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Abstract 

Kernel queue hooking (KQH) attacks achieve stealthy malicious function execution by 

embedding malicious hooks in dynamic kernel schedulable queues (K-Queues). Because they 

keep kernel code and persistent hooks intact, they can evade detection of state-of-the-art kernel 

integrity monitors. Moreover, they have been used by advanced malware such as the Rustock 

spam bot to achieve malicious goals. In this paper, we present a systematic defense against such 

novel attacks. We propose the Precise Lookahead Checking of function Pointers approach that 

checks the legitimacy of pending K-Queue callback requests by proactively checking function 

pointers that may be invoked by the callback function. To facilitate the derivation of 

specifications for any K-Queue, we build a unified static analysis framework and a toolset that 

can derive from kernel source code properties of legitimate K-Queue requests and turn them into 

source code for the runtime checker. We implement proof-of-concept runtime checkers for four 

K-Queues in Linux and perform a comprehensive experimental evaluation of these checkers, 

which shows that our defense is effective against KQH attacks. 

Keywords: control flow integrity; kernel queue hooking; rootkits; runtime defense; static 

analysis 

1  Introduction 

Rootkits have become one of the most dangerous threats to systems security. Because they 

run at the same privilege level as the operating systems kernel, they can modify the OS behavior 
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in arbitrary ways. For example, they can tamper with existing code and/or data of the OS to 

conceal the runtime state of the system in terms of running processes, network connections, and 

files. Besides, they can add new functionalities to the OS to carry out malicious activities such as 

key logging and sensitive information collection. In recent years, significant work has been 

proposed to detect [1,2,3,4,5,6,7,8,9] analyze [10,11,12,13,14], or defend against [15,16,17,18] 

rootkits.  

However, existing work on rootkits mainly focuses on attacks that change legitimate kernel 

code [6,15,16,17] or change legitimate kernel hooks (locations in kernel space that hold function 

pointers) [7,18], but falls short of attacks that create malicious hooks in dynamically allocated 

kernel objects, as demonstrated by kernel queue hooking (KQH) attacks (Section 2). Briefly 

speaking, KQH rootkits leverage various callback mechanisms of the kernel, which enable the 

rootkits to direct kernel control flow as effectively as exploiting buffer overflows, and by reusing 

legitimate kernel code, these rootkits can successfully hijack control flow of the victim kernel, 

yet remain invisible to state-of-the-art defense techniques. Specifically, KQH attacks are unique 

in three important ways: 

• They do not hijack existing, legitimate kernel hooks; instead, they create their own 

malicious kernel hooks. 

• They leverage kernel data structures that can have multiple instances at the same time. For 

example, although the Linux kernel allows each type of interrupt to have only one handler 

registered in the interrupt descriptor table (IDT), it allows multiple IRQ action handlers 

for the same interrupt to coexist. 

• They leverage dynamic kernel data structures. Again take IRQ action handlers as 

example, the kernel uses a queue to keep track of currently registered IRQ action handlers 
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and this queue can grow or shrink at runtime depending on which entities are interested in 

a particular IRQ, including rootkits. 

Therefore, it is much harder to detect malicious manipulations of the IRQ action queue than 

those of the IDT because it is non-trivial to find the known-good values for the IRQ action 

queue; and it is also much harder to defend against KQH attacks on the IRQ action queue. For 

example, we cannot simply make the embedded hooks immutable (as proposed by 

HookSafe[18]), because we do not know whether a hook is benign or malicious to start with. 

For ease of presentation, we call data structures such as the IRQ action queue kernel 

schedulable queues (or K-Queues for short), and attacks that insert malicious requests to such 

queue-like data structures K-Queue hooking (KQH) attacks. We elaborate on the difference 

between KQH attacks and other attacks in Section 3.2. 

Moreover, as we will discuss in Section 2.2, advanced and real malware is already misusing 

K-Queues to their advantage; examples of such malware include major spam bots such as 

Rustock, Pushdo/Cutwail, and Storm/Peacomm. 

Therefore, the technical novelty and the realistic threat of KQH attacks call for new defense 

approaches. The challenge is that malicious data objects share the same K-Queues with 

legitimate data objects, and both kinds can be created and destroyed at runtime. So a reasonable 

defense has to check the legitimacy of each object each time the kernel uses it for control transfer 

decisions (because such objects may not be persistent). To this end, we design and implement a 

hypervisor-supported reference monitor that intercepts and rejects malicious callback requests 

while allowing legitimate kernel callback requests to proceed. Secondly, it is very subtle and 

tricky to develop a specification for legitimate kernel data objects. Manually doing this for a 

code base as large as the Linux kernel is hopeless and error-prone at best. To address this issue, 
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we build automated tools to derive such specifications more efficiently. Moreover, we employ 

code generation techniques to automatically translate the inferred specifications into runtime 

check code. 

Specifically, we employ static program analysis (e.g., points-to analysis and transitive closure 

analysis) of the kernel source code to derive legitimacy specifications. To facilitate the 

generation of specifications for the entire class of K-Queues, we build a unified static analysis 

framework and a set of tools that can not only derive specifications from kernel source code, but 

also generate the corresponding checking code for different K-Queue instances. Furthermore, we 

design and implement a proof-of-concept runtime reference monitor that checks pending 

requests for four types of K-Queues (IRQ action queue, tasklet queue, soft timer queue, and task 

queue) in the Linux kernel and guards the check result against tampering. Finally, we perform a 

comprehensive experimental evaluation of our tools as well as a detailed performance overhead 

analysis of the reference monitor, which shows that our approach is able to detect all sample 

KQH rootkits that we have. 

The rest of this paper is organized as follows. Section 2 introduces KQH attacks and the 

threats they pose to systems security. Section 3 presents our modeling of KQH attacks and a high 

level description of our defense. Section 4 discusses our design of a unified static analysis 

framework and tools that can generate specifications of legitimate K-Queue requests and turn 

them into checking code. Section 5 presents our implementation of the defense. Section 6 

discusses evaluation of our defense, Section 7 talks about related work, and Section 8 concludes 

the paper. 
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2 Kernel Queue Hooking 

Kernel Queue Hooking (KQH) is a rootkit technique that leverages extensible kernel data 

structures, such as queues, to inject malicious control flows into the victim kernel.  The queues 

contain instances of dynamic kernel data structures and they can be hooked because they are 

organized in linked lists. Finally, running malicious logic is possible because such data structures 

contain function pointers. 

2.1 Kernel Queue Hooking Attacks 

For example, Figure 1 shows the tasklet queue in Linux kernel 2.4.32, which is used by the 

kernel to support deferred code execution (e.g., the bottom-half of an interrupt handler routine). 

The type definition for each component in this queue is shown in Figure 3. We can see that each 

component structure of the tasklet queue contains a function pointer (in the func field), 

contextual information (in the data field), and a pointer (in the next field) to the next 

component in the queue. This data structure represents a request for the kernel to invoke the 

callback function whose address is stored in the func field (e.g., kbd_bh in Figure 1) and pass 

along the data field as an input parameter. Tasklets can be requested by any kernel component 

through the tasklet_schedule or tasklet_hi_schedule APIs.  

To mount a KQH attack via the tasklet queue, a rootkit can initialize a tasklet structure 

including the func field and the data field, and call tasklet_schedule or 

tasklet_hi_schedule to add this request into the tasklet queue (the rootkit can also add its 

request by directly manipulating the tasklet queue, but this makes no difference to our defense). 

When the kernel handles the rootkit’s request, the callback function in the func field is invoked 

with the data field as an input parameter. Since the func and data fields are supplied by the 

rootkit, the rootkit can direct kernel control flow to its desired location. 
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To some extent, a K-Queue provides the same opportunity for malware as a buffer overflow: 

to gain illicit control over the kernel execution flow. The difference is that K-Queue hooking 

uses the callback function field of a K-Queue request, while a buffer overflow attack uses the 

return address on the stack.  A rootkit can directly prepare a malicious function and set its 

address in a K-Queue request, or set the address of a legal kernel function in a malicious K-

Queue request, in a way similar to a “return-to-libc” [19] or return oriented programming (ROP) 

[20,21] attack. 

