all
functions that contain assembly code in their bodies; second,
we manually analyze the reported functions to see if any
assignment is performed in the assembly code. For function
get_current(),we assume it can return a pointer to the global

variable init_task_union.task.

D. Invariant Recognition

The second component of our invariant analyzer recognizes
global invariants based on the assignments to each variable.

Because the definition of global invariants only concerns
the variables’ value after system initialization, we treat
assignments during system initialization differently than those
during normal execution of the system. Specifically, a global
invariant can be assigned multiple possible values during
initialization, as long as it is not assigned during normal
execution. On the other hand, assignments at normal execution
time typically indicate that a variable is not an invariant. Being
assigned differently during system initialization is quite
possible for some global invariants whose known-good values
depend on hardware configuration; they can get several
different values depending on the hardware features detected
during system initialization.

In our design, each global variable is associated with a flag
that indicates whether it is an invariant and a legal value list
that contains its possible values. In the beginning, all global
variables are marked as invariants and all legal value lists are
empty.

Our invariant analyzer first scans global variable
declarations and initialization functions (e.g., those with
“__init” directives). If a global variable, which is marked as
an invariant, is assigned a constant value, the analyzer adds this
value into the variable’s legal value list. On the other hand, if a
global variable is assigned a non-constant value, the analyzer
marks it as a non-invariant.

After this scan, if a global variable's legal value list is still
empty, the analyzer adds a default value into the list, based on
the type of the variable (e.g., 0 for an integer variable).

Next, the invariant analyzer scans the remaining kernel
functions. If a global variable, which is marked as an invariant,
is assigned a non-constant value, or a constant value but the
value is not in its legal value list, the analyzer marks it as a
non-invariant.

At the end of the kernel code scanning, our analyzer
generates a report about the invariant status of all global
variables, based on their flags. For those non-invariants, the
report also includes the reason, e.g., the related assignment
statement(s) in the kernel source code, for in-depth
investigation by a human expert.

E. Implementation

We implement a static invariant detector based on the C
Intermediate Language (CIL) [21]. Our pointer analyzer is
implemented in 5,000 lines of Ocaml code, and our invariant
analyzer is implemented in 3,500 lines of Ocaml code.

IV. EVALUATION

In this section, we report a large-scale evaluation of our
invariant detection tool, using Linux kernel 2.4.32 as the input
kernel. Our evaluation mainly focuses on the precision of the
detected invariants. We also briefly report performance of our
detection tool at the end.

A. Metrics, Methodology, and Test Cases

We choose two common metrics to evaluate the precision
of the detected global invariants for the Linux kernel:

• False positives happen when variables that can legally
change their values are mistakenly recognized as
invariants. A monitor can generate false alarms when
such “fake” invariants change their values during
normal execution.

• False negatives happen when a true invariant is not
recognized as such. As a result of false negatives, a
monitor may fail to detect rootkits that modify thus
violate the true invariants. In other words, a rootkit can
evade detection as a result of false negatives.

We measure the false positive and false negative rates of
the static invariant detection in two ways: (1) comparing with
the result of a dynamic invariant detector, and (2) running
against real software (benign or malicious).

Table I shows the set of benign test programs that we ran.
Worth noting among all the programs is the Linux Test Project
(ltp version 2005), which includes more than 700 test cases that
test the Linux kernel in many aspects (such as system calls and
file system functionality), and more than 60 test cases that
exercise the basic functionalities of the network.

We also tried to run rootkits in our test environment. Since
the Linux kernel version that we analyzed is relatively old
(2.4.32), most of the publicly available rootkits were not able to
run on this kernel. In fact, we were able to run only the SucKIT
2 rootkit.

B. Comparing with a Dynamic Invariant Detector

We develop a dynamic invariant detector (as a loadable
kernel module, or LKM) that periodically reads the values of
the global variables of the kernel during a training phase and
finally reports those variables whose values do not change
during the training; these variables are the dynamically-
detected invariants. In order to increase the accuracy of the
result, we run the test programs in Table I to trigger
modifications to the global variables.

Table II summarizes the invariant analysis results for the

.data and the .rodata segments of Linux kernel 2.4.32. The
second column is the total number of global variables (with
field and array-sensitivity). The third column shows the
number of statically-detected invariants out of all the variables,
and the fourth column shows the number of dynamically-
detected invariants out of all the variables.

