
 1

Towards a General Defense against Kernel Queue Hooking Attacks

Jinpeng Wei
1
and Calton Pu

2
1
Florida International University, 11200 SW 8th Street, Miami, FL, 33199 USA, weijp@cs.fiu.edu
2
Georgia Institute of Technology, 266 Ferst Dr, Atlanta, GA 30332 USA, calton@cc.gatech.edu

Abstract

Kernel queue hooking (KQH) attacks achieve stealthy malicious function execution by

embedding malicious hooks in dynamic kernel schedulable queues (K-Queues). Because they

keep kernel code and persistent hooks intact, they can evade detection of state-of-the-art kernel

integrity monitors. Moreover, they have been used by advanced malware such as the Rustock

spam bot to achieve malicious goals. In this paper, we present a systematic defense against such

novel attacks. We propose the Precise Lookahead Checking of function Pointers approach that

checks the legitimacy of pending K-Queue callback requests by proactively checking function

pointers that may be invoked by the callback function. To facilitate the derivation of

specifications for any K-Queue, we build a unified static analysis framework and a toolset that

can derive from kernel source code properties of legitimate K-Queue requests and turn them into

source code for the runtime checker. We implement proof-of-concept runtime checkers for four

K-Queues in Linux and perform a comprehensive experimental evaluation of these checkers,

which shows that our defense is effective against KQH attacks.

Keywords: control flow integrity; kernel queue hooking; rootkits; runtime defense; static

analysis

1 Introduction

Rootkits have become one of the most dangerous threats to systems security. Because they

run at the same privilege level as the operating systems kernel, they can modify the OS behavior

 2

in arbitrary ways. For example, they can tamper with existing code and/or data of the OS to

conceal the runtime state of the system in terms of running processes, network connections, and

files. Besides, they can add new functionalities to the OS to carry out malicious activities such as

key logging and sensitive information collection. In recent years, significant work has been

proposed to detect [1,2,3,4,5,6,7,8,9] analyze [10,11,12,13,14], or defend against [15,16,17,18]

rootkits.

However, existing work on rootkits mainly focuses on attacks that change legitimate kernel

code [6,15,16,17] or change legitimate kernel hooks (locations in kernel space that hold function

pointers) [7,18], but falls short of attacks that create malicious hooks in dynamically allocated

kernel objects, as demonstrated by kernel queue hooking (KQH) attacks (Section 2). Briefly

speaking, KQH rootkits leverage various callback mechanisms of the kernel, which enable the

rootkits to direct kernel control flow as effectively as exploiting buffer overflows, and by reusing

legitimate kernel code, these rootkits can successfully hijack control flow of the victim kernel,

yet remain invisible to state-of-the-art defense techniques. Specifically, KQH attacks are unique

in three important ways:

• They do not hijack existing, legitimate kernel hooks; instead, they create their own

malicious kernel hooks.

• They leverage kernel data structures that can have multiple instances at the same time. For

example, although the Linux kernel allows each type of interrupt to have only one handler

registered in the interrupt descriptor table (IDT), it allows multiple IRQ action handlers

for the same interrupt to coexist.

• They leverage dynamic kernel data structures. Again take IRQ action handlers as

example, the kernel uses a queue to keep track of currently registered IRQ action handlers

 3

and this queue can grow or shrink at runtime depending on which entities are interested in

a particular IRQ, including rootkits.

Therefore, it is much harder to detect malicious manipulations of the IRQ action queue than

those of the IDT because it is non-trivial to find the known-good values for the IRQ action

queue; and it is also much harder to defend against KQH attacks on the IRQ action queue. For

example, we cannot simply make the embedded hooks immutable (as proposed by

HookSafe[18]), because we do not know whether a hook is benign or malicious to start with.

For ease of presentation, we call data structures such as the IRQ action queue kernel

schedulable queues (or K-Queues for short), and attacks that insert malicious requests to such

queue-like data structures K-Queue hooking (KQH) attacks. We elaborate on the difference

between KQH attacks and other attacks in Section 3.2.

Moreover, as we will discuss in Section 2.2, advanced and real malware is already misusing

K-Queues to their advantage; examples of such malware include major spam bots such as

Rustock, Pushdo/Cutwail, and Storm/Peacomm.

Therefore, the technical novelty and the realistic threat of KQH attacks call for new defense

approaches. The challenge is that malicious data objects share the same K-Queues with

legitimate data objects, and both kinds can be created and destroyed at runtime. So a reasonable

defense has to check the legitimacy of each object each time the kernel uses it for control transfer

decisions (because such objects may not be persistent). To this end, we design and implement a

hypervisor-supported reference monitor that intercepts and rejects malicious callback requests

while allowing legitimate kernel callback requests to proceed. Secondly, it is very subtle and

tricky to develop a specification for legitimate kernel data objects. Manually doing this for a

code base as large as the Linux kernel is hopeless and error-prone at best. To address this issue,

 4

we build automated tools to derive such specifications more efficiently. Moreover, we employ

code generation techniques to automatically translate the inferred specifications into runtime

check code.

Specifically, we employ static program analysis (e.g., points-to analysis and transitive closure

analysis) of the kernel source code to derive legitimacy specifications. To facilitate the

generation of specifications for the entire class of K-Queues, we build a unified static analysis

framework and a set of tools that can not only derive specifications from kernel source code, but

also generate the corresponding checking code for different K-Queue instances. Furthermore, we

design and implement a proof-of-concept runtime reference monitor that checks pending

requests for four types of K-Queues (IRQ action queue, tasklet queue, soft timer queue, and task

queue) in the Linux kernel and guards the check result against tampering. Finally, we perform a

comprehensive experimental evaluation of our tools as well as a detailed performance overhead

analysis of the reference monitor, which shows that our approach is able to detect all sample

KQH rootkits that we have.

The rest of this paper is organized as follows. Section 2 introduces KQH attacks and the

threats they pose to systems security. Section 3 presents our modeling of KQH attacks and a high

level description of our defense. Section 4 discusses our design of a unified static analysis

framework and tools that can generate specifications of legitimate K-Queue requests and turn

them into checking code. Section 5 presents our implementation of the defense. Section 6

discusses evaluation of our defense, Section 7 talks about related work, and Section 8 concludes

the paper.

 5

2 Kernel Queue Hooking

Kernel Queue Hooking (KQH) is a rootkit technique that leverages extensible kernel data

structures, such as queues, to inject malicious control flows into the victim kernel. The queues

contain instances of dynamic kernel data structures and they can be hooked because they are

organized in linked lists. Finally, running malicious logic is possible because such data structures

contain function pointers.

2.1 Kernel Queue Hooking Attacks

For example, Figure 1 shows the tasklet queue in Linux kernel 2.4.32, which is used by the

kernel to support deferred code execution (e.g., the bottom-half of an interrupt handler routine).

The type definition for each component in this queue is shown in Figure 3. We can see that each

component structure of the tasklet queue contains a function pointer (in the func field),

contextual information (in the data field), and a pointer (in the next field) to the next

component in the queue. This data structure represents a request for the kernel to invoke the

callback function whose address is stored in the func field (e.g., kbd_bh in Figure 1) and pass

along the data field as an input parameter. Tasklets can be requested by any kernel component

through the tasklet_schedule or tasklet_hi_schedule APIs.

To mount a KQH attack via the tasklet queue, a rootkit can initialize a tasklet structure

including the func field and the data field, and call tasklet_schedule or

tasklet_hi_schedule to add this request into the tasklet queue (the rootkit can also add its

request by directly manipulating the tasklet queue, but this makes no difference to our defense).

When the kernel handles the rootkit’s request, the callback function in the func field is invoked

with the data field as an input parameter. Since the func and data fields are supplied by the

rootkit, the rootkit can direct kernel control flow to its desired location.

 6

To some extent, a K-Queue provides the same opportunity for malware as a buffer overflow:

to gain illicit control over the kernel execution flow. The difference is that K-Queue hooking

uses the callback function field of a K-Queue request, while a buffer overflow attack uses the

return address on the stack. A rootkit can directly prepare a malicious function and set its

address in a K-Queue request, or set the address of a legal kernel function in a malicious K-

Queue request, in a way similar to a “return-to-libc” [19] or return oriented programming (ROP)

[20,21] attack.

To illustrate the feasibility of the “return-to-libc” or ROP style K-Queue hooking, we develop

a prototype keylogger that depends only on legitimate kernel code for its normal operation.

Specifically, the kernel function dump_regs (in linux-kernel-2.6.16/drivers/block/umem.c)

takes one input parameter (a pointer to a structure of type cardinfo) and dumps the first 128

bytes of a character array pointed to by the csr_remap field of the cardinfo structure. Our

prototype keylogger requests a soft timer [22] (an instance of K-Queue) with dump_regs as the

callback function and a fabricated pointer as the data field, whose type is struct cardinfo*

and whose csr_remap field contains the address of a keyboard input buffer (that of /dev/tty7).