To illustrate the feasibility of the “return-to-libc” or ROP style K-Queue hooking, we develop 

a prototype keylogger that depends only on legitimate kernel code for its normal operation. 

Specifically, the kernel function dump_regs (in linux-kernel-2.6.16/drivers/block/umem.c) 

takes one input parameter (a pointer to a structure of type cardinfo) and dumps the first 128 

bytes of a character array pointed to by the csr_remap field of the cardinfo structure. Our 

prototype keylogger requests a soft timer [22] (an instance of K-Queue) with dump_regs as the 

callback function and a fabricated pointer as the data field, whose type is struct cardinfo* 

and whose csr_remap field contains the address of a keyboard input buffer (that of /dev/tty7). 

When the soft timer expires, the kernel invokes dump_regs, and because of the setting of the 

contextual data by the rootkit, dump_regs dumps the first 128 bytes of the keyboard input 

buffer into the system log file. To achieve periodic keyboard input buffer dumping, multiple soft 

timers are requested at once. These soft timer requests are the same except for expiration time, 

which causes the kernel to invoke dump_regs periodically. We have implemented such a 

keylogger as a loadable kernel module for Linux kernel 2.6.16, and the requests for all the soft 

timers are done in the initialization function of the kernel module. 
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More generally, a rootkit can “schedule” a sequence of legitimate kernel calls to serve its 

malicious purpose using a sequence of K-Queue requests. Suppose the rootkit wants to invoke a 

sequence of calls to legitimate kernel functions nfff ,,, 21 L , and each function takes one 

parameter as input, the rootkit can request n soft timers in which timer i has if  as its callback 

function and ia as its contextual data, and the timers expire in their numerical order. Then the 

kernel would execute the )(,),(),( 2211 nn afafaf L  sequence for the rootkit as the n timers expire one 

after the other.  The point here is that a rootkit does not have to inject malicious code into the 

kernel to satisfy its needs.  Fortunately, our defense is able to address this type of rootkits. 

2.2 KQH Rootkits in the Wild 

Advanced and real malware is actively misusing K-Queues to their advantage. One use is for 

self-protection. For example, the Rustock.C spam bot relies on two Windows kernel Timers [23] 

to check whether it is being debugged/traced [24] (e.g., KdDebuggerEnabled is true). 

Another use is to monitor the events on the victim system. For example, Pushdo/Cutwail botnet 

sets up three callback routines by invoking IoRegisterFsRegistrationChange, 

CmRegisterCallback, and PsSetCreateProcessNotifyRoutine, respectively 

[25]; these callback routines enable it to monitor file system registrations, monitor, block, or 

modify a registry operation, and inject a malicious module into a services.exe process. A 

third misuse of K-Queues is to disable security products, which is exemplified by the 

Storm/Peacomm spam bot that invokes PsSetLoadImageNotifyRoutine to register a 

malicious callback function that disables security products [26]. Some malware even relies on 

kernel queues for its normal functioning. For example, the Rustock.C spam bot uses APCs 

(Asynchronous Procedure Calls) to send spam messages [27]. 
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The above real-world malware all hook K-Queues in the Windows kernel, which means that 

KQH attacks on Windows kernels are realistic.  Then one interesting question is whether similar 

KQH malware exists for other kernels such as Linux and Mac OS. We have experimentally 

confirmed the effectiveness of hooking the soft timer queue of the Linux kernel by rootkits [22]. 

More theoretically, KQH attacks are quite feasible because of the large number of kernel data 

structures that can be considered K-Queues. Figure 5 lists some example K-Queues in Linux and 

Windows kernels. Structural details of three kinds of queues in Linux are shown in Figure 2 

(IRQ action queue), Figure 3 (tasklet queue), and Figure 4 (task queue). 

3 KQH Threat Modeling and Defense Ideas 

3.1 Threat Modeling 

We adopt the standard queuing model for K-Queues. That is, each K-Queue contains a 

request queue and a server. A request is inserted into the queue by an enqueue operation and it is 

removed from the queue by a dequeue operation by the server. This model works well for the K-

Queues. For example, all instances of K-Queues provide APIs (the enqueue operations) for 

submitting an execution request for some callback function, and they all have a dispatch engine 

(the server) that takes the request from the queue (the dequeue operation) and invokes the 

callback function. 

KQH attacks are a trust issue because existing K-Queue servers simply trust whatever request 

found in the request queue. I.e., once a request enters a queue, it is fully trusted by the 

corresponding K-Queue server. This is fine if we assume that the requests all come from trusted 

kernel components. However, this assumption no longer holds when we take malware into 

consideration.  For example, a rootkit can insert malicious requests that contain function pointers 

and contextual data of the attacker’s choosing. 



 9

3.2 Defense Idea 

3.2.1 Motivation of the Defense 

Compared with traditional kernel hook hijacking [18], in which a rootkit replaces kernel 

hooks (existing and legitimate function pointers) with malicious function pointers, KQH is a 

stealthier attack scheme. Kernel hook hijacking is invasive because the malware does not own 

the already-existing kernel objects (e.g., the IRP function table of a Windows device driver like 

tcpip.sys and disk.sys) that it manipulates. This implies two things: (1) the manipulations can be 

safely treated as interference or anomaly, and (2) it is feasible to lock up the innocent kernel 

hooks to prevent hijacking, as implemented by HookSafe [18]. On the other hand, KQH is non-

invasive because the K-Queue data structure that holds the malicious request is created thus 

owned by the malware and the attack does not rely on overwriting any existing kernel hook or 

function pointer. Therefore, KQH attacks are beyond the reach of HookSafe. Second, Kernel 

hook hijacking makes persistent changes to kernel control flow, but KQH is capable of injecting 

transient control flows. Moreover, as demonstrated by the keylogger that we discuss in Section 

2, a KQH rootkit does not have to inject malicious code for its normal execution.  Therefore, this 

kind of rootkits cannot be completely prevented by tools such as SecVisor[17] and NICKLE[16], 

which block the execution of injected code in the kernel. CFI [28] can check the integrity of all 

function pointers within a program, so theoretically it can be instantiated into a checker against 

KQH attacks.  However, an implementation of the original CFI design for the Linux kernel is not 

available to the best of our knowledge. SBCFI [7] is a control flow integrity checker for the 

Linux kernel that takes the spirit of CFI but has a different way of checking: instead of checking 

each function pointer right before it is invoked, SBCFI periodically checks all reachable function 

pointers (from global variables) in a batch. SBCFI relies on accurate type information to reach 

potential function pointers, but K-Queue data structures use opaque fields (e.g., void * data in 
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Figure 4); so SBCFI may not be able to cover every function pointer that occur in a K-Queue 

callback invocation (e.g., in a type 2 attack in Section 3.2.3). Moreover, the periodic nature of 

SBCFI checking is vulnerable to a Time-Of-Check-To-Time-Of-Use race condition [29]. 

However, we respectfully admit that CFI and SBCFI are powerful and general defense 

techniques against control flow integrity attacks.  Finally, one necessary step for KQH rootkits is 

to insert the malicious requests into K-Queues, which seems to require running some malicious 

code in the kernel; if that is the case, techniques such as SecVisor[17] and NICKLE[16] would 

be able to stop the malware. Unfortunately, an attacker can use /dev/kmem (or /dev/mem) or 

a DMA-capable device [30] to directly modify kernel memory, including K-Queues, without 

running any code in the kernel. Because of the limitations or unavailability of existing defense 

techniques, we build our own detection and prevention technique in this paper. 