TABLE I. TEST PROGRAMS USED IN THE EVALUATION

Test program Description

ltp-2005 Linux Test Project: open source test suites that

validate the reliability, robustness, and stability of

Linux

Iperf [33] A network testing tool that measures the throughput

of a network, thus exercising the network subsystem

of the kernel

Andrew benchmark A file system benchmark

Miscellaneous Kernel compilation, ssh, scp, common commands

TABLE II. OVERALL RESULT OF THE INVARIANT DETECTION

Segment # Variables # Static inv. # Dynamic inv.

.data 154,132 136,778 153,978

.rodata 4,502 4,502 4,502

TABLE III. COMPARISON OF THE STATIC AND DYNAMIC ANALYSIS

RESULTS FOR THE .data SEGMENT (FN: FALSE NEGATIVE; FP: FALSE POSITIVE).

Category Total # # Error static # Error dyna.

S.NI, D.NI 154 0 0

S.NI, D.I 17,200 18(FN) 17,182(FP)

S.I, D.NI 0 0 0

S.I, D.I 136,778 1(FP) 1(FP)

From Table II we can see that both static and dynamic

invariant detection achieve 100% accuracy on the .rodata

segment, which is expected because variables in the .rodata
segment are supposed to remain constant.

The dynamic invariant detector reports that 99.9% of the

variables in the .data segment are invariant. This is not very
surprising, because our test cases may not be able to trigger
every possible update to a global variable, so there may be
many false invariants in the dynamically-detected set.
Comparatively, static analysis reports 88.7% of the variables in
the .data segment as invariants.

Table III gives a more in-depth comparison of the results of
the static and dynamic analyzers for the .data segment. We
classify each global variable according to how the two kinds of
analyzers think about its invariant status. Since each variable
can be considered invariant or non-invariant by each of the
analyzer, there are four combinations. For example, the
category “S.NI, D.I” includes all variables that are considered
non-invariant by the static analyzer but invariant by the
dynamic analyzer.

We can see that there are in total 154 variables that both
analyzers agree to be non-invariants. We are confident about
the correctness of the results because the dynamic analyzer
classifies a variable as non-invariant only if it observes that the
value of the variable does change at runtime. Therefore, the
non-invariants reported by the dynamic analyzer must be truly
non-invariants.

Next, we see from Table III that 17,200 variables are
classified as non-invariants by the static analyzer but invariants
by the dynamic analyzer. Here we cannot trust the dynamic
analyzer because it may not observe a legal but conditional
assignment due to the incompleteness of the test cases, and we
cannot trust the static analyzer, either, because its points-to
analysis is conservative.

To find the ground truth about these 17,200 variables, we
manually verify whether they are indeed non-invariants. This
verification task seems daunting, but it is actually made much
easier by the following facts about our static analyzer: (1) if a
variable is directly modified, the assignment statement logged
in the analysis report is straightforward evidence that the
variable is a non-invariant; (2) if a variable is only indirectly
modified through a pointer, our analyzer outputs the relevant
statements from the source code that support the points-to
relationship, which is relatively straightforward to verify by a

human (e.g., Fig. 2 is a portion of our analysis report that

shows why ctrl_map[2] can be indirectly modified through

the pointer variable key_map); (3) because our analysis is array
sensitive, we can generalize from one confirmed non-invariant
array element to all other elements in the same array. E.g.,

given an array arr of size 1024, if we confirm that arr[0] is a

non-invariant due to an assignment to arr[i], then we can

conclude that arr[1] through arr[1023] are all non-
invariants. In other words, we can confirm non-invariants in
batches, which significantly speed up the verification. Because
of the above reasons, it takes one graduate student about 20
hours to finish the verification of these 17,200 variables. As a
result, we are able to confirm that 17,182 of such variables are
non-invariants, i.e., they can be modified by assignments at
runtime. Below we outline some examples:

• struct kbdiacr accent_table[256] stores the
accented symbols (or characters) of the console

keyboard and can be changed by an ioctl system call
with command 0x4B4B, specifically,
copy_from_user(accent_table,a->kbdiacr,

ct*sizeof(struct kbdiacr) in drivers/char/vt.c.
However, the dynamic invariant analyzer reports this
entire array as invariants because our test cases do not
make such an ioctl system call.