When the soft timer expires, the kernel invokes dump_regs, and because of the setting of the

contextual data by the rootkit, dump_regs dumps the first 128 bytes of the keyboard input

buffer into the system log file. To achieve periodic keyboard input buffer dumping, multiple soft

timers are requested at once. These soft timer requests are the same except for expiration time,

which causes the kernel to invoke dump_regs periodically. We have implemented such a

keylogger as a loadable kernel module for Linux kernel 2.6.16, and the requests for all the soft

timers are done in the initialization function of the kernel module.

 7

More generally, a rootkit can “schedule” a sequence of legitimate kernel calls to serve its

malicious purpose using a sequence of K-Queue requests. Suppose the rootkit wants to invoke a

sequence of calls to legitimate kernel functions nfff ,,, 21 L , and each function takes one

parameter as input, the rootkit can request n soft timers in which timer i has if as its callback

function and ia as its contextual data, and the timers expire in their numerical order. Then the

kernel would execute the)(,),(),(2211 nn afafaf L sequence for the rootkit as the n timers expire one

after the other. The point here is that a rootkit does not have to inject malicious code into the

kernel to satisfy its needs. Fortunately, our defense is able to address this type of rootkits.

2.2 KQH Rootkits in the Wild

Advanced and real malware is actively misusing K-Queues to their advantage. One use is for

self-protection. For example, the Rustock.C spam bot relies on two Windows kernel Timers [23]

to check whether it is being debugged/traced [24] (e.g., KdDebuggerEnabled is true).

Another use is to monitor the events on the victim system. For example, Pushdo/Cutwail botnet

sets up three callback routines by invoking IoRegisterFsRegistrationChange,

CmRegisterCallback, and PsSetCreateProcessNotifyRoutine, respectively

[25]; these callback routines enable it to monitor file system registrations, monitor, block, or

modify a registry operation, and inject a malicious module into a services.exe process. A

third misuse of K-Queues is to disable security products, which is exemplified by the

Storm/Peacomm spam bot that invokes PsSetLoadImageNotifyRoutine to register a

malicious callback function that disables security products [26]. Some malware even relies on

kernel queues for its normal functioning. For example, the Rustock.C spam bot uses APCs

(Asynchronous Procedure Calls) to send spam messages [27].

 8

The above real-world malware all hook K-Queues in the Windows kernel, which means that

KQH attacks on Windows kernels are realistic. Then one interesting question is whether similar

KQH malware exists for other kernels such as Linux and Mac OS. We have experimentally

confirmed the effectiveness of hooking the soft timer queue of the Linux kernel by rootkits [22].

More theoretically, KQH attacks are quite feasible because of the large number of kernel data

structures that can be considered K-Queues. Figure 5 lists some example K-Queues in Linux and

Windows kernels. Structural details of three kinds of queues in Linux are shown in Figure 2

(IRQ action queue), Figure 3 (tasklet queue), and Figure 4 (task queue).

3 KQH Threat Modeling and Defense Ideas

3.1 Threat Modeling

We adopt the standard queuing model for K-Queues. That is, each K-Queue contains a

request queue and a server. A request is inserted into the queue by an enqueue operation and it is

removed from the queue by a dequeue operation by the server. This model works well for the K-

Queues. For example, all instances of K-Queues provide APIs (the enqueue operations) for

submitting an execution request for some callback function, and they all have a dispatch engine

(the server) that takes the request from the queue (the dequeue operation) and invokes the

callback function.

KQH attacks are a trust issue because existing K-Queue servers simply trust whatever request

found in the request queue. I.e., once a request enters a queue, it is fully trusted by the

corresponding K-Queue server. This is fine if we assume that the requests all come from trusted

kernel components. However, this assumption no longer holds when we take malware into

consideration. For example, a rootkit can insert malicious requests that contain function pointers

and contextual data of the attacker’s choosing.

 9

3.2 Defense Idea

3.2.1 Motivation of the Defense

Compared with traditional kernel hook hijacking [18], in which a rootkit replaces kernel

hooks (existing and legitimate function pointers) with malicious function pointers, KQH is a

stealthier attack scheme. Kernel hook hijacking is invasive because the malware does not own

the already-existing kernel objects (e.g., the IRP function table of a Windows device driver like

tcpip.sys and disk.sys) that it manipulates. This implies two things: (1) the manipulations can be

safely treated as interference or anomaly, and (2) it is feasible to lock up the innocent kernel

hooks to prevent hijacking, as implemented by HookSafe [18]. On the other hand, KQH is non-

invasive because the K-Queue data structure that holds the malicious request is created thus

owned by the malware and the attack does not rely on overwriting any existing kernel hook or

function pointer. Therefore, KQH attacks are beyond the reach of HookSafe. Second, Kernel

hook hijacking makes persistent changes to kernel control flow, but KQH is capable of injecting

transient control flows. Moreover, as demonstrated by the keylogger that we discuss in Section

2, a KQH rootkit does not have to inject malicious code for its normal execution. Therefore, this

kind of rootkits cannot be completely prevented by tools such as SecVisor[17] and NICKLE[16],

which block the execution of injected code in the kernel. CFI [28] can check the integrity of all

function pointers within a program, so theoretically it can be instantiated into a checker against

KQH attacks. However, an implementation of the original CFI design for the Linux kernel is not

available to the best of our knowledge. SBCFI [7] is a control flow integrity checker for the

Linux kernel that takes the spirit of CFI but has a different way of checking: instead of checking

each function pointer right before it is invoked, SBCFI periodically checks all reachable function

pointers (from global variables) in a batch. SBCFI relies on accurate type information to reach

potential function pointers, but K-Queue data structures use opaque fields (e.g., void * data in

 10

Figure 4); so SBCFI may not be able to cover every function pointer that occur in a K-Queue

callback invocation (e.g., in a type 2 attack in Section 3.2.3). Moreover, the periodic nature of

SBCFI checking is vulnerable to a Time-Of-Check-To-Time-Of-Use race condition [29].

However, we respectfully admit that CFI and SBCFI are powerful and general defense

techniques against control flow integrity attacks. Finally, one necessary step for KQH rootkits is

to insert the malicious requests into K-Queues, which seems to require running some malicious

code in the kernel; if that is the case, techniques such as SecVisor[17] and NICKLE[16] would

be able to stop the malware. Unfortunately, an attacker can use /dev/kmem (or /dev/mem) or

a DMA-capable device [30] to directly modify kernel memory, including K-Queues, without

running any code in the kernel. Because of the limitations or unavailability of existing defense

techniques, we build our own detection and prevention technique in this paper.

3.2.2 Overview of the Defense

To counter KQH attacks that leverage K-Queues, we propose to intercept and check the

legitimacy of K-Queue requests before service, so that malicious requests can be denied. There

are two ways that we can do this: intercept when a request enters a K-Queue, or intercept when a

request leaves a K-Queue. It would be very hard to implement the former because malware can

directly manipulate the K-Queue data structures to add new requests (i.e., without using the

provided enqueue APIs). On the other hand, all requests in a K-Queue must go through the same

“exit” because that’s where they can be served by the K-Queue dispatcher. Therefore, checking a

request when it leaves a K-Queue is enough to intercept all malicious requests. Specifically, we

add a guard into a K-Queue server which checks the legitimacy of each pending request before it

leaves the K-Queue (to be served), and the guard makes its decision according to security

specifications.

 11

The security specifications are tasked with differentiating legitimate K-Queue requests from

malicious ones, such that only the former are acted upon by the server. In this paper, the

specifications are about runtime control flow integrity of the kernel. Our security specification

says that a legitimate K-Queue callback function and all functions that it calls transitively should

always conform to a predetermined control flow graph. Since direct modifications of the static

kernel code segment are straightforward to detect (e.g., by hashing), the major threat to the

control flow integrity of a K-Queue callback function is manipulations of function pointers

involved in the K-Queue callback – such function pointers widely exist in the kernel and can be

manipulated to point to anywhere that the malware wants. Therefore, our algorithm must check

the legitimacy of function pointers involved in a K-Queue callback.

Different heuristics have been used in previous work to check the runtime legitimacy of

function pointers. For example, a range checker considers a function pointer “good” if its target

address falls within some range. However, such heuristics are not accurate because they allow

malware to crash the kernel or cause subtle anomalies in the kernel by setting a function pointer

to a legitimate but unexpected kernel function. Therefore, a more accurate specification is

needed. Ideally, such a specification would consider a function pointer “good” only if there

exists a code path in the uncompromised kernel where the target address is assigned to the

function pointer. We can approximate this requirement by performing points-to analysis [31] of

function pointers. In this paper, we apply static analysis technique on the kernel source code.

Specifically, our algorithm is called precise, lookahead checking of function pointers (PLCP).

PLCP is precise because it first collects the complete set of functions that can be assigned to a

function pointer and then uses that knowledge to check the integrity of a function pointer at

runtime. PLCP needs to perform lookahead checks because it is not enough to only check the

 12

immediate function pointer (i.e., the callback function field of a K-Queue request data structure)

- that callback function may invoke other function pointer(s) “down the road”. Therefore, such

function pointers need to be proactively identified and checked in advance.