3.2.2 Overview of the Defense 

To counter KQH attacks that leverage K-Queues, we propose to intercept and check the 

legitimacy of K-Queue requests before service, so that malicious requests can be denied. There 

are two ways that we can do this: intercept when a request enters a K-Queue, or intercept when a 

request leaves a K-Queue. It would be very hard to implement the former because malware can 

directly manipulate the K-Queue data structures to add new requests (i.e., without using the 

provided enqueue APIs). On the other hand, all requests in a K-Queue must go through the same 

“exit” because that’s where they can be served by the K-Queue dispatcher. Therefore, checking a 

request when it leaves a K-Queue is enough to intercept all malicious requests. Specifically, we 

add a guard into a K-Queue server which checks the legitimacy of each pending request before it 

leaves the K-Queue (to be served), and the guard makes its decision according to security 

specifications. 
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The security specifications are tasked with differentiating legitimate K-Queue requests from 

malicious ones, such that only the former are acted upon by the server. In this paper, the 

specifications are about runtime control flow integrity of the kernel. Our security specification 

says that a legitimate K-Queue callback function and all functions that it calls transitively should 

always conform to a predetermined control flow graph. Since direct modifications of the static 

kernel code segment are straightforward to detect (e.g., by hashing), the major threat to the 

control flow integrity of a K-Queue callback function is manipulations of function pointers 

involved in the K-Queue callback – such function pointers widely exist in the kernel and can be 

manipulated to point to anywhere that the malware wants. Therefore, our algorithm must check 

the legitimacy of function pointers involved in a K-Queue callback. 

Different heuristics have been used in previous work to check the runtime legitimacy of 

function pointers. For example, a range checker considers a function pointer “good” if its target 

address falls within some range. However, such heuristics are not accurate because they allow 

malware to crash the kernel or cause subtle anomalies in the kernel by setting a function pointer 

to a legitimate but unexpected kernel function. Therefore, a more accurate specification is 

needed. Ideally, such a specification would consider a function pointer “good” only if there 

exists a code path in the uncompromised kernel where the target address is assigned to the 

function pointer. We can approximate this requirement by performing points-to analysis [31] of 

function pointers. In this paper, we apply static analysis technique on the kernel source code. 

Specifically, our algorithm is called precise, lookahead checking of function pointers (PLCP). 

PLCP is precise because it first collects the complete set of functions that can be assigned to a 

function pointer and then uses that knowledge to check the integrity of a function pointer at 

runtime. PLCP needs to perform lookahead checks because it is not enough to only check the 
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immediate function pointer (i.e., the callback function field of a K-Queue request data structure) 

- that callback function may invoke other function pointer(s) “down the road”. Therefore, such 

function pointers need to be proactively identified and checked in advance. 

3.2.3 Defense Algorithm: PLCP 

Based on the way that kernel treats K-Queue requests, there can be two types of malicious K-

Queue requests: type 1 supplies a malicious callback function, while type 2 supplies a legitimate 

callback function but a malicious data pointer. In order to detect a type 1 malicious request, we 

only need to check its callback function against a white list of legitimate callback functions. 

However, this check is inadequate for a type 2 malicious request because its immediate callback 

function is a legitimate one, but its data pointer can induce the control flow of the callback 

function maliciously, similar to a “return-to-libc” style attack [19]. Figure 6 illustrates a type 2 

malicious soft timer request (in shaded color). This figure shows that the tx_timeout field of 

the data structure (in shaded color) referenced by the data pointer of the malicious soft timer 

request is set to a malicious function (e.g., malicious_foo), and because dev_watchdog 

(a legitimate callback function) invokes such a function pointer, it transfers control to the 

malware eventually. Therefore, in addition to checking the callback function, we also need to 

compare the tx_timeout field against a white list of legitimate functions (for example 

e1000_tx_timeout) that can be assigned to this field in the legitimate requests. 

This case study highlights the critical parts of our PLCP algorithm as shown in Figure 7. It 

first checks whether the top-level callback function cb is legitimate by comparing it against the 

functions in the points-to set of structure sn and field fn. If there is a match, it further checks the 

legitimacy of all function pointers that can be invoked by cb (i.e., in safeToExec(cb, d)). This 

kind of checking continues recursively into the legitimate functions identified along the way, and 
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it terminates when the last legitimate function does not invoke any new function pointers. The 

details of PLCP, including points-to sets and necessary recursive checking steps, are derived by 

an offline static analysis of the kernel source code, including points-to analysis and transitive 

closure analysis, which will be discussed in Section 4. 

3.3 Defense Architecture and Assumptions 

Our defense directly inserts KQH guards (Section 3.2.2) in the kernel. Specifically, we 

statically modify the K-Queue servers of the kernel (at the source code level) so that before 

invoking a callback function, a K-Queue server diverts execution to the corresponding KQH 

guard; and the K-Queue server invokes the callback function only if the response from the K-

Queue guard is positive. The information given by the K-Queue servers to the KQH guards 

includes the pending callback function (cb) and the contextual data (d), and the KQH guards 

implement the PLCP algorithm. 

Because KQH attacks are at the kernel-level, a defense mechanism purely inside the same 

kernel would be vulnerable to tampering by an attacker; our K-Queue guards are no exception.  

Consequently, we put the kernel under protection in a guest virtual machine (VM) on top of the 

Xen [32] virtual machine manager (VMM), and we extend the shadowing-based memory 

management of Xen (Section 5.3) to ensure that the memory pages where our KQH guards reside 

are read-only, so that they cannot be maliciously modified by the attacker.  

An attacker may also mount a TOCTTOU (Time-Of-Check-To-Time-Of-Use) attack [29] on 

our defense. This is because our defense assumes that the checked conditions hold throughout 

the execution of the callback function. However, this assumption can be violated if the guest 

kernel is multi-threaded; specifically, right after the K-Queue request is checked, but before the 

K-Queue callback function finishes, a malicious control flow in the guest kernel can potentially 
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modify a function pointer already checked, so that the callback function transfers control to 

where the malware chooses. This constitutes a TOCTTOU race condition. TOCTTOU attacks 

are non-deterministic, since the attack result depends on the interleaving of the attacker’s actions 

(e.g., modifying a function pointer) and the victim’s actions (e.g., checking the value of the 

function pointer and loading that value into the program counter): in order to succeed, the 

attacker’s action must happen between the checking and loading steps of the victim, which is 

called the vulnerability window. For our K-Queue defense, the vulnerability window only spans 

the execution of a callback function, so it may be too narrow for an attack to succeed. However, 

the success probability can be increased significantly on multiprocessors, based on our past 

research [33]. Therefore, we address TOCTTOU attacks in our K-Queue defense. 

To counter TOCTTOU attacks against our defense, we protect the checked function pointers 

from tampering during the execution of the K-Queue callback function. Specifically, during the 

K-Queue request checking, each participating structure field is first write-protected and then 

checked. When the check fails at any point, the already protected structure fields are unlocked.  

If the check succeeds, the unlocking is deferred until the callback function has finished. We 

implement the memory protection support in the underlying VMM (Section 5.3). 

Our defensive mechanism makes the following assumptions. First, the hardware and the 

VMM are part of the TCB (trusted computing base). Second, the legitimate kernel code in the 

guest VM’s memory, including the inserted KQH guards, is tamper-proof. This implies that the 

symbol-to-runtime-address mapping can be trusted in the guest kernel. In other words, a rootkit 

cannot overwrite a legitimate kernel function already in memory with its own malicious version. 

However, the rootkit may spoof legitimate functions that have not been loaded in the memory 

(e.g, those in loadable kernel modules or LKMs). To prevent this kind of attack, our third 
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assumption is that the module loader authenticates LKMs before loading them. Fourth, the 

source code of the kernel and all kernel extensions (e.g., device drivers) is available for the static 

analysis part of our defense. Finally, we assume that the guest VM can be booted into a known-

good state (e.g., through a secure boot [34]) for the VMM to setup protection on the guest kernel 

and the KQH guards. After this initial setup, the guest VM is open to external events and may be 

placed under attack at any time. 

4 A Unified Static Analysis Framework and Toolset 

4.1 Overview 

We build a unified static analysis framework (Figure 8) and a set of tools that can be used to 

derive security specifications for legitimate K-Queue requests. We assume that source code of 

the kernel is available for a static analysis, and such code is the only one that can be trusted. We 

note that although details of different K-Queues may vary, their specifications can be derived by 

a common set of analysis tasks. For example, the top-level legitimate K-Queue callback 

functions can be derived by a points-to analysis of the function pointer embedded in the 

respective K-Queue request data structures (e.g., Figure 2 – Figure 4); and every legitimate K-

Queue callback function that takes a data parameter needs to go through a transitive closure 

analysis (Section 4.5.2). Therefore, we develop basic analysis tools and an analysis engine that 

composes these basic tools to carry out the analysis for each K-Queue instance. 

