
International Symposium on Secure Software Engineering (ISSSE'06), Arlington VA, March 13-15, 2006. 

1 

A Methodical Defense against TOCTTOU Attacks: The EDGI Approach 
 

Calton Pu and Jinpeng Wei 
Georgia Institute of Technology 

{calton,weijp}@cc.gatech.edu 
 
 

Abstract 
TOCTTOU is a challenging and significant problem, in-
volving two-step (check and use) file object access by a 
victim process and simultaneously an attacker access to 
the same file object in-between the two steps.  We describe 
a model-based, event-driven defense mechanism (called 
EDGI), which prevents such attacks by stopping the sec-
ond process in-between the two steps. Our main contribu-
tion is the systematic design and implementation of EDGI 
defense and its evaluation.  EDGI has no false negatives 
and very few false positives.  It works without changing 
application code or API.  A Linux kernel implementation 
shows the practicality of the EDGI defense, and an ex-
perimental evaluation shows low additional overhead on 
representative workloads. 

1. Introduction 
TOCTTOU (Time Of Check To Time Of Use) is a well 
known security problem [1]. A classic example is send-
mail, which used to check for a specific attribute of a 
mailbox (e.g., it is not a symbolic link) before appending 
new messages. Unfortunately, the mailbox owner (at-
tacker) can exploit the window of vulnerability between 
the checking and appending by deleting his mailbox and 
replacing it with a symbolic link to /etc/passwd.  If an at-
tack message consists of a syntactically correct 
/etc/passwd entry with root access, then the attacker may 
gain root access. 

The sendmail example also illustrates the complexity 
of a TOCTTOU attack [23], which requires (unintended) 
shared access to a file by the attacker and the victim (the 
sendmail), plus the two distinct steps (check and use) in 
the victim.  This structural complexity makes the detection 
of TOCTTOU vulnerabilities difficult. For example, 
unlike buffer overflow problems, TOCTTOU victim pro-
grams are tricked into performing a relatively small action 
for the attacker and proceeding, without significant devia-
tion from normal behavior. Furthermore, successful tech-
niques for typical race condition detection such as static 
analysis are not directly applicable, since the attacker pro-
gram is not available beforehand. Finally, TOCTTOU at-

tacks are inherently non-deterministic and not easily 
reproducible, making the detection of such vulnerability 
even more difficult. These difficulties are illustrated by the 
TOCTTOU vulnerability recently found in vi/vim and 
emacs [23], which appears to be in place since the time 
those venerable programs were created. 

The difficulty of detection contrasts with the simplicity 
of some of the proposed patches suggested in advisories 
and reports on TOCTTOU exploits from US-CERT [15], 
CIAC [16] and BUGTRAQ [17], including setting proper 
file/directory permissions and checking the return code of 
function calls.  However, some other suggested program-
ming fixes are varied and non-trivial: using random num-
bers to obfuscate file names, replacing mktemp() with 
mkstemp(), and using a strict umask to protect temporary 
directories.  More significantly, none of these fixes can be 
considered a comprehensive solution for TOCTTOU vul-
nerabilities. 

The main contribution of this paper is a model-based, 
event-driven defense mechanism (called EDGI) for pre-
venting exploitation of TOCTTOU vulnerabilities. Al-
though TOCTTOU vulnerabilities need not always involve 
file access [25], in this paper we focus on such vulnerabili-
ties in Unix-style file systems. The EDGI defense has sev-
eral advantages over previously proposed solutions.  First, 
based on the CUU model [23][24], EDGI is a systemati-
cally developed defense mechanism with careful design 
(using ECA rules) and implementation.  Assuming the 
completeness of the CUU model, EDGI can stop all 
TOCTTOU attacks.  Second, with careful handling of is-
sues such as inference of invariant scopes and time-outs, 
EDGI allows very few false positives.  Third, it does not 
require changes to applications or file system API.  Fourth, 
our implementation on Linux kernel and its experimental 
evaluation show that EDGI carries little additional over-
head.    

The relevance of our work is underscored by the sever-
ity and frequency of TOCTTOU vulnerabilities reported.  
20 CERT [15] advisories on TOCTTOU vulnerabilities 
were reported between 2000 and 2004.  In 11 of these ad-
visories, the attacker was able to gain unauthorized root 



 

2 

access.  A list compiled from BUGTRAQ [17] mailing list 
is shown in Table 1 ([23]). 