• The array static char buf[1024] in panic.c is

used to hold kernel panic messages whenever panic()
is called. Specifically, it is written into by
vsnprintf(buf, sizeof(buf), fmt, args).
Therefore, this array is obviously not invariant.
However, since our dynamic analysis test cases do not
trigger a kernel crash, it cannot see any changes to
buf; so it mistakenly concludes that the entire array

buf is invariant.

• Fig. 2 shows how ctrl_map[2] can be indirectly
modified through a pointer.

Fig. 3 shows the distribution of the two kinds of evidence
(direct assignment and indirect assignment) applicable to the
17,336 non-invariants confirmed (including the 154 non-
invariants in the “S.NI, D.NI” category). We have merged the

Figure 2. Snippet of the analysis report that shows why ctrl_map[2] can be

indirectly modified through the pointer key_map

Figure 3. Distribution of evidence applicable to the 17,336 non-invariants

confirmed

non-invariants recognized via heuristics (Section III.C.5) into
the direct or indirect group depending on whether the address
of the target variable is directly taken. Note that more than one
kinds of evidence may be applicable to a variable depending on
how the kernel modifies it.

From Fig. 3 we can see that 76% (13,191 out of 17,336) of
the confirmed non-invariants can be modified only indirectly
through a pointer. This confirms the wide-scale use of pointers
in the Linux kernel to manipulate memory and it also means
that for any static invariant detector of the Linux kernel, the
points-to analysis part is critical for the overall precision.

We further look at the type and meaning of the 17,182
confirmed non-invariants in the “S.NI, D.I” group to see
whether the classification makes sense. We coarsely divide
them into several categories, such as list heads, locks,
accounting information (e.g., counters), auditing data, resource
management information (e.g., page tables and memory zone
lists), configuration data, and driver-specific data. Table IV
shows example variables for each category.

From this analysis, we feel that the static analysis results
make sense. For example, list heads, locks, and performance
counters should be dynamic, so they should not be invariants.
Unfortunately, our dynamic analyzer classifies this large group
of non-invariants in the wrong way, due to the incompleteness
of test cases. We believe that these 17,182 non-invariants
highlight the relative advantage of static analysis over dynamic
analysis.

The 18 false negatives in the “S.NI, D.I” group are the
fields of a global structure called i810_fops (e.g.,

i810_fops.ioctl, i810_fops.read, i810_fops.write,
etc). For them, our static analyzer does not provide convincing
evidence for the points-to relationship and our manual analysis
indicates that they should be invariants. These false negatives
illustrate the limitation of points-to analysis, which has been
shown to be undecidable in general [16]. Given the total
number of real invariants (141,297), our static analyzer has a
false negative rate of 0.013% (18 out of 141,297).

Continue on Table III, we see that no variable is classified
as invariants by the static analyzer but non-invariants by the
dynamic analyzer. Such variables, if they exist, would be false
positives for the static analyzer. The absence of such variables
suggests that our static invariant detector has low false positive
rate.

The last row of Table III shows that both analyzers believe
that 136,778 kernel variables should be invariants. Since our
static analyzer does not provide evidence for invariants, we
cannot verify the correctness statically. Similarly, the dynamic
analyzer does not provide evidence to prove invariants, either.

Direct

assignment

2615

Indirect

assignment

13191
1530

<Name>ctrl_map[2]</Name>

<Invariant>No</Invariant>

<Reason1>

*(key_map + 0) = (unsigned short)(((2 << 8) | 126) ^ 61440);

vt.c:224, Indirectly modified through key_map.

Path from ctrl_map[2] to key_map:

<Label>ctrl_map[2]</Label>

<STMT>ctrl_map=&ctrl_map[2] defkeymap.c:65</STMT>

<Label>l_473154</Label>

<STMT>key_maps[4]=ctrl_map defkeymap.c:141</STMT>

<Label>l_479876</Label>

<STMT>key_map = key_maps[tmp.kb_table];vt.c:174

</STMT>

TABLE IV. EXAMPLES OF NON-INVARIANTS

Category Example variables

List heads acpi_bus_drivers.next

arp_tbl.gc_timer.list.next

console_callback_tq.list.next

random_read_wait.task_list.next

tcp_tw_timer.list.next

Locks context_task_wq.lock.lock

dev_base_lock.lock

exec_domains_lock.lock

floppy_usage_lock.lock

hash_table_lock.lock

Auditing

information

kernel_module.archdata_end

kernel_module.archdata_start

kernel_module.ex_table_end

kernel_module.ex_table_start

kernel_module.kallsyms_end

kernel_module.kallsyms_start

Accounting

information

console_sem.count.counter

con_buf_sem.count.counter

dev_probe_sem.count.counter

init_fs.count.counter

init_mm.mm_user.counter

Resource mgmt

data

contig_page_data.node_zonelists[0].zones[0]