Our analysis framework has the following advantages: 

• General: the same framework engine can be used by any K-Queue instance, with only 

different starting seed analysis tasks (points-to analysis). Other than that, all K-Queue 

analysis proceeds in a similar fashion.  This ensures that our framework can handle all 

types of K-Queue instances. 
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• Incremental: our framework uses a database to store basic analysis results, which enables 

accumulation of static analysis results over time, and more importantly, it facilitates 

sharing of basic analysis results among different K-Queue analyzers (Section 4.7). 

• Automated: we develop a set of static analysis tools that can process the kernel source 

code and generate stubs of the corresponding guard code.  Such automation greatly 

simplifies the job of a human analyzer. 

4.2 Basic Analysis Tasks 

One of the basic analysis tasks is points-to analysis [31] of function pointers, since our 

defense needs to know the legitimate targets of function pointers. For example, the top-level 

legitimate K-Queue callback functions can be recognized in this way. Simply put, they can be 

derived by analyzing which functions are assigned to the callback function field of K-Queue 

request structures.  Table 1 summarizes possible ways that a callback function field can be 

assigned for different K-Queues. 

• Direct assignment (DA).  Here a callback function is directly assigned to the appropriate 

field. 

• Indirect assignment (IA) through an intermediate expression (e.g., do_floppy in Table 

1). This way is similar to the DA case except that an expression that points to a legitimate 

callback function is assigned to the callback function field.  In Table 1, do_floppy may 

point to several possible functions under different conditions. 

• Assignment through a function parameter (PA).  This is a structured way of assignment in 

which a requester can call a wrapper function which in turn initializes a K-Queue data 

structure. The actual callback function or a pointer expression is passed in as a parameter 

to the wrapper function. 
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Accordingly, we can decompose the points-to analysis task into three kinds of simpler tasks: 

direct assignment analysis, indirect assignment analysis, and parameter assignment analysis. 

Another basic analysis task is transitive closure analysis, which identifies constraints on the 

data parameters passed on to a legitimate target function. For example, the K-Queue instances all 

pass a requester-supplied data parameter to the callback function.  If the callback function makes 

control transfer decisions based on the data parameter, we must make sure that the attacker 

cannot supply a malicious data parameter to induce kernel control flow to the malware’s 

choosing (e.g., via a type 2 attack as in Figure 6). 

4.3 The Analysis Engine 

The heart of the K-Queue static analysis framework is the analysis engine, which repeatedly 

consumes individual analysis tasks (Section 4.2) from a work list. This work list is dynamically 

changing: on one hand, tasks are removed from it by the analysis engine; on the other hand, new 

tasks may be appended to it as a result of performing an analysis task.  The analysis process is 

bootstrapped by some seed tasks inserted to the work list by a human analyzer, and it finishes 

when the work list becomes empty. 

During each individual analysis task, the analysis engine runs one or more of the basic tools 

on the kernel source file as necessary and generates three kinds of output: (1) source code for the 

guard of a pending K-Queue request, (2) static analysis results that are stored to a database for 

reuse, and (3) detailed logs for in-depth diagnosis by a human analyzer. 

4.4 The Work List 

The work list contains pending static analysis tasks.  Each element in this list specifies the 

type of analysis (direct assignment, parameter assignment, or transitive closure) and the 

corresponding input parameters.  One example is <DA, tasklet_struct, func, 1>, which instructs 
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the analysis engine to invoke the direct assignment collector for the func field of kernel data 

structure tasklet_struct. Here “1” means that the first parameter of the callback function 

depends on the data attribute of the tasklet request. This task can bootstrap an analysis for the 

tasklet queue (Section 2), one of the K-Queues. 

4.5 Basic Tools 

These are the building-blocks of the static analyzer that carry out the basic analysis tasks 

discussed in Section 4.2. 

4.5.1 Points-to Analyzers 

The direct assignment collector takes as input the name of a structure type (e.g., 

irqaction) and the name of a field (e.g., handler) within that structure, and outputs kernel 

functions that can be assigned to such a field. It traverses each assignment statement (lval = 

rval) of the kernel. If lval ends with a field with the specified name, this field belongs to a 

structure with the specified name, and rval is an actual function, the tool collects rval as a 

legitimate function. If rval is not an actual function (e.g., it is a function pointer variable or a 

formal parameter), the tool invokes a pointer analysis algorithm called OLF (one level flow) [35] 

to find the possible targets of rval, and then collect such target functions as the legitimate 

functions. 

The parameter collector collects target functions that are passed to a wrapper function as an 

actual parameter and later assigned to a function pointer (i.e., in the Parameter Assignment case 

in Table 1).  It takes as input the name of a wrapper function and the index of the parameter of 

interest.  It traverses the entire kernel searching for each invocation to the specified function, and 

collects the actual parameter at the specified index. If the actual parameter is a real function 

address, it is directly collected as a legitimate function. Otherwise, the tool first invokes the OLF 
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algorithm to find the possible targets of the actual parameter, and then collect such target 

functions as the legitimate functions. 

The indirect assignment collector is covered by the Direct Assignment Collector and the 

Parameter Collector through the OLF algorithm. 

4.5.2 Transitive Closure Analyzer 

This tool is a major component of the toolset.  It takes as input the name of a function and a 

list of its formal parameters that are tainted, i.e., these parameters can influence the control flow 

of the given function in a malicious way. This tool performs a flow-sensitive and intra-

procedural transitive closure analysis, starting from the given function and descending into 

functions called by the given function and so on.  It is flow-sensitive because it propagates taint 

to downstream functions through parameters.  It is intra-procedural because only downstream 

functions defined within the same source file as the given function are analyzed.  In case that a 

downstream function is located in a different source file, an external transitive closure analysis 

task is scheduled for execution later. 

This tool builds a hash table of all functions defined in the given kernel source file, so that it 

can quickly navigate to any function to continue the analysis. It also maintains a list of functions 

that needs to be analyzed (called an internal work list).  Initially, this list contains only the 

function given as the input of this tool.  As this tool processes the given function, it may 

recognize more functions that need to be analyzed; then it adds such functions to the internal 

work list.  The main body of this tool is a loop over the work list until it becomes empty.  For 

each function in the list, this tool performs two kinds of tasks: taint propagation and new analysis 

task recognition. 
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• Taint propagation. The tool traverses each assignment statement (lval = rval) in the 

function and taints the variable lval if any part of rval is already tainted. 

• New analysis task recognition. The tool traverses each function call statement fn(args) 

in the function to see if any part of fn or args or both is a tainted variable.  If fn is 

tainted, a new points-to analysis task is generated for fn after the corresponding structure 

name and field name are derived from fn. If args is tainted and fn is an actual function, 

a transitive closure analysis task is generated for fn with the list of tainted arguments. If 

both fn and args are tainted, the analysis engine will generate new transitive analysis 

tasks for each target function of fn. 

The work list maintained by the transitive closure analyzer is called an internal work list to 

differentiate it from the external work list (Section 4.4) used by the static analysis engine in 

Figure 8. New points-to analysis tasks are added to the external work list.  New transitive closure 

analysis tasks are first added to the internal work list, and if they cannot be handled because the 

corresponding function is not defined within the given kernel source file, they are added to the 

external work list with the hope that they will be found in some other source file. 

4.6 Kernel Merging 

In order to speed up transitive closure analysis, we merge the entire kernel (given a 

configuration) into a single source file, so that the interprocedural analysis tasks are all turned 

into intraprocedural analysis.  We test our analysis engine on a series of merged kernel source 

files in Section 6.2. 