The rest of the paper is organized as follows.  Section 
2 summarizes previous relevant research on TOCTTOU 
vulnerabilities and defenses.  Section 3 outlines the CUU 
model and Section 4 describes the design of EDGI de-
fense.  Section 5 outlines a prototype implementation, and 
Section 6 describes the experimental evaluation of the im-
plementation. Section 7 concludes the paper. 

Table 1: Reported TOCTTOU Vulnerabilities [23] 

Domain Application Name 
Enterprise  

applications 
Apache, bzip2, gzip, getmail, Imp-
webmail, procmail, openldap, 
openSSL, Kerberos, OpenOffice, 
StarOffice, CUPS, SAP, samba 

Administrative 
tools 

at, diskcheck, GNU fileutils, log-
watch, patchadd 

Device  
managers 

Esound, glint, pppd, Xinetd 

Development 
tools 

make, perl, Rational ClearCase, 
KDE, BitKeeper, Cscope,  

2. Related Work 
The TOCTTOU problem was first identified by the Pro-
tection Analysis project [2] and the Research into Secure 
Operating Systems project [1]. Matt Bishop [3][4] was the 
first to describe a prototype analysis tool that looks for 
TOCTTOU pairs in applications and also discussed the 
non-deterministic nature of the problem.  Since then, sev-
eral attempts have been made to defend against subsets of 
TOCTTOU vulnerabilities. We discuss first the ap-
proaches using dynamic monitoring (as we do). 

RaceGuard [6] uses kernel monitoring to protect 
against a specific pair of file system calls: <stat, open>, 
where open is used to create a temporary file in a publicly 
shared directory such as /tmp. RaceGuard caches the file 
name tested by the stat call (to be non-existent) and aborts 
the open call if it finds the file created after stat.  While 
RaceGuard is effective at detecting and stopping <stat, 
open> attack, it is unclear how to define, detect or prevent 
attacks based on other such pairs called TOCTTOU pairs 
(see a more precise definition in Section 3).  

Another example of defense for a specific TOCTTOU 
pair (<access, open>) is a probabilistic approach [7]. Their 
solution adds multiple <access, open> pairs (called 
strengthening rounds) following the original <access, 
open> pair. The strengthening rounds check the invariance 
of path-to-inode mapping following the first pair. For an 
attack to succeed, all the rounds must return the same 
mapping, which grows exponentially harder with the 
number of rounds.  Although this approach may be applied 

to other TOCTTOU pairs as they are discovered, it re-
quires a change of application source code.  

A more generic defense is pseudo-transactions [14].  
Their idea is to encapsulate TOCTTOU pairs in pseudo-
transactions that preserve the file name mapping starting 
from the CU-call through to the Use-call.  By disallowing 
some sequences of file system calls (the TOCTTOU pairs 
identified by them) and allowing others, they are able to 
prevent known TOCTTOU attacks. Pseudo-transactions 
support a flexible specification of policies for allowed and 
disallowed pairs. They derived heuristically a set of poli-
cies, which was empirically refined but unverified. In 
comparison, the EDGI approach has some similarities in 
implementation (Section 5), but our model-based design 
(Section 4) answers the questions on the validity of file 
system call pair allow/disallow policies. 

As mentioned earlier, the complexity of TOCTTOU at-
tacks is due to the synchronized access by two independ-
ent programs (attacker and victim) to a shared file, 
precisely between the two steps formed by a TOCTTOU 
pair.  This complexity, plus a number of dynamic states 
(e.g., file names, ownership, and access rights), limits the 
usefulness of static analysis techniques that require the 
availability of all source code involved.  Representative 
examples include: Bishop and Dilger’s pattern matching 
tool [3][4], Meta-compilation [8] with compiler exten-
sions, RacerX [9] with inter-procedural analysis, and 
MOPS [5] using model checking.  Extensions to dynamic 
monitoring and analysis include dynamic online analysis 
tools such as Eraser [13] for finding race conditions in a 
multithreaded program and post mortem analysis tools 
[11] that can detect the result of exploiting a TOCTTOU 
vulnerability but not locate the error. 