contig_page_data.node_zones[0].free_area[0].map

contig_page_data.node_zones[0].nr_cache_pages

contig_page_data.node_zones[0].nr_inactive_pages

contig_page_data.node_zones[0].nr_active_pages

Configuration

data

FDC2,FLOPPY_DMA,FLOPPY_IRQ,

can_use_virtual_dma,fifo_depth

Driver-specific

data

eth0_dev.allmulti, eth0_dev.dev_addr[0]

eth0_dev.tx_queue_len, eth1_dev.change_mtu,

eth1.base_addr, eth1.broadcast[0]

Therefore, we decide to experimentally verify the invariant
results.

C. Experimental Evaluation

1) Implementation of the Invariant Monitor
We implement an Invariant Monitor (in the form of a

LKM) that periodically checks the 141,280 statically detected
invariants in the memory of a Linux kernel 2.4.32 (the kernel
that our static tool analyzed). The monitor loops over all the
identified invariants and for each invariant variable, it
compares the runtime value of the variable against its known-
good value. The monitor emits a warning message if any
comparison returns false. The list of invariants as well as their
known-good values is derived by the static invariant analyzer
presented in Section III.

One practical difficulty that our Invariant Monitor
overcomes is the semantic gap between the monitor as a LKM
and the rest of the kernel – not all global variables are exposed
to the monitor as symbols. For example, msg_ctlmax is an
unresolved symbol when we try to load the monitor. For this
reason and for better portability (e.g., running the monitor from
a hypervisor in the future), our monitor refers to the invariants
by their runtime addresses rather than symbolic names.
However, our static invariant analyzer reports invariants by
names. Therefore, we need to bridge the gap between names
and runtime addresses. To solve this problem, we use the

information contained in the System.map file, a standard file

generated during the kernel compilation process, which
contains a mapping from kernel variable names to their runtime
addresses.

A related difficulty brought by the semantic gap is the lack
of offset information when our monitor makes fine-grain
memory accesses to individual fields of structure variables or
array elements, because System.map only provides the
starting address of a structure or array variable but our monitor
needs to look inside it. One naïve approach is to manually
count the byte offset into a block of memory based on the type
information, but this is not a scalable approach because our
monitor needs to read hundreds of thousands of global
variables (Table II). Instead, we leverage the power of static
analysis to automatically generate code for the monitor.
Specifically, the static analyzer generates code that declares
pointer variables of the appropriate type, uses pointer
dereferencing expressions to represent fine-grain memory
accesses, and lets the compiler find out the correct offset
information. For example, the static analyzer generates the
code snippet in Fig. 4 for the invariant

timedia_data[3].num where timedia_data is an array

whose elements are of type struct timedia_struct that

has a field named num. Here 0xc0272420 is the runtime address

of the timedia_data array. Note that the known-good value 8

that is compared in the if statement is automatically supplied
during the code generation because it is available to the static
invariant analyzer by the time of code generation (i.e., in the
legal value list).

2) Evaluation of false positives
To estimate the false positive rate of our invariant analyzer,

we run the test programs in Table I while our Invariant Monitor
is running in the background. The goal is to find whether the
test programs can trigger legitimate updates to any global
variable that our invariant analyzer believes to be invariant. If
that’s the case, our Invariant Monitor should generate
warnings. While the non-existence of such warnings cannot be
used as a proof that our invariants are all real, existence of such
warnings does show that some of our invariants are false. In
order to maximize the detection probability of false invariants,
we choose the set of test programs in Table I that to our
knowledge exercise all important subsystems of the kernel.