It is worth noting that depending on the configuration, a kernel compilation may include only 

a subset of all available source code, at least for the Linux kernel. For example, if a device driver 

is configured as a LKM (loadable kernel module), its code will not be included in the fixed part 
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of the kernel. This is not good for our K-Queue analysis because the kernel merging only 

includes source code of the fixed part of the kernel but we aim to cover all kernel source code 

including that of the device drivers. Therefore, we make a “total” configuration that has all 

device drivers built in the kernel, so that the kernel merging can reach maximum coverage of 

available kernel code. This is important for our support for LKMs. 

4.7 Result Database 

We introduce a database of individual points-to and transitive closure analysis results that is 

used to cache static analysis results and facilitate sharing among different K-Queue analyzers. 

This database prevents a K-Queue analyzer from performing redundant analysis tasks that have 

been done by another K-Queue analyzer, thus improves the overall performance. For example, 

sharing through this database decreases the execution time of the soft timer queue analyzer from 

284 minutes to 127 minutes on a kernel of 482,369 lines of code. 

Our database contains two tables: pointsTo and transClosure. When the analysis 

engine (Section 4.3) sees a points-to analysis task, it first uses the structure and field names as a 

key to query the pointsTo table.  If a row is found, it directly uses the returned points-to set.  

Otherwise, it invokes the points-to analysis tools (e.g., the Direct Assignment Collector or the 

Parameter Collector) and inserts the results to the pointsTo table.  The analysis engine uses 

the transClosure table in a similar fashion except that it uses the function name and the list 

of tainted arguments as search keys. 

4.8 Code Generation for the KQH Guards 

The analysis tool generates code stubs for the KQH guards.  The generated code includes two 

kinds of functions: those for checking the control flow integrity of a function pointer and those 

for checking the control flow integrity of a real function. Figure 9 shows an example of the first 
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kind of function, and Figure 10 shows an example of the second kind. The code in Figure 9 is 

generated after the points-to analysis for structure hwif_s and field ide_dma_test_irq is 

finished, and the code in Figure 10 is generated when the transitive closure analysis for function 

__ide_dma_test_irq finishes. 

The main body of the code in Figure 9 performs a series of comparisons to match the runtime 

value of a function pointer to a real function in its points-to set.  If a match is found, the integrity 

of the function pointer is reduced to that of the matching real function.  If no such match is 

found, the function pointer has no integrity because it points to something unexpected.  In other 

words, the integrity of a function pointer is the disjunction (logical OR) of the integrity of all its 

legitimate targets (real functions). 

Similarly, the integrity of a real function is the conjunction (logical AND) of the integrity of 

all function pointers that it transfers control to, and if no such function pointers are used, the 

function has integrity by default.  For example, the code in Figure 10 can check the control flow 

integrity of __ide_dma_test_irq because the latter invokes one function pointer, which has 

structure name hwif_s and field name INB.  

Note from Figure 9 that the function pointer checker uses kernel symbol names (e.g., 

__ide_dma_test_irq) to invoke symbol2addr, which tries to find the runtime address of 

a kernel symbol (including a function name). This use of runtime address lookup is necessary 

because of loadable kernel modules (LKMs) – if a device driver is configured as a LKM, the 

runtime address of its callback function cannot be predicted at static analysis time. 

Also note from Figure 9 that before comparison the code fetches the runtime value of the 

function pointer from a pointer expression starting from data (e.g., data->tx_timeout as in 
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Figure 6). The determination of this pointer expression is not fully automatic yet in our current 

implementation. 

5 Implementation 

5.1 The K-Queue Analyzers 

We implement the static analyzers for the IRQ action queue, the tasklet queue, the task queue, 

and the soft timer queue based on our static analysis framework, using CIL (C Intermediate 

Language) [36].  We implement the analysis engine in Shell scripts, which invokes our CIL 

modules that implement the basic analysis tools (Section 4.5). CIL provides an implementation 

of OLF [35], but it is not field-sensitive, so we improve it to satisfy our needs. All of our CIL 

modules are written in Objective Caml
1
. We use MySQL

2
 (version 5.1.34) to store the result 

database (Section 4.7), and write a Java program to insert into or query the result database. 

5.2 The K-Queue Guards 

We implement four prototype guards for the IRQ action queue, the tasklet queue, the task 

queue, and the soft timer queue, based on the code stubs generated by the K-Queue analyzers 

(Section 4.8).  They inspect the runtime status of the guest kernel to determine whether a pending 

K-Queue request is legitimate. 

Next, we modify the servers of the IRQ action queue, the tasklet queue, the soft timer queue, 

and the task queue in the guest kernel, so that a guard is triggered before a pending K-Queue 

request is invoked. The modification to each K-Queue server is minimal, e.g., it changes          

t->func(t->data) in linux-2.4.32/kernel/softirq.c to  

if (tasklet_guard(t->func,t->data) == true)  

     t->func(t->data) 

                                                      
1
 http://caml.inria.fr/ocaml/index.en.html 

2
 http://www.mysql.com 
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else printk(“warning…”); 

5.3 Fine Grain Memory Protection 

To write-protect the K-Queue guards and to defend against TOCTTOU attacks (Section 3.3), 

we need byte-level, fine grained memory protection (because a checked function pointer 

occupies only a few bytes in memory). However, the current architectures (e.g., Intel) can only 

support page-level write-protection; this is known as the protection granularity gap [18]. In order 

to overcome this gap, we are aware of two options: one is to build our defense on top of 

promising future architectures such as MemTracker [37] that supports fine-grained memory 

protection in hardware; the other is to use a software-based solution such as hook indirection in 

HookSafe [18]. In this paper, we implement a proof-of-concept memory protection scheme that 

does not overcome the protection granularity gap; our goal is mainly to demonstrate the 

effectiveness of our approach, and we leave the performance optimization as future work. 

Specifically, we run the guest kernel on top of Xen 3.3.0 [32] VMM and extend the 

shadowing-based memory management of Xen for full virtualization to support fine grain 

memory protection. A new hypercall (prot_range) is added to allow the guest kernel to 

request regions in its address space to be write-protected. The size of the protected regions can 

be any number of bytes. The VMM sets the protection bit of a page table entry to read-only in 

the SPT (shadow page table) if that page contains any portion of a protected region. Then we 

modify the page fault handler of Xen so that it denies write attempts to the protected regions on 

this kind of page, but allows legitimate writes to other parts of this kind of page to go through. 

During the K-Queue request checking in a guest VM, a KQH guard first write-protects each 

participating structure field (using a VMCALL instruction that invokes the prot_range 

hypercall) and then checks its value. When the check fails at any point, the already protected 
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structure fields are unlocked using another call to prot_range.  If the check succeeds, the 

unlocking is deferred until the callback function has finished. 

6 Evaluation of the K-Queue Defense 

6.1 Effectiveness against KQH Attacks 

We test the effectiveness of our K-Queue defense by running synthetic proof-of-concept 

rootkits in the guest kernel, including the key logger and the CPU cycle stealer described in [22], 

and the key logger described in Section 2. These rootkits leverage the Linux K-Queues in Table 

1 and employ type 1 or type 2 attacks (Section 3.2.3). We observe that our K-Queue guards can 

immediately detect such rootkits. This shows that our defense is effective again KQH attacks. 

Our K-Queue defense takes the following measures to reduce the likelihood of false 

negatives, i.e., a malicious K-Queue request can evade our guards. First, we statically insert the 

KQH guards into the guest kernel and directly modify the kernel source code so that whenever a 

pending K-Queue request is about to be served, the corresponding KQH guard is invoked. 