3.2.3 Defense Algorithm: PLCP

Based on the way that kernel treats K-Queue requests, there can be two types of malicious K-

Queue requests: type 1 supplies a malicious callback function, while type 2 supplies a legitimate

callback function but a malicious data pointer. In order to detect a type 1 malicious request, we

only need to check its callback function against a white list of legitimate callback functions.

However, this check is inadequate for a type 2 malicious request because its immediate callback

function is a legitimate one, but its data pointer can induce the control flow of the callback

function maliciously, similar to a “return-to-libc” style attack [19]. Figure 6 illustrates a type 2

malicious soft timer request (in shaded color). This figure shows that the tx_timeout field of

the data structure (in shaded color) referenced by the data pointer of the malicious soft timer

request is set to a malicious function (e.g., malicious_foo), and because dev_watchdog

(a legitimate callback function) invokes such a function pointer, it transfers control to the

malware eventually. Therefore, in addition to checking the callback function, we also need to

compare the tx_timeout field against a white list of legitimate functions (for example

e1000_tx_timeout) that can be assigned to this field in the legitimate requests.

This case study highlights the critical parts of our PLCP algorithm as shown in Figure 7. It

first checks whether the top-level callback function cb is legitimate by comparing it against the

functions in the points-to set of structure sn and field fn. If there is a match, it further checks the

legitimacy of all function pointers that can be invoked by cb (i.e., in safeToExec(cb, d)). This

kind of checking continues recursively into the legitimate functions identified along the way, and

 13

it terminates when the last legitimate function does not invoke any new function pointers. The

details of PLCP, including points-to sets and necessary recursive checking steps, are derived by

an offline static analysis of the kernel source code, including points-to analysis and transitive

closure analysis, which will be discussed in Section 4.

3.3 Defense Architecture and Assumptions

Our defense directly inserts KQH guards (Section 3.2.2) in the kernel. Specifically, we

statically modify the K-Queue servers of the kernel (at the source code level) so that before

invoking a callback function, a K-Queue server diverts execution to the corresponding KQH

guard; and the K-Queue server invokes the callback function only if the response from the K-

Queue guard is positive. The information given by the K-Queue servers to the KQH guards

includes the pending callback function (cb) and the contextual data (d), and the KQH guards

implement the PLCP algorithm.

Because KQH attacks are at the kernel-level, a defense mechanism purely inside the same

kernel would be vulnerable to tampering by an attacker; our K-Queue guards are no exception.

Consequently, we put the kernel under protection in a guest virtual machine (VM) on top of the

Xen [32] virtual machine manager (VMM), and we extend the shadowing-based memory

management of Xen (Section 5.3) to ensure that the memory pages where our KQH guards reside

are read-only, so that they cannot be maliciously modified by the attacker.

An attacker may also mount a TOCTTOU (Time-Of-Check-To-Time-Of-Use) attack [29] on

our defense. This is because our defense assumes that the checked conditions hold throughout

the execution of the callback function. However, this assumption can be violated if the guest

kernel is multi-threaded; specifically, right after the K-Queue request is checked, but before the

K-Queue callback function finishes, a malicious control flow in the guest kernel can potentially

 14

modify a function pointer already checked, so that the callback function transfers control to

where the malware chooses. This constitutes a TOCTTOU race condition. TOCTTOU attacks

are non-deterministic, since the attack result depends on the interleaving of the attacker’s actions

(e.g., modifying a function pointer) and the victim’s actions (e.g., checking the value of the

function pointer and loading that value into the program counter): in order to succeed, the

attacker’s action must happen between the checking and loading steps of the victim, which is

called the vulnerability window. For our K-Queue defense, the vulnerability window only spans

the execution of a callback function, so it may be too narrow for an attack to succeed. However,

the success probability can be increased significantly on multiprocessors, based on our past

research [33]. Therefore, we address TOCTTOU attacks in our K-Queue defense.

To counter TOCTTOU attacks against our defense, we protect the checked function pointers

from tampering during the execution of the K-Queue callback function. Specifically, during the

K-Queue request checking, each participating structure field is first write-protected and then

checked. When the check fails at any point, the already protected structure fields are unlocked.

If the check succeeds, the unlocking is deferred until the callback function has finished. We

implement the memory protection support in the underlying VMM (Section 5.3).

Our defensive mechanism makes the following assumptions. First, the hardware and the

VMM are part of the TCB (trusted computing base). Second, the legitimate kernel code in the

guest VM’s memory, including the inserted KQH guards, is tamper-proof. This implies that the

symbol-to-runtime-address mapping can be trusted in the guest kernel. In other words, a rootkit

cannot overwrite a legitimate kernel function already in memory with its own malicious version.

However, the rootkit may spoof legitimate functions that have not been loaded in the memory

(e.g, those in loadable kernel modules or LKMs). To prevent this kind of attack, our third

 15

assumption is that the module loader authenticates LKMs before loading them. Fourth, the

source code of the kernel and all kernel extensions (e.g., device drivers) is available for the static

analysis part of our defense. Finally, we assume that the guest VM can be booted into a known-

good state (e.g., through a secure boot [34]) for the VMM to setup protection on the guest kernel

and the KQH guards. After this initial setup, the guest VM is open to external events and may be

placed under attack at any time.

4 A Unified Static Analysis Framework and Toolset

4.1 Overview

We build a unified static analysis framework (Figure 8) and a set of tools that can be used to

derive security specifications for legitimate K-Queue requests. We assume that source code of

the kernel is available for a static analysis, and such code is the only one that can be trusted. We

note that although details of different K-Queues may vary, their specifications can be derived by

a common set of analysis tasks. For example, the top-level legitimate K-Queue callback

functions can be derived by a points-to analysis of the function pointer embedded in the

respective K-Queue request data structures (e.g., Figure 2 – Figure 4); and every legitimate K-

Queue callback function that takes a data parameter needs to go through a transitive closure

analysis (Section 4.5.2). Therefore, we develop basic analysis tools and an analysis engine that

composes these basic tools to carry out the analysis for each K-Queue instance.

Our analysis framework has the following advantages:

• General: the same framework engine can be used by any K-Queue instance, with only

different starting seed analysis tasks (points-to analysis). Other than that, all K-Queue

analysis proceeds in a similar fashion. This ensures that our framework can handle all

types of K-Queue instances.

 16

• Incremental: our framework uses a database to store basic analysis results, which enables

accumulation of static analysis results over time, and more importantly, it facilitates

sharing of basic analysis results among different K-Queue analyzers (Section 4.7).

• Automated: we develop a set of static analysis tools that can process the kernel source

code and generate stubs of the corresponding guard code. Such automation greatly

simplifies the job of a human analyzer.

4.2 Basic Analysis Tasks

One of the basic analysis tasks is points-to analysis [31] of function pointers, since our

defense needs to know the legitimate targets of function pointers. For example, the top-level

legitimate K-Queue callback functions can be recognized in this way. Simply put, they can be

derived by analyzing which functions are assigned to the callback function field of K-Queue

request structures. Table 1 summarizes possible ways that a callback function field can be

assigned for different K-Queues.

• Direct assignment (DA). Here a callback function is directly assigned to the appropriate

field.

• Indirect assignment (IA) through an intermediate expression (e.g., do_floppy in Table

1). This way is similar to the DA case except that an expression that points to a legitimate

callback function is assigned to the callback function field. In Table 1, do_floppy may

point to several possible functions under different conditions.

• Assignment through a function parameter (PA). This is a structured way of assignment in

which a requester can call a wrapper function which in turn initializes a K-Queue data

structure. The actual callback function or a pointer expression is passed in as a parameter

to the wrapper function.

 17

Accordingly, we can decompose the points-to analysis task into three kinds of simpler tasks:

direct assignment analysis, indirect assignment analysis, and parameter assignment analysis.

Another basic analysis task is transitive closure analysis, which identifies constraints on the

data parameters passed on to a legitimate target function. For example, the K-Queue instances all

pass a requester-supplied data parameter to the callback function. If the callback function makes

control transfer decisions based on the data parameter, we must make sure that the attacker

cannot supply a malicious data parameter to induce kernel control flow to the malware’s

choosing (e.g., via a type 2 attack as in Figure 6).

4.3 The Analysis Engine

The heart of the K-Queue static analysis framework is the analysis engine, which repeatedly

consumes individual analysis tasks (Section 4.2) from a work list. This work list is dynamically

changing: on one hand, tasks are removed from it by the analysis engine; on the other hand, new

tasks may be appended to it as a result of performing an analysis task. The analysis process is

bootstrapped by some seed tasks inserted to the work list by a human analyzer, and it finishes

when the work list becomes empty.

During each individual analysis task, the analysis engine runs one or more of the basic tools

on the kernel source file as necessary and generates three kinds of output: (1) source code for the

guard of a pending K-Queue request, (2) static analysis results that are stored to a database for

reuse, and (3) detailed logs for in-depth diagnosis by a human analyzer.