We ran these test programs after the kernel (version 2.4.32)
was fully booted and our Invariant Monitor module was
loaded. During the long time execution of the test programs,
our checker reported warning messages about only one
variable, which we categorize as a false positive by our
invariant analyzer in the last row of Table III. This variable is
ipv4_devconf_dflt.rp_filter. We carry out a manual
investigation to understand why our invariant analyzer does not
recognize legal assignments to this variable, and we find that
our invariant analyzer misses it mainly due to a very subtle
pointer arithmetic operation by the Linux kernel. We believe
that this false positive can be eliminated by modifying our
static analyzer. Overall, we are happy to see that our invariant
analyzer has almost no false positives (1 out of 141,280
invariants monitored).

Figure 4. One example of automatically generated code for checking

invariants at runtime

3) Evaluation of false negatives
Having false negatives means that our invariant detection

does not recognize some variables that are actually invariants;
if a rootkit manipulates such variables, our Invariant Monitor
will not be able to detect it. One way to estimate the impact of
false negatives is to run real-world rootkits on a system with
our Invariant Monitor installed, and see whether our Invariant
Monitor can detect them.

We selected several real-world rootkits for this purpose;
they are Adore, Mood-nt, Phalanx-b6, Enyelkm-1.3, SuckIT 2,
and Knark. Because the kernel version that we analyzed is
relatively old (2.4.32), we were able to run only the SucKIT 2
rootkit. But our Invariant Monitor successfully detected this
rootkit; the invariant that is violated is sys_call_table[59],

whose known-good value should be sys_olduname.

D. Performance of the invariant analyzer

All our experiments are performed on a server with a 2.93
GHz, 8-core Intel Xeon CPU and 16 GB of RAM. And our
invariant monitor and runtime analyzer run in a virtual machine
with 2GB of RAM and 20GB of disk, running a Linux 2.4.32
kernel.

Our static analyzer takes a merged Linux 2.4.32 kernel with
400,492 lines of C code as input, and produces the invariant
report and the source code of the invariant monitor. The whole
process takes 272 minutes and 4.3GB memory on average. In
more detail, the pointer analyzer takes 151 minutes on average,
and the invariant analyzer takes 121 minutes on average. Since
the static invariant detection only needs to run offline, we have
not aggressively optimized our static analyzer for speed.

E. Discussion

The degree to which a set of global invariants can
approximate runtime integrity of a kernel remains a research
question. For example, the invariants that we identified are all
necessary conditions, but they may not be sufficient. Assuming
that a right set of global invariants is at hand, we can estimate
the runtime integrity of the kernel by verifying them. If all of
them are verified, we have more confidence about the kernel’s
integrity. But if some of them do not pass the verification, we
know that the kernel has lost its integrity.

V. RELATED WORK

Invariants detection

The Daikon invariant detector [13] generates likely
invariants using program execution traces collected during
sample runs. Daikon is a dynamic invariant detector, and its
idea has been incorporated into Gibraltar [7] and ReDAS [18].

Integrity measurement mechanisms

There has been a long line of research on integrity
measurement. Approaches such as IMA [25] use hashing or
digital signatures to measure the software at load time.
Recently, ReDAS [18] and DynIMA [12] advance the state of
the art by supporting software integrity measurement at
runtime. Other related work includes [14, 20, 22, 23, 24, and
32]. These approaches generally focus on the mechanism for
measurement, but not the integrity properties.

Copilot [22] is a co-processor based integrity checker for
the Linux kernel. The properties that Copilot prototype checked
were kernel code, module code, and jump tables of kernel
function pointers. Although Copilot later provided a
specification language [23], its focus was not on deriving
integrity properties. We work out the properties from analyzing
the target software itself.

Livewire [14] leverages a VMM (a modified version of
VMware workstation) to implement a host-based intrusion
detection system. It can inspect and monitor the states of a
guest OS for detecting intrusions, and interposes on certain
events, such as interrupts and updates to device and memory
state. Like Copilot, Livewire does not focus on the
identification of integrity properties but only checks known
properties.

LKIM [20] produces detailed records of the states of
security relevant structures within the Linux kernel using the
concept of contextual inspection. However, the identification of
security relevant structures relies on domain knowledge.

Specialized integrity property measurement

Some specialized integrity properties have been measured,
such as control flow integrity [4] and Information flow
integrity [17]. CFI [4] checks if the control transfer from one
function to the next is consistent with a pre-computed control
flow graph, so we can think of it as checking a sequence
property of the target software. PRIMA [17] checks the
integrity of a system by reasoning about information flows. But
it assumes that there is no direct memory modification attack,
e.g., information flows are triggered by well-defined interfaces
(function calls or file reads).