Malware in the guest may try to modify the guest kernel’s code at runtime to disable or bypass 

our KQH guards, but this will be defeated because the inserted code is protected from tampering 

by the VMM (Section 3.3). We assume that the modified guest kernel image (with the KQH 

guards built in) has integrity and the guest Linux goes through a secure boot phase [34] in which 

the integrity of the inserted code is verified (along with the rest of the kernel) and protection is 

placed on the inserted code before the guest kernel is open to external events including malicious 

attacks. Second, all possible function pointers occurring in the control flow of the callback 

function are checked no matter along which path they occur. Specifically, the transitive closure 

analyzer searches through every possible execution path (starting from the callback function) and 

recognizes all function pointers along the way. Some of the function pointers may not be called 
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in a particular invocation, but the analyzer conservatively reports all such function pointers for 

points-to analysis. Third, our memory region protection (Section 5.3) guarantees that the attacker 

cannot replace a legitimate function pointer after it is checked but before it is followed. Fourth, 

our current implementation of the indirect assignment (IA) is not precise due to the inherent 

limitations of points-to analysis [38]. Concretely, the OLF algorithm [35] is conservative which 

means that it may return a superset of the legitimate targets of a function pointer. Fortunately, the 

IA case is relatively rare in the Linux kernel. For example, out of 55 points-to analysis tasks for 

the task queue, only two require indirect assignments (IA) analysis, and we manually confirmed 

that the results from OLF are accurate. In the worst case, the “extra” target functions calculated 

by OLF are still a restricted set of legitimate kernel functions instead of malicious functions of 

the rootkits, and if the rootkit wants to reuse a legitimate kernel function for a malicious purpose, 

it has to choose from this restricted set, which significantly reduces the rootkit’s chance of 

finding a suitable one.  

Our implementation of the K-Queue defense also tries to reduce the likelihood of false 

positives, in which it raises alarms at legitimate K-Queue requests. One source of such false 

alarms is legitimate functions in device drivers built as LKMs. In order to cover LKMs, our static 

analysis part uses a “total” kernel configuration that includes all possible device drivers (Section 

4.6), which ensures that the generated KQH guards are aware of the existence of such legitimate 

functions even if they are compiled into LKMs and loaded into the memory at runtime. Another 

source of possible false positives is our assumption that when a pending K-Queue request is 

checked, all function pointers that may be invoked are already initialized and will not change 

during the execution of the callback function; if this assumption is invalid, e.g., a relevant 

function pointer has not been initialized at the time of check (it will be initialized during the 
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execution of the callback function), a KQH guard may generate false alarms. During our testing 

and performance evaluation, we have not seen any such false positives. 

6.2 Performance and Scalability of the K-Queue Static Analyzer 

We test the performance of our K-Queue static analyzer on a series of 10 configurations of 

Linux kernel 2.4.32 with increasing complexity. The first configuration is a minimal kernel that 

can boot the guest virtual machine. It contains 482,369 lines of code, with essential support for 

IDE disk, ext3 file system, and TCP/IP networking. Each successive configuration includes more 

device drivers.  The most complex kernel configuration contains 1,010,196 lines of code. 

Each experimental run covers four kinds of K-Queues in the following order: task queue, 

tasklet queue, IRQ action queue, and soft timer queue.  Initially the analysis result database is 

empty. As the analysis proceeds the analysis results are accumulated in the database. Each K-

Queue instance takes advantage of analysis that has finished, including its own analysis tasks and 

the K-Queue instance(s) ahead of it.  For example, the analysis for the soft timer queue uses 

some results of the IRQ action queue, so it takes less time than if it has no existing results to use. 

The experimental run for each kernel configuration proceeds as follows.  Each K-Queue 

analysis starts with a points-to analysis task. When the points-to set is determined, a round of 

transitive closure analysis is performed, one for each function in the points-to set.  As the result 

of the transitive closure analysis, new points-to analysis tasks may be recognized.  If this is the 

case, another round of points-to analysis is performed, which may lead to one more round of 

transitive closure analysis.  This iterative process continues until the last round of transitive 

closure analysis recognizes no new points-to analysis tasks. 

All the experiments run on a 3.0 GHz Intel Pentium 4 with 1 GB of RAM.  
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The first thing that we measure is the execution time of the K-Queue analyzers.  Figure 11 

shows the cumulative execution time at four milestones for different kernel configurations.  For 

example, the curve marked as “IRQ action” represents the total analysis time for the task queue, 

the tasklet queue, and the IRQ action queue. The X-axis is the complexity of the kernel 

configurations measured in KLOC or “thousand lines of code”, and the Y-axis is the cumulative 

execution time in minutes.  The ten points on each curve correspond to the measurements for the 

ten kernel configurations, the left-most point corresponds to configuration 1, and the right-most 

point corresponds to configuration 10. 

From Figure 11 we can see that in general the analysis time increases as the complexity of the 

kernel increases.  However, it seems that the execution time is not a simple function of the kernel 

size.  In fact, we can see flat segments as well as steep slopes on the curves, suggesting a non-

uniform distribution of the K-Queue requesters in the kernel.  For example, the first steep slope 

occurs on the IRQ action queue curve from configuration 2 to configuration 3. This is because 

configuration 3 requires more analysis tasks. For example, from configuration 2 to configuration 

3, the points-to analysis for structure hwif_s and field ide_dma_test_irq returns six more 

actual functions. These functions belong to the device drivers for several kinds of IDE controller 

chipsets (including the CMD64 series of chipsets and the HPT36X/37X chipset) that are added in 

configuration 3. It is these new actual functions that demand more transitive closure analysis 

than configuration 2.  However, from configuration 3 to configuration 4 the IRQ action queue 

curve is pretty flat, because there are few new analysis tasks. 

The way that the execution time curves look like is expected, because our choice for new 

kernel configurations is agnostic to K-Queue usage. 
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Figure 12 shows the number of external transitive closure analysis for the four kinds of K-

Queues and different kernel configurations.  Since we use merged kernel source files, all such 

analysis is due to new results from points-to analysis.  Clearly, this number increases as the 

kernel size increases.  The reasoning is as follows.  As the size of the kernel grows, more source 

code is analyzed; then the number of requesters for a particular K-Queue is potentially increased.  

This leads to a larger points-to set for the top level function pointers, thus more functions that 

need transitive closure analysis.  The new transitive closure analysis may detect new points-to 

analysis tasks, which result in more transitive closure analysis, and so on. 

The above reasoning is supported by Figure 13, in which we show the measurement of the 

number of points-to analysis during the experiments. We can see that for all four kinds of K-

Queues, the number of points-to analysis tasks indeed increases with the size of the kernel. 

Figure 14 shows the cumulative number of internal transitive closure analysis (Section 4.5.2) 

during the experiments.  The curves have a similar trend as the number of external transitive 

closure analysis and points-to analysis, but at a much larger scale (20x).  This demonstrates the 

benefit of kernel merging (Section 4.6): if it is not used, a large number of such internal 

transitive closure analyses would become external transitive closure analyses; then the total 

analysis time would increase dramatically. This is because an external transitive closure analysis 

is more time-consuming than an internal transitive closure analysis. Each external transitive 

closure analysis has a constant overhead of preprocessing and parsing the entire kernel source 

code, while internal transitive closure analysis does not incur such overhead. As the kernel 

becomes more complex, such overhead becomes more and more significant. 

One interesting point in Figure 14 is that up until configuration 6 the soft timer queue 

accounts for the most internal transitive closure analysis among the four K-Queues.  But starting 
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from configuration 7, this dominance is lost to the IRQ action queue, and the number of internal 

transitive analysis for the soft timer queue even drops from 4,457 in configuration 6 to 2,715 in 

configuration 7.  This is a correct behavior, because the number of internal transitive closure 

analysis for the IRQ action queue increases dramatically from 3,449 in configuration 6 to 9,485 

in configuration 7, in such a way that it covers a significant portion of the analysis for the soft 

timer queue.  As a supporting evidence, the analysis for the IRQ action queue took 1,548 minutes 

in configuration 7, which is significantly longer than that for configuration 6 (630 minutes), as 

shown in Figure 11. 

6.3 Performance Overhead of the K-Queue Guards 

To measure the runtime overhead of our K-Queue Guards, we choose five synthetic 

workloads and compare their execution time in different environments. These five workloads 

are: cat - read and display the content of 8,000 small files (with size ranging from 5K to 7.5K 

bytes) in a complicated directory tree; ccrypt - encrypt a text stream of 64M bytes, where ccrypt
3
  

is an open source encryption and decryption tool; gzip - compress a text file of 64M bytes using 

the  --best option; cp - recursively copy a Linux kernel source tree; and make - perform a full 

build of the Apache HTTP server (version 2.2.2) from source. These benchmarks run on a 2.5 

GHz Intel Core 2 Duo with VT-x support, and the guest VM is allocated 256 MB of RAM. The 

hypervisor is Xen 3.3.0, and the guest kernel is Linux 2.4.32 with configuration 1 (Section 6.2). 