4.4 The Work List

The work list contains pending static analysis tasks. Each element in this list specifies the

type of analysis (direct assignment, parameter assignment, or transitive closure) and the

corresponding input parameters. One example is <DA, tasklet_struct, func, 1>, which instructs

 18

the analysis engine to invoke the direct assignment collector for the func field of kernel data

structure tasklet_struct. Here “1” means that the first parameter of the callback function

depends on the data attribute of the tasklet request. This task can bootstrap an analysis for the

tasklet queue (Section 2), one of the K-Queues.

4.5 Basic Tools

These are the building-blocks of the static analyzer that carry out the basic analysis tasks

discussed in Section 4.2.

4.5.1 Points-to Analyzers

The direct assignment collector takes as input the name of a structure type (e.g.,

irqaction) and the name of a field (e.g., handler) within that structure, and outputs kernel

functions that can be assigned to such a field. It traverses each assignment statement (lval =

rval) of the kernel. If lval ends with a field with the specified name, this field belongs to a

structure with the specified name, and rval is an actual function, the tool collects rval as a

legitimate function. If rval is not an actual function (e.g., it is a function pointer variable or a

formal parameter), the tool invokes a pointer analysis algorithm called OLF (one level flow) [35]

to find the possible targets of rval, and then collect such target functions as the legitimate

functions.

The parameter collector collects target functions that are passed to a wrapper function as an

actual parameter and later assigned to a function pointer (i.e., in the Parameter Assignment case

in Table 1). It takes as input the name of a wrapper function and the index of the parameter of

interest. It traverses the entire kernel searching for each invocation to the specified function, and

collects the actual parameter at the specified index. If the actual parameter is a real function

address, it is directly collected as a legitimate function. Otherwise, the tool first invokes the OLF

 19

algorithm to find the possible targets of the actual parameter, and then collect such target

functions as the legitimate functions.

The indirect assignment collector is covered by the Direct Assignment Collector and the

Parameter Collector through the OLF algorithm.

4.5.2 Transitive Closure Analyzer

This tool is a major component of the toolset. It takes as input the name of a function and a

list of its formal parameters that are tainted, i.e., these parameters can influence the control flow

of the given function in a malicious way. This tool performs a flow-sensitive and intra-

procedural transitive closure analysis, starting from the given function and descending into

functions called by the given function and so on. It is flow-sensitive because it propagates taint

to downstream functions through parameters. It is intra-procedural because only downstream

functions defined within the same source file as the given function are analyzed. In case that a

downstream function is located in a different source file, an external transitive closure analysis

task is scheduled for execution later.

This tool builds a hash table of all functions defined in the given kernel source file, so that it

can quickly navigate to any function to continue the analysis. It also maintains a list of functions

that needs to be analyzed (called an internal work list). Initially, this list contains only the

function given as the input of this tool. As this tool processes the given function, it may

recognize more functions that need to be analyzed; then it adds such functions to the internal

work list. The main body of this tool is a loop over the work list until it becomes empty. For

each function in the list, this tool performs two kinds of tasks: taint propagation and new analysis

task recognition.

 20

• Taint propagation. The tool traverses each assignment statement (lval = rval) in the

function and taints the variable lval if any part of rval is already tainted.

• New analysis task recognition. The tool traverses each function call statement fn(args)

in the function to see if any part of fn or args or both is a tainted variable. If fn is

tainted, a new points-to analysis task is generated for fn after the corresponding structure

name and field name are derived from fn. If args is tainted and fn is an actual function,

a transitive closure analysis task is generated for fn with the list of tainted arguments. If

both fn and args are tainted, the analysis engine will generate new transitive analysis

tasks for each target function of fn.

The work list maintained by the transitive closure analyzer is called an internal work list to

differentiate it from the external work list (Section 4.4) used by the static analysis engine in

Figure 8. New points-to analysis tasks are added to the external work list. New transitive closure

analysis tasks are first added to the internal work list, and if they cannot be handled because the

corresponding function is not defined within the given kernel source file, they are added to the

external work list with the hope that they will be found in some other source file.

4.6 Kernel Merging

In order to speed up transitive closure analysis, we merge the entire kernel (given a

configuration) into a single source file, so that the interprocedural analysis tasks are all turned

into intraprocedural analysis. We test our analysis engine on a series of merged kernel source

files in Section 6.2.

It is worth noting that depending on the configuration, a kernel compilation may include only

a subset of all available source code, at least for the Linux kernel. For example, if a device driver

is configured as a LKM (loadable kernel module), its code will not be included in the fixed part

 21

of the kernel. This is not good for our K-Queue analysis because the kernel merging only

includes source code of the fixed part of the kernel but we aim to cover all kernel source code

including that of the device drivers. Therefore, we make a “total” configuration that has all

device drivers built in the kernel, so that the kernel merging can reach maximum coverage of

available kernel code. This is important for our support for LKMs.

4.7 Result Database

We introduce a database of individual points-to and transitive closure analysis results that is

used to cache static analysis results and facilitate sharing among different K-Queue analyzers.

This database prevents a K-Queue analyzer from performing redundant analysis tasks that have

been done by another K-Queue analyzer, thus improves the overall performance. For example,

sharing through this database decreases the execution time of the soft timer queue analyzer from

284 minutes to 127 minutes on a kernel of 482,369 lines of code.

Our database contains two tables: pointsTo and transClosure. When the analysis

engine (Section 4.3) sees a points-to analysis task, it first uses the structure and field names as a

key to query the pointsTo table. If a row is found, it directly uses the returned points-to set.

Otherwise, it invokes the points-to analysis tools (e.g., the Direct Assignment Collector or the

Parameter Collector) and inserts the results to the pointsTo table. The analysis engine uses

the transClosure table in a similar fashion except that it uses the function name and the list

of tainted arguments as search keys.

4.8 Code Generation for the KQH Guards

The analysis tool generates code stubs for the KQH guards. The generated code includes two

kinds of functions: those for checking the control flow integrity of a function pointer and those

for checking the control flow integrity of a real function. Figure 9 shows an example of the first

 22

kind of function, and Figure 10 shows an example of the second kind. The code in Figure 9 is

generated after the points-to analysis for structure hwif_s and field ide_dma_test_irq is

finished, and the code in Figure 10 is generated when the transitive closure analysis for function

__ide_dma_test_irq finishes.

The main body of the code in Figure 9 performs a series of comparisons to match the runtime

value of a function pointer to a real function in its points-to set. If a match is found, the integrity

of the function pointer is reduced to that of the matching real function. If no such match is

found, the function pointer has no integrity because it points to something unexpected. In other

words, the integrity of a function pointer is the disjunction (logical OR) of the integrity of all its

legitimate targets (real functions).

Similarly, the integrity of a real function is the conjunction (logical AND) of the integrity of

all function pointers that it transfers control to, and if no such function pointers are used, the

function has integrity by default. For example, the code in Figure 10 can check the control flow

integrity of __ide_dma_test_irq because the latter invokes one function pointer, which has

structure name hwif_s and field name INB.

Note from Figure 9 that the function pointer checker uses kernel symbol names (e.g.,

__ide_dma_test_irq) to invoke symbol2addr, which tries to find the runtime address of

a kernel symbol (including a function name). This use of runtime address lookup is necessary

because of loadable kernel modules (LKMs) – if a device driver is configured as a LKM, the

runtime address of its callback function cannot be predicted at static analysis time.

Also note from Figure 9 that before comparison the code fetches the runtime value of the

function pointer from a pointer expression starting from data (e.g., data->tx_timeout as in

 23

Figure 6). The determination of this pointer expression is not fully automatic yet in our current

implementation.

5 Implementation

5.1 The K-Queue Analyzers

We implement the static analyzers for the IRQ action queue, the tasklet queue, the task queue,

and the soft timer queue based on our static analysis framework, using CIL (C Intermediate

Language) [36]. We implement the analysis engine in Shell scripts, which invokes our CIL

modules that implement the basic analysis tools (Section 4.5). CIL provides an implementation

of OLF [35], but it is not field-sensitive, so we improve it to satisfy our needs. All of our CIL

modules are written in Objective Caml
1
. We use MySQL

2
 (version 5.1.34) to store the result

database (Section 4.7), and write a Java program to insert into or query the result database.

5.2 The K-Queue Guards

We implement four prototype guards for the IRQ action queue, the tasklet queue, the task

queue, and the soft timer queue, based on the code stubs generated by the K-Queue analyzers

(Section 4.8). They inspect the runtime status of the guest kernel to determine whether a pending

K-Queue request is legitimate.