3. The CUU Model of TOCTTOU  
A previous study of TOCTTOU vulnerabilities and their 
detection [23] introduced the CUU model of TOCTTOU 
vulnerabilities. In contrast to detection, the focus and main 
contribution of this paper are the design and implementa-
tion of the EDGI defense (Sections 4 through 6) to prevent 
TOCTTOU attacks.  Since EDGI is also based on the 
CUU model, we summarize the model here to make this 
paper self-contained.  A more theoretical question of the 
completeness of the CUU model is addressed in another 
paper [24]. 
3.1. Broad Definition of TOCTTOU 
A necessary condition for a TOCTTOU vulnerability is a 
pair of system calls (referred to as “TOCTTOU pair”) op-
erating on the same file object using the file name. The 
first of the pair (called “CU-call”) establishes some pre-
conditions about the file name (e.g., the file’s existence 
and the user’s access privileges, etc).  Based on those pre-
conditions, the second of the pair (called “Use-call”) oper-
ates on the file.   



 

3 

In our model (called the CUU Model), the precondi-
tions (called invariants since they must remain true 
through the Use-call) about the file can be established ei-
ther explicitly (e.g., access or stat1) or implicitly (e.g., 
open or creat).  The CUU model includes both the origi-
nal check-use system call pairs [3][4], and use-use pairs.  
For example, a program may attempt to delete a file (in-
stead of checking whether a file exists) before creating it.  
Consequently, the pair <delete, create> is also considered 
a (broadly defined) TOCTTOU pair.  
3.2. Enumeration of TOCTTOU pairs 
Using the CUU model, we are able to enumerate system-
atically the set of TOCTTOU pairs in a file system.  The 
question of completeness (the model’s ability to enumerate 
all TOCTTOU pairs) is addressed in another paper [24].  
Here, we present an intuitive argument to motivate the 
EDGI system.  

The CUU model classifies the file system calls into 
four groups: creation, removal, normal use, and status 
check.  These groups are defined abstractly, based on the 
system call functionality.  The status check operations read 
file object state without changing it, while the other three 
groups are “use” operations that cause side effects.  The 
four-group division is further divided into subsets due to 
the existence of several kinds of Unix-style file objects: 
regular files, directories, and symbolic links. 

Definition 1: CreationSet contains system calls that 
create new objects in the file system. It can be further di-
vided into three subsets depending on the kind of objects 
that the system call creates:  
CreationSet = FileCreationSet ∪ LinkCreationSet ∪ Dir-
CreationSet. 

Definition 2: RemovalSet contains system calls that 
remove objects from the file system. It can be further di-
vided into three corresponding subsets: 
RemovalSet = FileRemovalSet ∪ LinkRemovalSet ∪ 
DirRemovalSet. 

Definition 3: NormalUseSet contains system calls 
which work on existing file objects and do not remove 
them. They are subdivided into two sets: 
NormalUseSet = FileNormalUseSet ∪ DirNormalUseSet 

Definition 4: CheckSet contains the system calls that 
establish preconditions about a file object explicitly.  

This classification is generic for any Unix-style file 
system. To get the actual TOCTTOU pairs for a particular 
file system, one only needs to compute the corresponding 
sets in Definition 1 to 4, and then apply the formulas in 

                                                           
1 There are several variants of stat, such as lstat and stat64.  For 
simplicity of presentation we use stat as the general term to de-
note all its variants in this paper. 

Table 2. For example, by studying the functional specifi-
cation of Linux file system, we get the following sets: 
FileCreationSet = {creat, open, mknod, rename} 
LinkCreationSet = {link, symlink, rename} 
DirCreationSet = {mkdir, rename} 
FileRemovalSet = {unlink, rename} 
LinkRemovalSet = {unlink, rename} 
DirRemovalSet = {rmdir, rename} 
FileNormalUseSet = {chmod, chown, truncate, utime, 
open, execve} 
DirNormalUseSet = {chmod, chown, utime, mount, 
chdir, chroot, pivot_root} 
CheckSet = {stat, access} 

As result, a total of 224 pairs have been identified for 
the Linux file system using these sets and their combina-
tions shown in Table 2 (first introduced in [23]). 