Each experiment is run 10 times and the mean and standard deviation of the measurements are 

computed.  Table 2 shows the results. 

Table 2 contains three kinds of results. The “Original” results are collected on unmodified 

Xen and guest kernel and serve as the baseline. The results marked as “K-Queue” are collected 

                                                      
3
 http://sourceforge.net/projects/ccrypt/ 



 31

on the modified Xen and the modified guest kernel with the four K-Queue guards (Section 5.2), 

but with the page-level memory protection (Section 5.3) turned off. Finally, the results marked as 

“K-Queue-Mem-Prot” are collected on the full-fledged defense mechanism including the 

modified Xen, the modified guest kernel, and the page-level memory protection. 

From Table 2, we can see that if we do not write-protect the checked function pointers, our 

implementation of the K-Queue Guards incurs performance overhead ranging from almost 

negligible for ccrypt to 10% slow down for cp. However, when we turn on the memory 

protection to write-protect checked function pointers during the execution of K-Queue callback 

functions, the performance overhead increases for each of our workloads. For example, the 

overhead of cat increases from 4.2% to 11.3%.  The most dramatic increase happens for cp, 

which jumps from 10% to 15 times slowdown. This is not very surprising given the fact that our 

proof-of-concept implementation leverages the page-level protection support of the hardware to 

achieve byte-level memory protection – if a memory page is made read-only because it contains 

protected memory regions, normal writes to other places on that page will not go through without 

triggering a page fault, and a large number of page faults can slow down the system significantly. 

However, from Table 2 we also see that the performance overhead is not always unacceptable 

even if we use page-level memory protection. Instead, it depends on the workload (e.g., it is 

11.2% for the gzip benchmark).  

In order to understand the result better, we carry out an event analysis of the K-Queue runtime 

defense. We found that the slowdown factor for each workload (see Table 2) depends on the 

complexity of the workload in terms of (1) what kinds of K-Queue callback events it triggers, 

and (2) how frequently it triggers such events. Some K-Queue callback functions are very 

complicated, so they require a large number of function pointer checks.  For example, 



 32

ide_intr (linux-2.4.32/drivers/ide/ide-io.c), the IRQ action callback function for the IDE disk, 

requires a total of 192 function pointers to be checked; since these 192 function pointers may be 

scattered on many memory pages, they can affect a large number of normal writes to those pages 

and thus cause significant slowdown. The cp benchmark has the highest performance penalty 

because cp demands frequent disk write operations and accordingly frequent callbacks to 

ide_intr (42 times per second in our evaluation), and we know that the check of ide_intr 

is very complicated. 

To further understand the performance overhead, we define and measure two complexity 

metrics of the K-Queue guards: layer and fanout.  First we give an informal definition of the 

layer of checking: each layer is associated with a function pointer. The checker starts in layer 1, 

where the associated function pointer is the top-level K-Queue function pointers embedded in the 

K-Queue data structures.  At layer i the value of the function pointer is first checked against a 

white list; if the check is successful then the integrity of the target function itself needs to be 

checked, which may require the checking of a new function pointer. In this case the check enters 

a new layer i+1.  When the checking for a target function completes, the checker returns to the 

previous layer (i.e., layer i).  We also define the fanout of a function as the number of function 

pointers whose integrity needs to be checked for that function. 

For our K-Queue guards, the maximum layer during the checking of the IRQ action queue is 

seven, which happens when the top-level callback function is ide_intr. And during the 

checking of the IRQ action queue, the maximum fanout is 15 (for idedisk_error in linux-

2.4.32/drivers/ide/ide-disk.c). 
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6.4 Discussions and Future Work 

We are aware of several limitations of our current approach and proof-of-concept 

implementation. First, we assume that when a pending K-Queue request is checked, all function 

pointers that may be invoked are already initialized and will not change during the execution of 

the callback function. In other words, our current analysis does not handle indirect pointers or 

pointer fields that are written during the execution of the callback function. Second, our approach 

requires the source code be available for a static analysis, which means that users of closed 

source operating systems cannot employ our static analysis approach themselves. One related 

issue is the inclusion of new device drivers in the trusted kernel code base. The device vendor 

can perform the K-Queue static analysis and submit the generated guard code to the OS vendor 

which then integrates it into the final KQH guards. Third, in terms of the performance of our K-

Queue analyzers, we see that they can become slow when the kernel is big. We have not focused 

on performance optimization so far because precision has been the most important for the 

correctness of our approach; since the static analysis happens offline, speed is less important. 

Fourth, our current implementation of K-Queue guards incurs significant overhead in some 

cases, mainly due to our implementation of the memory protection mechanism that employs 

page-level locking. One possible solution to reduce the overhead is to apply the hook indirection 

idea of HookSafe [18], in which we can relocate memory regions that need protection to a page-

aligned memory space. Finally, whether our implementation has covered all possible KQH 

attacks in the Linux kernel is not proved yet, but our approach is general to any KQH attack. 

Specifically, our static analysis framework can work for any K-Queue given the correct seed task 

is provided (Section 4.1).  How to automatically recognize all K-Queues that can be leveraged by 

KQH attacks is our ongoing research. 
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7 Related Work 

Rootkits have attracted a lot of attention in the research community. Existing work can be 

classified into three areas: detection, defense, and analysis. 

Related work in detecting rootkit execution includes integrity-based approaches such as 

Gibraltar [1], HookScout [3], Livewire [4], Copilot [6], SBCFI [7], Patagonix [15], and System 

Virginity Verifier [8], and cross-view based approaches such as Strider GhostBuster [9] and 

VMwatcher [5]. However, such techniques cannot detect KQH attacks. For example, SBCFI [7] 

is a checker for persistent kernel control flow attacks. It runs periodically to perform a garbage-

collection style traversal of kernel data structures to verify that all of the function pointers target 

trusted addresses in the kernel.  SBCFI can potentially catch a type 1 malicious K-Queue request, 

but cannot detect type 2 requests because it does not follow the generic data field (e.g., void * 

data in Figure 4) included as part of the request. In order to make SBCFI work on KQH 

attacks, accurate type information for the data field in each callback request must be added, 

which would require a static analysis of all K-Queue callback functions. Moreover, SBCFI’s 

periodic checking is vulnerable to a Time-Of-Check-To-Time-Of-Use race condition [29] 

KOP [2] is the closest to our KQH guards in terms of recognizing all function pointers that 

can be invoked by a K-Queue callback function. However, it cannot prevent a malicious K-

Queue request from running since it is designed as a passive detector. Our KQH guards can deny 

the execution of malicious K-Queue requests. 

In terms of rootkit prevention, related work includes CFI [28], Program shepherding [39], 

SecVisor [17], NICKLE [16], and HookSafe [18]. SecVisor and NICKLE are designed to 

preserve kernel code integrity or block the execution of foreign code in the kernel, but KQH 

attacks modify kernel data (add entries to queues) and can reuse existing kernel code, so they 
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cannot completely prevent KQH attacks. HookSafe cannot prevent KQH attacks because KQH 

attacks do not modify existing kernel hooks but supply their own kernel hooks, while HookSafe 

only protects persistent hooks. A more general approach, CFI [28] uses inlined reference 

monitors to preserve control flow integrity of programs, including control transfers through 

function pointers.  Therefore, theoretically CFI can be instantiated into an alternative 

implementation of our K-Queue guards, and CFI can cover more than just the function pointers 

occurring in K-Queue callback function executions. For example, previous research finds that the 

number of function pointers can be thousands in a running kernel [3, 18], but the number of 

function pointers reachable from the four K-Queues that we study is only 487 (Figure 13), given 

the basic kernel configuration that we use. There are some difference between CFI and PLCP: 

CFI checks the integrity of function pointers individually and is unaware of the execution 

context; while PLCP checks function pointers in a batch based on a common context, i.e., the 

execution of a K-Queue callback function, which can potentially enable more precise, context-

aware checks. Similarly, SBCFI performs checks without considering execution context. 