Next, we modify the servers of the IRQ action queue, the tasklet queue, the soft timer queue,

and the task queue in the guest kernel, so that a guard is triggered before a pending K-Queue

request is invoked. The modification to each K-Queue server is minimal, e.g., it changes

t->func(t->data) in linux-2.4.32/kernel/softirq.c to

if (tasklet_guard(t->func,t->data) == true)

 t->func(t->data)

1
 http://caml.inria.fr/ocaml/index.en.html

2
 http://www.mysql.com

 24

else printk(“warning…”);

5.3 Fine Grain Memory Protection

To write-protect the K-Queue guards and to defend against TOCTTOU attacks (Section 3.3),

we need byte-level, fine grained memory protection (because a checked function pointer

occupies only a few bytes in memory). However, the current architectures (e.g., Intel) can only

support page-level write-protection; this is known as the protection granularity gap [18]. In order

to overcome this gap, we are aware of two options: one is to build our defense on top of

promising future architectures such as MemTracker [37] that supports fine-grained memory

protection in hardware; the other is to use a software-based solution such as hook indirection in

HookSafe [18]. In this paper, we implement a proof-of-concept memory protection scheme that

does not overcome the protection granularity gap; our goal is mainly to demonstrate the

effectiveness of our approach, and we leave the performance optimization as future work.

Specifically, we run the guest kernel on top of Xen 3.3.0 [32] VMM and extend the

shadowing-based memory management of Xen for full virtualization to support fine grain

memory protection. A new hypercall (prot_range) is added to allow the guest kernel to

request regions in its address space to be write-protected. The size of the protected regions can

be any number of bytes. The VMM sets the protection bit of a page table entry to read-only in

the SPT (shadow page table) if that page contains any portion of a protected region. Then we

modify the page fault handler of Xen so that it denies write attempts to the protected regions on

this kind of page, but allows legitimate writes to other parts of this kind of page to go through.

During the K-Queue request checking in a guest VM, a KQH guard first write-protects each

participating structure field (using a VMCALL instruction that invokes the prot_range

hypercall) and then checks its value. When the check fails at any point, the already protected

 25

structure fields are unlocked using another call to prot_range. If the check succeeds, the

unlocking is deferred until the callback function has finished.

6 Evaluation of the K-Queue Defense

6.1 Effectiveness against KQH Attacks

We test the effectiveness of our K-Queue defense by running synthetic proof-of-concept

rootkits in the guest kernel, including the key logger and the CPU cycle stealer described in [22],

and the key logger described in Section 2. These rootkits leverage the Linux K-Queues in Table

1 and employ type 1 or type 2 attacks (Section 3.2.3). We observe that our K-Queue guards can

immediately detect such rootkits. This shows that our defense is effective again KQH attacks.

Our K-Queue defense takes the following measures to reduce the likelihood of false

negatives, i.e., a malicious K-Queue request can evade our guards. First, we statically insert the

KQH guards into the guest kernel and directly modify the kernel source code so that whenever a

pending K-Queue request is about to be served, the corresponding KQH guard is invoked.

Malware in the guest may try to modify the guest kernel’s code at runtime to disable or bypass

our KQH guards, but this will be defeated because the inserted code is protected from tampering

by the VMM (Section 3.3). We assume that the modified guest kernel image (with the KQH

guards built in) has integrity and the guest Linux goes through a secure boot phase [34] in which

the integrity of the inserted code is verified (along with the rest of the kernel) and protection is

placed on the inserted code before the guest kernel is open to external events including malicious

attacks. Second, all possible function pointers occurring in the control flow of the callback

function are checked no matter along which path they occur. Specifically, the transitive closure

analyzer searches through every possible execution path (starting from the callback function) and

recognizes all function pointers along the way. Some of the function pointers may not be called

 26

in a particular invocation, but the analyzer conservatively reports all such function pointers for

points-to analysis. Third, our memory region protection (Section 5.3) guarantees that the attacker

cannot replace a legitimate function pointer after it is checked but before it is followed. Fourth,

our current implementation of the indirect assignment (IA) is not precise due to the inherent

limitations of points-to analysis [38]. Concretely, the OLF algorithm [35] is conservative which

means that it may return a superset of the legitimate targets of a function pointer. Fortunately, the

IA case is relatively rare in the Linux kernel. For example, out of 55 points-to analysis tasks for

the task queue, only two require indirect assignments (IA) analysis, and we manually confirmed

that the results from OLF are accurate. In the worst case, the “extra” target functions calculated

by OLF are still a restricted set of legitimate kernel functions instead of malicious functions of

the rootkits, and if the rootkit wants to reuse a legitimate kernel function for a malicious purpose,

it has to choose from this restricted set, which significantly reduces the rootkit’s chance of

finding a suitable one.

Our implementation of the K-Queue defense also tries to reduce the likelihood of false

positives, in which it raises alarms at legitimate K-Queue requests. One source of such false

alarms is legitimate functions in device drivers built as LKMs. In order to cover LKMs, our static

analysis part uses a “total” kernel configuration that includes all possible device drivers (Section

4.6), which ensures that the generated KQH guards are aware of the existence of such legitimate

functions even if they are compiled into LKMs and loaded into the memory at runtime. Another

source of possible false positives is our assumption that when a pending K-Queue request is

checked, all function pointers that may be invoked are already initialized and will not change

during the execution of the callback function; if this assumption is invalid, e.g., a relevant

function pointer has not been initialized at the time of check (it will be initialized during the

 27

execution of the callback function), a KQH guard may generate false alarms. During our testing

and performance evaluation, we have not seen any such false positives.

6.2 Performance and Scalability of the K-Queue Static Analyzer

We test the performance of our K-Queue static analyzer on a series of 10 configurations of

Linux kernel 2.4.32 with increasing complexity. The first configuration is a minimal kernel that

can boot the guest virtual machine. It contains 482,369 lines of code, with essential support for

IDE disk, ext3 file system, and TCP/IP networking. Each successive configuration includes more

device drivers. The most complex kernel configuration contains 1,010,196 lines of code.

Each experimental run covers four kinds of K-Queues in the following order: task queue,

tasklet queue, IRQ action queue, and soft timer queue. Initially the analysis result database is

empty. As the analysis proceeds the analysis results are accumulated in the database. Each K-

Queue instance takes advantage of analysis that has finished, including its own analysis tasks and

the K-Queue instance(s) ahead of it. For example, the analysis for the soft timer queue uses

some results of the IRQ action queue, so it takes less time than if it has no existing results to use.

The experimental run for each kernel configuration proceeds as follows. Each K-Queue

analysis starts with a points-to analysis task. When the points-to set is determined, a round of

transitive closure analysis is performed, one for each function in the points-to set. As the result

of the transitive closure analysis, new points-to analysis tasks may be recognized. If this is the

case, another round of points-to analysis is performed, which may lead to one more round of

transitive closure analysis. This iterative process continues until the last round of transitive

closure analysis recognizes no new points-to analysis tasks.

All the experiments run on a 3.0 GHz Intel Pentium 4 with 1 GB of RAM.

 28

The first thing that we measure is the execution time of the K-Queue analyzers. Figure 11

shows the cumulative execution time at four milestones for different kernel configurations. For

example, the curve marked as “IRQ action” represents the total analysis time for the task queue,

the tasklet queue, and the IRQ action queue. The X-axis is the complexity of the kernel

configurations measured in KLOC or “thousand lines of code”, and the Y-axis is the cumulative

execution time in minutes. The ten points on each curve correspond to the measurements for the

ten kernel configurations, the left-most point corresponds to configuration 1, and the right-most

point corresponds to configuration 10.

From Figure 11 we can see that in general the analysis time increases as the complexity of the

kernel increases. However, it seems that the execution time is not a simple function of the kernel

size. In fact, we can see flat segments as well as steep slopes on the curves, suggesting a non-

uniform distribution of the K-Queue requesters in the kernel. For example, the first steep slope

occurs on the IRQ action queue curve from configuration 2 to configuration 3. This is because

configuration 3 requires more analysis tasks. For example, from configuration 2 to configuration

3, the points-to analysis for structure hwif_s and field ide_dma_test_irq returns six more

actual functions. These functions belong to the device drivers for several kinds of IDE controller

chipsets (including the CMD64 series of chipsets and the HPT36X/37X chipset) that are added in

configuration 3. It is these new actual functions that demand more transitive closure analysis

than configuration 2. However, from configuration 3 to configuration 4 the IRQ action queue

curve is pretty flat, because there are few new analysis tasks.

The way that the execution time curves look like is expected, because our choice for new

kernel configurations is agnostic to K-Queue usage.

 29

Figure 12 shows the number of external transitive closure analysis for the four kinds of K-

Queues and different kernel configurations. Since we use merged kernel source files, all such

analysis is due to new results from points-to analysis. Clearly, this number increases as the

kernel size increases. The reasoning is as follows. As the size of the kernel grows, more source

code is analyzed; then the number of requesters for a particular K-Queue is potentially increased.

This leads to a larger points-to set for the top level function pointers, thus more functions that

need transitive closure analysis. The new transitive closure analysis may detect new points-to

analysis tasks, which result in more transitive closure analysis, and so on.

The above reasoning is supported by Figure 13, in which we show the measurement of the

number of points-to analysis during the experiments. We can see that for all four kinds of K-

Queues, the number of points-to analysis tasks indeed increases with the size of the kernel.