Table 2: Classification of TOCTTOU Pairs [23] 

Use Explicit check Implicit check 
Create a 
regular file 

CheckSet ×  
FileCreationSet 

FileRemovalSet × 
FileCreationSet 

Create a di-
rectory 

CheckSet ×  
DirCreationSet 

DirRemovalSet × 
DirCreationSet 

Create a link CheckSet ×  
LinkCreationSet 

LinkRemovalSet × 
LinkCreationSet 

Read/Write/
Execute or 
Change the 
attribute of a 
regular file 

CheckSet × 
FileNormalUse-
Set 

(FileCreationSet × 
FileNormalUseSet)∪ 
(LinkCreationSet × 
FileNormalUseSet)∪ 
(FileNormalUseSet × 
FileNormalUseSet) 

Access or 
change the 
attribute of a 
directory 

CheckSet ×  
DirNormalUse-
Set 

(DirCreationSet × 
DirNormalUseSet)∪ 
(LinkCreationSet × 
DirNormalUseSet)∪ 
(DirNormalUseSet × 
DirNormalUseSet) 

4. The EDGI Defense against TOCTTOU 
4.1. Overview 
We propose an event driven approach, called EDGI (Event 
Driven Guarding of Invariants), to defend applications 
against TOCTTOU attacks. The design requirements of 
EDGI are:  
1. It should solve the problem within the file system, and 

does not change the API, so that existing or future ap-
plications need not be modified. 



 

4 

2. It should solve the problem completely, i.e., no false 
negatives. 

3. It should not add undue burden on the system, i.e., 
very low rate of false positives. 

4. It should incur very low overhead on the system.  
EDGI consists of three design steps (described in the rest 
of this section), a concrete implementation (Section 5), 
and an experimental evaluation (Section 6).  The first de-
sign step is to map the CUU model (summarized in Sec-
tion 3) into invariants in a concrete file system (Linux in 
our case) and the kernel calls that preserve the invariants.  
The second design step uses ECA (event-condition-action) 
rules [20][21] to model the concrete invariant preservation 
methods, so we can have reasonable assurance the invari-
ants are indeed preserved.  The third design step completes 
the design by addressing the remaining issues such as the 
automated inference of invariant scope and inheritance of 
invariants by children processes. 

In the EDGI approach, each CU-call creates an invari-
ant that should be preserved through to the corresponding 
Use-Call. Specifically, a file certified to be non-existent by 
a CU-call should remain non-existent until the Use-call 
creates it.  Similarly, a file certified to exist by a CU-call 
should remain the same file until the Use-call (by the same 
user) accesses it.  Identifying and preserving these two in-
variants (non-existence of a file and the mapping from a 
pathname to a file object) are the main goals of EDGI ap-
proach. 

The EDGI design treats an invariant as a sophisticated 
lock. The user invoking a CU-call becomes the owner of 
the lock, and the lock is usually held by the same user 
through the Use-call.  Due to the complications of Unix 
file system, the invariant handling is more complicated 
than a normal lock compatibility table.  Therefore, we rep-
resent the invariant handling using ECA rules, as ex-
plained in the following section.  We note that we only use 
ECA rules as a model, since our implementation does not 
support general-purpose rule processing. 
4.2. Invariant Maintenance 
The EDGI approach adopts a modular design and imple-
mentation strategy by separating the EDGI invariant proc-
essing from the existing kernel. The invariant-related 
information is maintained as extra state information for 
each file object.  When an invariant-related event is trig-
gered, the corresponding set of conditions is evaluated and 
if necessary, appropriate actions are taken to maintain the 
invariant. 

The invariant-related information for each file object 
includes its state (free or actively used), a tainted flag, in-
variant holder user id and a process list.  In detail: 
• refcnt – the number of active processes using the file 

object. When refcnt = 0, the file object is free. 

• tainted – when refcnt > 0, this flag means whether the 
name to disk object binding can be trusted. 

• fsuid – the user id of the processes that are actively 
using the file object. 

• gh_list – a doubly-linked list, in which each node con-
tains a process id and the timestamp of the last system 
call made by the process on the file object. 