Rootkits detection and recovery

As we mentioned, there has been a lot of research on
rootkits. A nice survey of rootkits and detection software is
given in [22]. From [1] you can also find a list of popular
rootkits. The integrity measurement mechanisms (such as [14,
22, 24, and 32]) mentioned above all can be used for rootkit
detection. Some work such as [15] and [19] attempts to detect
rootkits and recover the software from known-good copies.

Trusted computing

The Trusted Computing Group [28] has proposed several
standards for measuring the integrity of a software system and
storing the result in a TPM (Trusted Platform Module) [29]
whose state cannot be corrupted by a potentially malicious host
system. Industry vendors such as Intel have embedded TPM in
their hardware. Such standards and technologies have provided
the root of trust for secure booting [6], and enabled remote

p=(struct timedia_struct*)0xc0272420;

if (((struct timedia_struct*)p)[3].num!=8)

 {printk(KERN_WARNING "Bad invariant

timedia_data[3].num \n");};

attestation [26]. There has been a consistent effort in building a
small Trusted Computing Base (with hardware support such as
TPM and application level technique such as AppCore [27]). A
small Trusted Computing Base facilitates integrity analysis and
monitoring.

VI. CONCLUSION

In this paper, we have studied the application of static
source code analysis to derive integrity properties of an
operating system kernel. We design and implement automated
tools that can derive global invariants out of the target kernel
without running it.

To evaluate our methodology, we apply our tools to the
Linux kernel 2.4.32 and identify 141,279 global invariants that
are critical to Linux’s runtime integrity. Furthermore, we
compare the invariant list generated by our static analyzer with
the one generated by a dynamic invariant analyzer, and find a
large number of variables that can cause false alarms for the
dynamic analyzer. Our experience suggests that static analysis
is a viable option for automated integrity property derivation,
and it can potentially have very low false positive and false
negative rates.

REFERENCES

[1] Chkrootkit - rootkit detection tool. http://www.chkrootkit.org/.

[2] RootkitRevealer. http://technet.microsoft.com/en-
us/sysinternals/bb897445.aspx.

[3] Sophos anti-rootkit. http://www.sophos.com/products/freetools/sophos-
anti-rootkit.html.

[4] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity”, ACM Conference on Computer and Communications
Security (CCS), Alexandria, VA, Nov. 2005.

[5] L. O. Anderson, “Program analysis and specialization for the C
programming language”, PhD thesis, University of Copenhagen, 1994.

[6] W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure and reliable
bootstrap architecture”, In IEEE Computer Society Conference on
Security and Privacy. IEEE, 1997, pp. 65–71.

[7] A. Baliga, V. Ganapathy, and L. Iftode, “Automatic inference and
enforcement of kernel data structure invariants”, In ACSAC ’08:
Proceedings of the 2008 Annual Computer Security Applications
Conference, pages 77–86. IEEE Computer Society, 2008.

[8] A. Baliga, P. Kamat and L. Iftode, “Lurking in the shadows: identifying
systemic threats to kernel data”, IEEE Symposium on Security and
Privacy, Oakland, CA, May 2007.

[9] P. Barham, B. Dragovic, K. Fraser, et al., “Xen and the art of
virtualization”, ACM Symposium on Operating Systems Principles
(SOSP), Bolton Landing, NY, Oct. 2003.

[10] F. Bellard, “QEMU, a fast and portable dynamic translator”,
Proceedings of the 2005 USENIX Annual Technical Conference, 2005.

[11] Manuvir Das, Ben Liblit, Manuel Fähndrich, and Jakob Rehof,
“Estimating the Impact of Scalable Pointer Analysis on Optimization”,
In Proceedings of the 8th International Symposium on Static Analysis
(SAS’01), London, UK, 2001.

[12] L. Davi, A. Sadeghi, and M. Winandy, “Dynamic Integrity Measurement
and Attestation: Towards Defense against Return-Oriented Programming
Attacks”, Proceedings of the 2009 ACM workshop on Scalable Trusted
Computing (STC). November 2009.

[13] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The Daikon system for dynamic detection of
likely invariants”, In Science of Computer Programming, 2007.