Figure 14 shows the cumulative number of internal transitive closure analysis (Section 4.5.2)

during the experiments. The curves have a similar trend as the number of external transitive

closure analysis and points-to analysis, but at a much larger scale (20x). This demonstrates the

benefit of kernel merging (Section 4.6): if it is not used, a large number of such internal

transitive closure analyses would become external transitive closure analyses; then the total

analysis time would increase dramatically. This is because an external transitive closure analysis

is more time-consuming than an internal transitive closure analysis. Each external transitive

closure analysis has a constant overhead of preprocessing and parsing the entire kernel source

code, while internal transitive closure analysis does not incur such overhead. As the kernel

becomes more complex, such overhead becomes more and more significant.

One interesting point in Figure 14 is that up until configuration 6 the soft timer queue

accounts for the most internal transitive closure analysis among the four K-Queues. But starting

 30

from configuration 7, this dominance is lost to the IRQ action queue, and the number of internal

transitive analysis for the soft timer queue even drops from 4,457 in configuration 6 to 2,715 in

configuration 7. This is a correct behavior, because the number of internal transitive closure

analysis for the IRQ action queue increases dramatically from 3,449 in configuration 6 to 9,485

in configuration 7, in such a way that it covers a significant portion of the analysis for the soft

timer queue. As a supporting evidence, the analysis for the IRQ action queue took 1,548 minutes

in configuration 7, which is significantly longer than that for configuration 6 (630 minutes), as

shown in Figure 11.

6.3 Performance Overhead of the K-Queue Guards

To measure the runtime overhead of our K-Queue Guards, we choose five synthetic

workloads and compare their execution time in different environments. These five workloads

are: cat - read and display the content of 8,000 small files (with size ranging from 5K to 7.5K

bytes) in a complicated directory tree; ccrypt - encrypt a text stream of 64M bytes, where ccrypt
3

is an open source encryption and decryption tool; gzip - compress a text file of 64M bytes using

the --best option; cp - recursively copy a Linux kernel source tree; and make - perform a full

build of the Apache HTTP server (version 2.2.2) from source. These benchmarks run on a 2.5

GHz Intel Core 2 Duo with VT-x support, and the guest VM is allocated 256 MB of RAM. The

hypervisor is Xen 3.3.0, and the guest kernel is Linux 2.4.32 with configuration 1 (Section 6.2).

Each experiment is run 10 times and the mean and standard deviation of the measurements are

computed. Table 2 shows the results.

Table 2 contains three kinds of results. The “Original” results are collected on unmodified

Xen and guest kernel and serve as the baseline. The results marked as “K-Queue” are collected

3
 http://sourceforge.net/projects/ccrypt/

 31

on the modified Xen and the modified guest kernel with the four K-Queue guards (Section 5.2),

but with the page-level memory protection (Section 5.3) turned off. Finally, the results marked as

“K-Queue-Mem-Prot” are collected on the full-fledged defense mechanism including the

modified Xen, the modified guest kernel, and the page-level memory protection.

From Table 2, we can see that if we do not write-protect the checked function pointers, our

implementation of the K-Queue Guards incurs performance overhead ranging from almost

negligible for ccrypt to 10% slow down for cp. However, when we turn on the memory

protection to write-protect checked function pointers during the execution of K-Queue callback

functions, the performance overhead increases for each of our workloads. For example, the

overhead of cat increases from 4.2% to 11.3%. The most dramatic increase happens for cp,

which jumps from 10% to 15 times slowdown. This is not very surprising given the fact that our

proof-of-concept implementation leverages the page-level protection support of the hardware to

achieve byte-level memory protection – if a memory page is made read-only because it contains

protected memory regions, normal writes to other places on that page will not go through without

triggering a page fault, and a large number of page faults can slow down the system significantly.

However, from Table 2 we also see that the performance overhead is not always unacceptable

even if we use page-level memory protection. Instead, it depends on the workload (e.g., it is

11.2% for the gzip benchmark).

In order to understand the result better, we carry out an event analysis of the K-Queue runtime

defense. We found that the slowdown factor for each workload (see Table 2) depends on the

complexity of the workload in terms of (1) what kinds of K-Queue callback events it triggers,

and (2) how frequently it triggers such events. Some K-Queue callback functions are very

complicated, so they require a large number of function pointer checks. For example,

 32

ide_intr (linux-2.4.32/drivers/ide/ide-io.c), the IRQ action callback function for the IDE disk,

requires a total of 192 function pointers to be checked; since these 192 function pointers may be

scattered on many memory pages, they can affect a large number of normal writes to those pages

and thus cause significant slowdown. The cp benchmark has the highest performance penalty

because cp demands frequent disk write operations and accordingly frequent callbacks to

ide_intr (42 times per second in our evaluation), and we know that the check of ide_intr

is very complicated.

To further understand the performance overhead, we define and measure two complexity

metrics of the K-Queue guards: layer and fanout. First we give an informal definition of the

layer of checking: each layer is associated with a function pointer. The checker starts in layer 1,

where the associated function pointer is the top-level K-Queue function pointers embedded in the

K-Queue data structures. At layer i the value of the function pointer is first checked against a

white list; if the check is successful then the integrity of the target function itself needs to be

checked, which may require the checking of a new function pointer. In this case the check enters

a new layer i+1. When the checking for a target function completes, the checker returns to the

previous layer (i.e., layer i). We also define the fanout of a function as the number of function

pointers whose integrity needs to be checked for that function.

For our K-Queue guards, the maximum layer during the checking of the IRQ action queue is

seven, which happens when the top-level callback function is ide_intr. And during the

checking of the IRQ action queue, the maximum fanout is 15 (for idedisk_error in linux-

2.4.32/drivers/ide/ide-disk.c).

 33

6.4 Discussions and Future Work

We are aware of several limitations of our current approach and proof-of-concept

implementation. First, we assume that when a pending K-Queue request is checked, all function

pointers that may be invoked are already initialized and will not change during the execution of

the callback function. In other words, our current analysis does not handle indirect pointers or

pointer fields that are written during the execution of the callback function. Second, our approach

requires the source code be available for a static analysis, which means that users of closed

source operating systems cannot employ our static analysis approach themselves. One related

issue is the inclusion of new device drivers in the trusted kernel code base. The device vendor

can perform the K-Queue static analysis and submit the generated guard code to the OS vendor

which then integrates it into the final KQH guards. Third, in terms of the performance of our K-

Queue analyzers, we see that they can become slow when the kernel is big. We have not focused

on performance optimization so far because precision has been the most important for the

correctness of our approach; since the static analysis happens offline, speed is less important.

Fourth, our current implementation of K-Queue guards incurs significant overhead in some

cases, mainly due to our implementation of the memory protection mechanism that employs

page-level locking. One possible solution to reduce the overhead is to apply the hook indirection

idea of HookSafe [18], in which we can relocate memory regions that need protection to a page-

aligned memory space. Finally, whether our implementation has covered all possible KQH

attacks in the Linux kernel is not proved yet, but our approach is general to any KQH attack.

Specifically, our static analysis framework can work for any K-Queue given the correct seed task

is provided (Section 4.1). How to automatically recognize all K-Queues that can be leveraged by

KQH attacks is our ongoing research.

 34

7 Related Work

Rootkits have attracted a lot of attention in the research community. Existing work can be

classified into three areas: detection, defense, and analysis.

Related work in detecting rootkit execution includes integrity-based approaches such as

Gibraltar [1], HookScout [3], Livewire [4], Copilot [6], SBCFI [7], Patagonix [15], and System

Virginity Verifier [8], and cross-view based approaches such as Strider GhostBuster [9] and

VMwatcher [5]. However, such techniques cannot detect KQH attacks. For example, SBCFI [7]

is a checker for persistent kernel control flow attacks. It runs periodically to perform a garbage-

collection style traversal of kernel data structures to verify that all of the function pointers target

trusted addresses in the kernel. SBCFI can potentially catch a type 1 malicious K-Queue request,

but cannot detect type 2 requests because it does not follow the generic data field (e.g., void *

data in Figure 4) included as part of the request. In order to make SBCFI work on KQH

attacks, accurate type information for the data field in each callback request must be added,

which would require a static analysis of all K-Queue callback functions. Moreover, SBCFI’s

periodic checking is vulnerable to a Time-Of-Check-To-Time-Of-Use race condition [29]

KOP [2] is the closest to our KQH guards in terms of recognizing all function pointers that

can be invoked by a K-Queue callback function. However, it cannot prevent a malicious K-

Queue request from running since it is designed as a passive detector. Our KQH guards can deny

the execution of malicious K-Queue requests.