Program shepherding [39] prevents execution of injected or modified code in a single user-level 

application and relies on sandboxing the application, while KQH rootkits run at the kernel-level 

so program shepherding cannot be directly applied to KQH rootkits.  In our previous work [22], 

we proposed a defense against soft timer driven attacks that are a subset of KQH attack. The 

limitations of [22] are coverage and scalability – it can only address soft timer based attacks, the 

static analysis tool is designed for the soft timer queue only, and the runtime checker is manually 

written; this paper presents a more general solution that can scale to any K-Queue instance. 

Moreover, this paper presents a new guarding architecture that significantly reduces the guarding 

overhead. In [22], we ran the guards in a special security VM and relied on cross-VM 
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introspection to query the status of the protected kernel running in a different guest VM than the 

security VM. In our evaluation with the soft timer queue only, the performance overhead was not 

an issue [22], but when we extended the guarding to the four K-Queue instances discussed in this 

paper, we observed unacceptable overhead (30x slowdown) in some cases.  Therefore, in this 

paper we run the K-Queue guards in the same VM as the guest kernel under protection, in order 

to eliminate the cross-VM introspection cost. As a result, we reduce the overhead. 

Finally, related work on rootkit analysis includes HookFinder [13], HookMap [12], Panorama 

[14], K-Tracer [10], and PoKeR [11]. HookFinder [13] proposes a fine-grained impact analysis 

to detect malware hooking behaviors, by identifying all the modifications made by the malicious 

code to its execution environment and keeping track of the impacts flowing across the whole 

system.  HookFinder has the drawback that the implanted hooks by the malware may not be 

triggered when tested; and it can be evaded by malware applying “return-to-libc” techniques. 

Our KQH defense does not suffer from HookFinder’s drawbacks because the K-Queue analyzers 

explore every execution path of the callback function and can address “return-to-libc” attacks by 

performing transitive closure analysis. 

8 Conclusion 

We present a solution to kernel queue hooking (KQH) attacks that manipulate K-Queues to 

achieve stealthy and continual malicious function execution.  Such attacks are actively used by 

advanced malware such as the Rustock spam bot, but they remain invisible to state-of-the-art 

kernel integrity monitors. We propose the PLCP (Precise Lookahead Checking of function 

Pointers) approach that checks the legitimacy of pending K-Queue requests by proactively 

checking function pointers that may be invoked by the callback function. To facilitate the 

derivation of function pointers and their legitimate target, we build a unified static analysis 
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framework and toolset that can generate specifications of legitimate K-Queue requests and turn 

them into checking code. Based on the automatically generated code, we build a proof-of-

concept runtime reference monitor that intercepts K-Queue requests and checks their legitimacy. 

We test our ideas on four K-Queues in Linux and perform a comprehensive experimental 

evaluation of the scalability of our static analysis framework and toolset, which shows that 

different K-Queue analyzers have significant overlapping that can be exploited for better 

efficiency; and runtime evaluation shows that our K-Queue defense can successfully stop 

synthetic KQH attacks but it has high overhead that needs to be reduced before it can be widely 

deployed. 
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Figures 

 

 

Figure 1: Illustration of the Tasklet Queue in Linux Kernel 2.4.32 

 

 

struct irqaction {       

  irqreturn_t (*handler)(int, void 

*, struct pt_regs *); 

  unsigned long flags; 

  unsigned long mask;  

  const char *name;  

  void *dev_id; 

  struct irqaction *next; 

}; 

Figure 2: The Definition of       

irqaction in Linux 

struct tasklet_struct 

{  

  struct tasklet_struct *next; 

  unsigned long state; 

  atomic_t count; 

  void (*func)(unsigned long); 

  unsigned long data; 

}; 

 

Figure 3: The Definition of   

tasklet_struct in Linux 

struct tq_struct { 

  struct list_head list; 

  unsigned long sync; 

  void(*routine)(void *); 

  void *data; 

 }; 

 

 

 

Figure 4: The Definition of     

tq_struct in Linux 
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Linux: 

IRQ action queue, tasklet queue, soft timer queue, task queue. 

Windows: 

IO completion routines, APC (Asynchronous Procedure Call) queues, threads saved context, 

protocol characteristics structure, driver object callback pointers, object deletion callback 

pointers, timers, DPC (Deferred Procedure Call) kernel objects, the IP filter driver hook, 

exception handler callback functions, TLS (Thread Local Storage) callback routines, plug and 

play notifications, process creation notifications, file system registration notifications, load 

image notifications. 

Figure 5: Example Kernel Objects that Can Be Hooked 

 

 

 

 

 

Figure 6: Illustration of a malicious soft timer request with a legitimate callback function 

(dev_watchdog in Linux kernel 2.6.16) and a malicious data pointer (shaded area means malicious).  

Here dev_watchdog may invoke a function pointer derived from the data field of the request [22] 
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Input: <sn, fn, cb, d>, where cb is a callback function stored in the fn field in a structure of type 

sn, and d is the data attribute. 

Output: whether it is safe to invoke cb with d as an input parameter. 

If not pointsTo(sn,fn,cb) return false; 

Otherwise, return safeToExec(cb,d). 

 

Here, ),P2Set(),,pointsTo( fnsncbcbfnsn ∈= , and 

safeToExec(cb,d) = )),'(safeToExec and )',,pointsTo((
,

dddfs
fs

I , where s and f represent the type 

of a function pointer called by cb whose value is influenced by d, and d’ is the actual value of 

that function pointer. If no such function pointer is invoked by cb, then safeToExec(cb,d) = true. 

The derivation of the expression is through a transitive closure analysis (Section 4.5.2).  

P2Set(sn, fn) is the points-to set of the function pointer embedded in structure sn and field fn. 

Figure 7: The PLCP (Precise Lookahead Checking of Pointers) Algorithm 

 

 

 

 

 

 

Figure 8: K-Queue Static Analysis Framework 
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Figure 9: Generated Function Pointer Checker Code for Structure hwif_s and Field 

ide_dma_test_irq 

 

 

 

 

 

 

Figure 10: Generated Checker Code for the Real Function __ide_dma_test_irq 

 

 

 

int check_function_pointer_hwif_s_2_ide_dma_test_irq_1 (unsigned int data){ 

  unsigned int fp; 

 

  /* Fetch the function pointer value into fp */ 

  /* fp = data-> … */ 

  if (fp == 0) return 1; 

 

  if (fp == symbol2addr(“__ide_dma_test_irq”) ) 

     return check_function___ide_dma_test_irq_1(data); 

  … 

  unlock_kqueue_regions(); 

  return 0;  } 

int check_function___ide_dma_test_irq_1(unsigned int data){ 

 

 return 1 

        && check_function_pointer_hwif_s_2_INB_1(data) 

 ; 

} 
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Figure 11: Cumulative Analysis Time 
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Tables 

 

Table 1: Possible Ways that a Callback Function can be Assigned in Different K-Queues 

K-Queue Name 
Structure 

Name 
Field Name 

Parameter Assignment Indirect 

Assignment Function Index (from 0) 

Soft timer queue timer_list function    

IRQ action queue irqaction handler request_irq 1  

Tasklet queue tasklet_struct func tasklet_init 1  

Task queue tq_struct routine schedule_bh 0 do_floppy 

 

 

 

 

Table 2: Overhead of the K-Queue Checker 

 cat ccrypt gzip cp make 

Original 15.03 

±0.38 

3.10 

±0.03 

5.79 

±0.05 

45.61 

±4.62 

143.29 

±3.57 

K-Queue 15.66 

±1.15 

3.13 

±0.02 

5.97 

±0.22 

50.19 

±5.67 

148.31 

±3.63 

Overhead 4.2% 1.0% 3.1% 10.0% 3.5% 

K-Queue-

Mem-Prot 

16.73 

±0.93 

3.58 

±0.03 

6.44 

±0.35 

747.80 

±21.44 

187.74 

±19.82 

Overhead 11.3% 15.5% 11.2% 1539.6% 31.0% 

 

 