[14] T. Garfinkel, M. Rosenblum, “A virtual machine introspection based
architecture for intrusion detection”, Proceedings of Network and
Distributed Systems Security Symposium (NDSS), February 2003.

[15] J. Grizzard, E. Dodson, G. Conti, J. Levine, and H. Owen, “Toward a
trusted immutable kernel extension (TIKE) for self-healing systems: a
virtual machine approach”, Proceedings of 5th IEEE Information
Assurance Workshop, 2004.

[16] Michael Hind. “Pointer analysis: haven't we solved this problem yet?”
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, pp. 54-61.

[17] T. Jaeger, R. Sailer, and U. Shankar, “PRIMA: policy-reduced integrity
measurement architecture”, Proceedings of the 11th ACM Symposium
on Access Control Models and Technologies (SACMAT 2006).

[18] C. Kil, E. Sezer, A. Azab, P. Ning, and X. Zhang, “Remote attestation to
dynamic system properties: Towards providing complete system
integrity evidence”, Proceedings of the 39th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN’09), Lisbon, Portugal, 2009.

[19] J. Levine and J. Grizzard and H. Owen, “Re-establishing trust in
compromised systems: recovering from rootkits that trojan the system
call table”, Proceedings of 9th European Symposium on Research in
Computer Security, Sophia Antipolis, France, September 2004.

[20] P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, C. D. McDonell,
“Linux kernel integrity measurement using contextual inspection”,
Proceedings of the 2007 ACM workshop on Scalable Trusted
Computing (STC). October 2007.

[21] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. “CIL:
Intermediate language and tools for analysis and transformation of C
programs”, Conference on Compiler Construction (CC), Grenoble,
France, Apr. 2002.

[22] N. Petroni, Jr., T. Fraser, J. Molina, W. A. Arbaugh, “Copilot—a
coprocessor-based kernel runtime integrity monitor”, 13th USENIX
Security Symposium, San Diego, CA, Aug. 2004.

[23] N. Petroni, T. Fraser, A. Walters, and W. Arbaugh, “An architecture for
specification-based detection of semantic integrity violations in kernel
dynamic data”, 15th USENIX Security Symposium, 2006.

[24] N. Petroni and M. Hicks, “Automated detection of persistent kernel
control-flow attacks”, 14th ACM Conference on Computer and
Communications Security (CCS), Alexandria, VA, Oct. 2007.

[25] R. Sailer, X. Zhang, T. Jaeger, L. van Doorn, “Design and
implementation of a TCG-based integrity measurement architecture”,
13th USENIX Security Symposium, 2004.

[26] J. Sheehy, G. Coker, J. Guttman, et al. “Attestation: evidence and trust”,
http://www.mitre.org/work/tech_papers/tech_papers_07/07_0186/07_01
86.pdf, accessed August 16, 2010.

[27] L. Singaravelu, C. Pu, H. Haertig, C. Helmuth, “Reducing TCB
complexity for security-sensitive applications: three case studies”, 1st
ACM SIGOPS/EuroSys European Conference on Computer Systems,
Leuven, Belgium, April 2006.

[28] Trusted Computing Group. http://www.trustedcomputinggroup.org,
accessed August 16, 2010.

[29] Trusted Platform Modules.
http://www.trustedcomputinggroup.org/developers/trusted_platform_mo
dule/specifications, accessed August 16, 2010.

[30] David Wagner. Static analysis and computer security: New techniques
for software assurance. Ph.D. dissertation, Dec. 2000, University of
California at Berkeley.

[31] Yi-Min Wang, Roussi Roussev, Chad Verbowski, Aaron Johnson, Ming-
Wei Wu, Yennun Huang, and Sy-Yen Kuo. “Gatekeeper: Monitoring
auto-start extensibility points (aseps) for spyware management”. In
LISA ’04: Proceedings of the 18th USENIX conference on System
administration, 2004.

[32] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and R. Sailer, “Secure
coprocessor-based intrusion detection”, Tenth ACM SIGOPS European
Workshop, Saint-Emilion, France, September 2002.

[33] Iperf project page. http://sourceforge.net/projects/iperf/

[34] http://users.cis.fiu.edu/~weijp/Jinpeng_Homepage_files/report.xml (It is
a huge file. Please open it with a text editor instead of the browser).