Two kinds of events trigger condition evaluation: 
• File system calls such as access, open, mkdir, etc. 
• Process operations: fork, execve, exit. 
The conditions evaluated by each event and their associ-
ated actions are summarized in Table 3 (f denotes the file 
object). The conditions refer to the file object status 
(whether the invariant is the non-existence of the file or 
the file object mapping), and actions include the creation, 
removal and potentially more complex invariant mainte-
nance actions. 
4.3. Inferring Invariant Scope 
An astute reader may have noticed that the invariant main-
tenance rules in Table 3 are not restricted to a TOCTTOU 
pair, but extend to a sequence of file system calls.  Our 
discussion has been restricted to TOCTTOU pairs so far. 
In some programs, multiple accesses to the same file are 
made through additional Use-calls.  Since this is a legiti-
mate use of files, the EDGI system must maintain the 
same invariant through all the Use-calls of such a se-
quence by the same user.  During the time such a sequence 
of accesses exists, the file object is said to be actively 
used. Otherwise the file object is said to be free.  

The interval during which the file object is actively 
used forms the scope of its invariant.  The scope varies in 
length, depending on the number of consecutive Use-calls 
made by the application.  Consequently, a significant 
technical challenge is to correctly identify this scope - the 
boundaries of the TOCTTOU vulnerability window of the 
application. Since current Unix-style file systems are 
oblivious to such application-level semantics, we need to 
infer the scope, so no changes are imposed on the applica-
tions or the file system interfaces.   

The inference of invariant scope is guided by the CUU 
model, which specifies the initial TOCTTOU pair explic-
itly.  The Use-call of the initial pair becomes the CU-call 
of the next pair, completed by the following Use-call.  Let 
us assume that the CUU model correctly captures the 
TOCTTOU problem.  Intuitively, the initial pair can be 
considered the base of an induction proof, guaranteeing 
the maintenance of the invariant from the CU-call through 
the Use-call.  The additional Use-calls become the steps of 
the induction. (Details of the proof can be found elsewhere 
[24].)  The sequence continues until the program ends, a 
time-out or preemption occurs (see Section 4.4).   

  



 

5 

Table 3: Invariant Maintenance Rules in EDGI 

4.4. Remaining Issues 
There are some additional issues that need to be resolved 
for an actual implementation.  First, if we consider the in-
variants as similar to locks, then the question of dead-lock 
and live-lock arises.  For example, it is possible that an in-
variant holder is a long-running process which only 
touches a file object at the very beginning and then never 
uses it again.  Consequently, a legitimate user may be pre-
vented from creating/deleting the file object for a long 
time, resulting in denial of service. This problem can be 
addressed by a time out mechanism.  If an invariant holder 
process does not access a file object for an exceedingly 
long time, the invariant will be temporarily disabled to al-

low other legitimate users to proceed.  (Timeout is dis-
cussed in Section 6.2.) 

If the time-out results in simple preemption (i.e., break-
ing the lock), then this method may be used to attack very 
long application runs.  To prevent the preemption-related 
attack, we use a tainted bit to mark the preemption. After a 
preemption-related file creation or deletion, the invariant 
no longer holds. EDGI marks the file object as tainted, so 
the next access request from the original invariant holder 
will be aborted.  

The second and related problem is the relationship be-
tween the current invariant holder and the next process at-
tempting to access the file object.  Up to now, we have 
assumed a symmetric relationship, without distinguishing 

Name Event Condition Action 
Incarna-
tion rule 

Any system 
call on f 

refcnt == 0 Set f’s state as actively used (refcnt++); set its tainted flag 
as false, fsuid as current user id, record current pid and cur-
rent system time in the gh_list. 

Rein-
forcement 
rule 

Any system 
call on f 

refcnt > 0 and 
fsuid == current user id and 
tainted == false 

Record current pid and current system time in the gh_list. 

Abort rule Any system 
call on f 

refcnt > 0 and 
fsuid == current user id and 
tainted == true 

Record current pid and current system time in the gh_list. 
Return an error. 

Root pre-
emption 
rule 

Any system 
call on f 

refcnt > 0 and 
fsuid != current user id and 
current user id == root 

Remove all invariant holders information from the gh_list; 
set f’s fsuid as current user id, set refcnt as 1, tainted as 
false, record current pid and current system time in the 
gh_list. 

Owner 
preemp-
tion rule 

Any system 
call on f 

refcnt > 0 and 
fsuid != current user id and 
current user id != root and 
fsuid != root and 
current user is the owner of  f 

Remove all invariant holders information from the gh_list; 
set f’s fsuid as current user id, set refcnt as 1, tainted as 
false, record current pid and current system time in the 
gh_list. 