In terms of rootkit prevention, related work includes CFI [28], Program shepherding [39],

SecVisor [17], NICKLE [16], and HookSafe [18]. SecVisor and NICKLE are designed to

preserve kernel code integrity or block the execution of foreign code in the kernel, but KQH

attacks modify kernel data (add entries to queues) and can reuse existing kernel code, so they

 35

cannot completely prevent KQH attacks. HookSafe cannot prevent KQH attacks because KQH

attacks do not modify existing kernel hooks but supply their own kernel hooks, while HookSafe

only protects persistent hooks. A more general approach, CFI [28] uses inlined reference

monitors to preserve control flow integrity of programs, including control transfers through

function pointers. Therefore, theoretically CFI can be instantiated into an alternative

implementation of our K-Queue guards, and CFI can cover more than just the function pointers

occurring in K-Queue callback function executions. For example, previous research finds that the

number of function pointers can be thousands in a running kernel [3, 18], but the number of

function pointers reachable from the four K-Queues that we study is only 487 (Figure 13), given

the basic kernel configuration that we use. There are some difference between CFI and PLCP:

CFI checks the integrity of function pointers individually and is unaware of the execution

context; while PLCP checks function pointers in a batch based on a common context, i.e., the

execution of a K-Queue callback function, which can potentially enable more precise, context-

aware checks. Similarly, SBCFI performs checks without considering execution context.

Program shepherding [39] prevents execution of injected or modified code in a single user-level

application and relies on sandboxing the application, while KQH rootkits run at the kernel-level

so program shepherding cannot be directly applied to KQH rootkits. In our previous work [22],

we proposed a defense against soft timer driven attacks that are a subset of KQH attack. The

limitations of [22] are coverage and scalability – it can only address soft timer based attacks, the

static analysis tool is designed for the soft timer queue only, and the runtime checker is manually

written; this paper presents a more general solution that can scale to any K-Queue instance.

Moreover, this paper presents a new guarding architecture that significantly reduces the guarding

overhead. In [22], we ran the guards in a special security VM and relied on cross-VM

 36

introspection to query the status of the protected kernel running in a different guest VM than the

security VM. In our evaluation with the soft timer queue only, the performance overhead was not

an issue [22], but when we extended the guarding to the four K-Queue instances discussed in this

paper, we observed unacceptable overhead (30x slowdown) in some cases. Therefore, in this

paper we run the K-Queue guards in the same VM as the guest kernel under protection, in order

to eliminate the cross-VM introspection cost. As a result, we reduce the overhead.

Finally, related work on rootkit analysis includes HookFinder [13], HookMap [12], Panorama

[14], K-Tracer [10], and PoKeR [11]. HookFinder [13] proposes a fine-grained impact analysis

to detect malware hooking behaviors, by identifying all the modifications made by the malicious

code to its execution environment and keeping track of the impacts flowing across the whole

system. HookFinder has the drawback that the implanted hooks by the malware may not be

triggered when tested; and it can be evaded by malware applying “return-to-libc” techniques.

Our KQH defense does not suffer from HookFinder’s drawbacks because the K-Queue analyzers

explore every execution path of the callback function and can address “return-to-libc” attacks by

performing transitive closure analysis.

8 Conclusion

We present a solution to kernel queue hooking (KQH) attacks that manipulate K-Queues to

achieve stealthy and continual malicious function execution. Such attacks are actively used by

advanced malware such as the Rustock spam bot, but they remain invisible to state-of-the-art

kernel integrity monitors. We propose the PLCP (Precise Lookahead Checking of function

Pointers) approach that checks the legitimacy of pending K-Queue requests by proactively

checking function pointers that may be invoked by the callback function. To facilitate the

derivation of function pointers and their legitimate target, we build a unified static analysis

 37

framework and toolset that can generate specifications of legitimate K-Queue requests and turn

them into checking code. Based on the automatically generated code, we build a proof-of-

concept runtime reference monitor that intercepts K-Queue requests and checks their legitimacy.

We test our ideas on four K-Queues in Linux and perform a comprehensive experimental

evaluation of the scalability of our static analysis framework and toolset, which shows that

different K-Queue analyzers have significant overlapping that can be exploited for better

efficiency; and runtime evaluation shows that our K-Queue defense can successfully stop

synthetic KQH attacks but it has high overhead that needs to be reduced before it can be widely

deployed.

9 References

[1] Baliga, A., Ganapathy, V., and Iftode, L. “Automatic Inference and Enforcement of Kernel Data Structure Invariants.”

Proceedings of the 2008 Annual Computer Security Applications Conference (ACSAC’08).

[2] Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., and Jiang, X. “Mapping Kernel Objects to Enable Systematic Integrity

Checking.” Proceedings of ACM Conference on Computer and Communications Security (CCS’09).

[3] Yin, H., Poosankam, P., Hanna, S., and Song, D. “HookScout: Proactive binary-centric hook detection.” Proceedings of the

7th Conference on Detection of Intrusions and Malware & Vulnerability Assessment, Bonn, Germany, July 2010.

[4] Garfinkel, T. and Rosenblum, M. “A Virtual Machine Introspection Based Architecture for Intrusion Detection.”

Proceedings of the 10th Annual Network and Distributed System Security Symposium (NDSS ’03).

[5] Jiang, X., Wang, X., and Xu, D. “Stealthy malware detection through VMM-based "Out-Of-the-Box" semantic view

reconstruction.” Proceedings of ACM Conference on Computer and Communications Security (CCS’07).

[6] Petroni, N., Fraser, T., Molina, J., and Arbaugh, W.A. “Copilot—a coprocessor-based kernel runtime integrity monitor.”

Proceedings of USENIX Security Symposium’04, August 2004.

[7] Petroni, N. and Hicks, M. “Automated detection of persistent kernel control-flow attacks.” Proceedings of ACM

Conference on Computer and Communications Security (CCS’07).

[8] Rutkowska, J. “System Virginity Verifier.” Hack In The Box Security Conference, September 2005. Invisible Things

website. http://www.invisiblethings.org/papers/hitb05_virginity_verifier.ppt, accessed March 2011.

[9] Wang, Y.-M., Beck, D., Vho, B., Roussev, R., and Verbowski, C. “Detecting stealth software with Strider GhostBuster.”

Proceedings of the 35th International Conference on Dependable Systems and Networks (DSN ’05), 2005.

 38

[10] Lanzi, A., Sharif, M., and Lee, W. “K-Tracer: A system for extracting kernel malware behavior.” Proceedings of the 16th

Annual Network and Distributed System Security Symposium (NDSS’09).

[11] Riley, R., Jiang, X., and Xu, D. “Multi-aspect profiling of kernel rootkit behavior.” EuroSys ’09: Proceedings of the 4th

European Conference on Computer Systems, 2009.

[12] Wang, Z., Jiang, X., Cui, W., Wang, X. “Countering persistent kernel rootkits through systematic hook discovery.”

Proceedings of the 11th International Symposium On Recent Advances in Intrusion Detection (RAID’08).

[13] Yin, H., Liang, Z., and Song. D. “HookFinder: Identifying and understanding malware hooking behaviors.” Proceedings of

the 15th Annual Network and Distributed System Security Symposium (NDSS'08).

[14] Yin, H., Song, D., Egele, M., Kruegel, C., and Kirda, E. “Panorama: capturing system-wide information flow for malware

detection and analysis.” Proceedings of ACM Conference on Computer and Communications Security (CCS ’07).

[15] Litty, L., Lagar-Cavilla, H. A., and Lie, D. “Hypervisor support for identifying covertly executing binaries.” Proceedings of

the 17th USENIX Security Symposium, 2008.

[16] Riley, R., Jiang, X., and Xu, D. “Guest-transparent prevention of kernel rootkits with VMM-Based memory shadowing.”

Proceedings of the 11th International Symposium On Recent Advances in Intrusion Detection (RAID’08).

[17] Seshadri, A., Luk, M., Qu, N., and Perrig, A. “SecVisor: A tiny hypervisor to provide lifetime kernel code integrity for

commodity OSes.” Proceedings of ACM Symposium on Operating Systems Principles (SOSP), 2007.

[18] Wang, Z., Jiang, X., Cui, W., and Ning, P. “Countering kernel rootkits with lightweight hook protection.” Proceedings of

ACM Conference on Computer and Communications Security (CCS ’09).

[19] Solar Designer. “Bugtraq: Getting around non-executable stack (and fix).” website. http://seclists.org/bugtraq/1997/Aug/63,

accessed March 2011.

[20] Shacham, H. “The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86).”

Proceedings of ACM Conference on Computer and Communications Security (CCS’07).

[21] Hund, R., Holz, T., and Freiling, F. C. “Return-Oriented Rootkits: Bypassing Kernel Code Integrity Protection

Mechanisms.” Proceedings of the 18th USENIX Security Symposium, 2009.

[22] Wei, J., Payne, B. D., Giffin, J., and Pu, C. “Soft-timer driven transient kernel control flow attacks and defense.”

Proceedings of the 24th Annual Computer Security Applications Conference, December, 2008.

[23] Microsoft. “Using Timer Objects.” http://msdn.microsoft.com/en-us/library/ff565561.aspx.

[24] Kwiatek, L. and Litawa, S. “Yet another Rustock analysis...” Virus Bulletin, August 2008.

[25] Decker, A., Sancho, D., Kharouni, L., Goncharov, M., and McArdle, R. “Pushdo/Cutwail: A Study Of The Pushdo/Cutwail

Botnet.” Trend Micro Technical Report, May 2009.

 39

[26] Boldewin, F. “Peacomm.C - Cracking the nutshell.” Anti Rootkit, September 2007. http://www.antirootkit.com/articles/eye-

of-the-storm-worm/Peacomm-C-Cracking-the-nutshell.html.

[27] Prakash, C. “What makes the Rustocks tick!” Proceedings of the 11th Association of anti-Virus Asia Researchers

International Conference (AVAR’08), New Delhi, India. http://www.sunbeltsecurity.com/dl/WhatMakesRustocksTick.pdf

[28] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. “Control-flow integrity.” Proceedings of the 12th ACM Conference on

Computer and Communications Security, Nov. 2005.

[29] Bishop, M. and Dilger, M. “Checking for Race Conditions in File Accesses.” Computing Systems 9 (Spring 1996):131–152.

[30] Becher, M., Dornseif, M., and Klein., C.N. “FireWire: all your memory are belong to us.” Proceedings of CanSecWest,

2005.

[31] Anderson, L. O. “Program analysis and specialization for the C programming language.” PhD thesis, University of

Copenhagen, 1994.

[32] Barham, P., Dragovic, B., Fraser, K., et al. “Xen and the art of virtualization.” Proceedings of ACM Symposium on

Operating Systems Principles (SOSP), Bolton Landing, NY, Oct. 2003.

[33] Wei, J. and Pu, C. “Multiprocessors May Reduce System Dependability under File-based Race Condition Attacks.”

Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07),

Edinburgh, UK, June 25 - 28, 2007.

[34] Arbaugh, W. A., Farber, D. J., and Smith, J. M. “A secure and reliable bootstrap architecture.” Proceedings of IEEE

Symposium on Security and Privacy, Oakland, CA, May 1997.

[35] Das, M. “Unification-based pointer analysis with directional assignments.” Proceedings of the 2000 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), pp. 35-46.

[36] Necula, G. C., McPeak, S., Rahul, S. P. and Weimer, W. “CIL: Intermediate language and tools for analysis and

transformation of C programs.” Proceedings of Conference on Compiler Construction (CC), Grenoble, France, Apr. 2002.

[37] Venkataramani, G., Roemer, B., Solihin, Y. and Prvulovic, M. “MemTracker: Efficient and Programmable Support for

Memory Access Monitoring and Debugging.” Proceedings of the 13th IEEE International Symposium on High-

Performance Computer Architecture (HPCA-13), pages 273-284, February 2007.

[38] Hind, M. “Pointer analysis: haven't we solved this problem yet?” Proceedings of the 2001 ACM SIGPLAN-SIGSOFT

workshop on Program analysis for software tools and engineering, pp. 54-61.

[39] Kiriansky, V., Bruening, D., and Amarasinghe, S. “Secure Execution Via Program Shepherding.” Proceedings of the 11th

USENIX Security Symposeum, August 2002.

 40

 41

Vitae

Jinpeng Wei received a PhD in Computer Science from Georgia Institute of Technology,

Atlanta, GA in 2009. He is currently an assistant professor at the School of Computing and

Information Sciences, Florida International University, Miami, FL. His research interests include

malware detection, information flow security in distributed systems, could computing security,

and file-based race condition vulnerabilities. He is a member of the IEEE and the ACM.

Calton Pu received the PhD degree from the University of Washington in 1986. He is a

professor and the John P. Imlay Jr. chair in software at Georgia Institute of Technology, Atlanta,

GA. He has published more than 60 journal papers and book chapters, 170 refereed workshop

and conference papers in operating systems, transaction processing, systems reliability and

security, and Internet data management. He has served on more than 100 program committees

for more than 50 international conferences and workshops. He is a member of the ACM, a senior

member of the IEEE, and a fellow of the AAAS.

 42

Figures

Figure 1: Illustration of the Tasklet Queue in Linux Kernel 2.4.32

struct irqaction {

 irqreturn_t (*handler)(int, void

*, struct pt_regs *);

 unsigned long flags;

 unsigned long mask;

 const char *name;

 void *dev_id;

 struct irqaction *next;

};

Figure 2: The Definition of

irqaction in Linux

struct tasklet_struct

{

 struct tasklet_struct *next;

 unsigned long state;

 atomic_t count;

 void (*func)(unsigned long);

 unsigned long data;

};

Figure 3: The Definition of

tasklet_struct in Linux

struct tq_struct {

 struct list_head list;

 unsigned long sync;

 void(*routine)(void *);

 void *data;

 };

Figure 4: The Definition of

tq_struct in Linux

state

count

next

func

…

tasklet_vec[0].list

kbd_bh

… …

data

state

count

next

func

data

ace_tasklet

 43

Linux:

IRQ action queue, tasklet queue, soft timer queue, task queue.

Windows:

IO completion routines, APC (Asynchronous Procedure Call) queues, threads saved context,

protocol characteristics structure, driver object callback pointers, object deletion callback

pointers, timers, DPC (Deferred Procedure Call) kernel objects, the IP filter driver hook,

exception handler callback functions, TLS (Thread Local Storage) callback routines, plug and

play notifications, process creation notifications, file system registration notifications, load

image notifications.

Figure 5: Example Kernel Objects that Can Be Hooked

Figure 6: Illustration of a malicious soft timer request with a legitimate callback function

(dev_watchdog in Linux kernel 2.6.16) and a malicious data pointer (shaded area means malicious).

Here dev_watchdog may invoke a function pointer derived from the data field of the request [22]

function

data

next

expires

function

data

next

expires

tx_timeout

…

tvec_bases

… …

dev_watchdog

tx_timeout

el000_tx_timeout malicious_foo

… …

 44

Input: <sn, fn, cb, d>, where cb is a callback function stored in the fn field in a structure of type

sn, and d is the data attribute.

Output: whether it is safe to invoke cb with d as an input parameter.

If not pointsTo(sn,fn,cb) return false;

Otherwise, return safeToExec(cb,d).

Here,),P2Set(),,pointsTo(fnsncbcbfnsn ∈= , and

safeToExec(cb,d) =)),'(safeToExec and)',,pointsTo((
,

dddfs
fs

I , where s and f represent the type

of a function pointer called by cb whose value is influenced by d, and d’ is the actual value of

that function pointer. If no such function pointer is invoked by cb, then safeToExec(cb,d) = true.

The derivation of the expression is through a transitive closure analysis (Section 4.5.2).

P2Set(sn, fn) is the points-to set of the function pointer embedded in structure sn and field fn.

Figure 7: The PLCP (Precise Lookahead Checking of Pointers) Algorithm

Figure 8: K-Queue Static Analysis Framework

 45

Figure 9: Generated Function Pointer Checker Code for Structure hwif_s and Field

ide_dma_test_irq

Figure 10: Generated Checker Code for the Real Function __ide_dma_test_irq

int check_function_pointer_hwif_s_2_ide_dma_test_irq_1 (unsigned int data){

 unsigned int fp;

 /* Fetch the function pointer value into fp */

 /* fp = data-> … */

 if (fp == 0) return 1;

 if (fp == symbol2addr(“__ide_dma_test_irq”))

 return check_function___ide_dma_test_irq_1(data);

 …

 unlock_kqueue_regions();

 return 0; }

int check_function___ide_dma_test_irq_1(unsigned int data){

 return 1

 && check_function_pointer_hwif_s_2_INB_1(data)

 ;

}

 46

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

400 500 600 700 800 900 1,000

KLOC

Soft t i merIRQ act i onTaskl etTask queue

Figure 11: Cumulative Analysis Time

(in minutes)

0

100

200

300

400

500

600

700

800

900

1000

400 500 600 700 800 900 1,000

KLOC

Sof t t i merIRQ act i onTask queueTaskl et

Figure 12: Number of External Tran-

sitive Closure Analysis

0

50

100

150

200

250

400 500 600 700 800 900 1,000

KLOC

Sof t t i merIRQ act i onTask queueTaskl et

Figure 13: Number of Points-to

Analysis

0

5000

10000

15000

20000

25000

400 500 600 700 800 900 1,000

KLOC

Sof t t i merIRQ act i onTaskl etTask queue

Figure 14: Number of Cumulative

Internal Transitive Closure Analysis

 47

Tables

Table 1: Possible Ways that a Callback Function can be Assigned in Different K-Queues

K-Queue Name
Structure

Name
Field Name

Parameter Assignment Indirect

Assignment Function Index (from 0)

Soft timer queue timer_list function

IRQ action queue irqaction handler request_irq 1

Tasklet queue tasklet_struct func tasklet_init 1

Task queue tq_struct routine schedule_bh 0 do_floppy

Table 2: Overhead of the K-Queue Checker

 cat ccrypt gzip cp make

Original 15.03

±0.38

3.10

±0.03

5.79

±0.05

45.61

±4.62

143.29

±3.57

K-Queue 15.66

±1.15

3.13

±0.02

5.97

±0.22

50.19

±5.67

148.31

±3.63

Overhead 4.2% 1.0% 3.1% 10.0% 3.5%

K-Queue-

Mem-Prot

16.73

±0.93

3.58

±0.03

6.44

±0.35

747.80

±21.44

187.74

±19.82

Overhead 11.3% 15.5% 11.2% 1539.6% 31.0%