Invariant 
mainte-
nance rule 
1 

Any system 
call in the 
RemovalSet 
(3.2) on f 

refcnt > 0 and  
fsuid != current user id 

Traverse the gh_list to get the latest timestamp t, compute 
the interval between t and current time, if it is less than 
threshold MAX_AGE, deny the current request, otherwise 
grant the current request and set tainted as true. 

Invariant 
mainte-
nance rule 
2 

Any system 
call in the 
CreationSet 
(3.2) on f 

refcnt > 0 and  
fsuid != current user id 

Traverse the gh_list to get the latest timestamp t, compute 
the interval between t and current time, if it is less than 
threshold MAX_AGE, deny the current request, otherwise 
grant the current request and set tainted as true. 

Clone rule fork (parent, 
child) 

True For each file object that has parent in its gh_list, record 
child and current system time, and increment the refcnt. 

Termina-
tion rule 

Exit True Remove current pid from the gh_list of each file object that 
has it on its gh_list, and decrement the corresponding 
refcnt. 

Distract 
rule 

Execve True Remove current pid from the gh_list of each file object that 
has it on its gh_list, and decrement the corresponding 
refcnt. 



 

6 

legitimate users from attackers.  In reality, we know some 
processes are more trustworthy than others. Specifically, in 
Unix environments we trust the file object owner and root 
processes completely.  Consequently, we allow these proc-
esses to “break the lock” by preempting other invariant 
holders. Concretely, when the file object owner or root 
process attempt to access a file object, they immediately 
become the invariant holder, and the invariant for the for-
mer holder is removed. 

The third issue is the inheritance of invariants by chil-
dren processes.  For example, after a user process checks 
on a file object and becomes an invariant holder, it spawns 
a child process, and terminates. In the mean time, the child 
process continues, and uses the file object.  In the simple 
solution, the invariant is removed when the owner (parent) 
process terminates.  In this case an attacker can achieve a 
TOCTTOU attack before the child process uses the file. 
Thus we must extend the scope of invariants to the child 
process at every process creation. This invariant inheri-
tance extension is analogous to the invariant scope exten-
sion discussed in Section 4.3. 

A final question is whether the EDGI approach is a 
complete solution, capable of stopping all TOCTTOU at-
tacks.  In this paper, we describe a systematic design (Sec-
tion 4) and implementation (Section 5), based on the CUU 
model.  We outline here an informal argument for the cor-
rectness of the design, i.e., EDGI protects all the 
TOCTTOU pairs identified by the CUU model.  For every 
file system call, the rules summarized in Table 3 are 
checked and followed.  The first time a CU-call is invoked 
on a file object, that user becomes the file object’s invari-
ant holder.  At any given time there is at most one invari-
ant holder for each file object.  Users other than the 
invariant holder are not allowed to create or remove the 
file object (including changes to mapping between the 
name and disk objects). The EDGI defense is designed to 
stop all TOCTTOU pairs identified by the CUU model. 
The proof of CUU model completeness [24] is beyond the 
scope of this paper. 

5. Linux Implementation of EDGI 
We have implemented the design described in the previous 
section in the Linux file system.  The implementation con-
sists of modular kernel modifications to maintain the in-
variants for every file object and its user/owner. We 
outline the process that remembers the invariant holder of 
each file object (Section 5.1) and then the maintenance of 
the invariants (Section 5.2). 
5.1. Invariant Holder Tracking 
Invariant holder tracking is accomplished by maintaining a 
hash table of pathnames that keeps track of the processes 
that are actively using each file object. The index to this 
hash table is the file pathname, and for each entry, a list of 
process ids is maintained.  Our modular implementation  

 
 

1 
2 

 
 
 

3 
4 

 
5 
6 

 
7 
8 

 
 
 

9 
10 

 
11 
12 

 
 
 

13 

Input: dentry d 
Output: 0 – succeed, -1 – the binding of d is tainted. 
if d.refcnt = 0 
then d.fsuid ← current user id, record current pid and 
current time in d.gh_list, d.refcnt++, d.tainted ← false, 
return 0. 
else  

if d.fsuid = current user id 
then record current pid and current time in  
d.gh_list, if d.tainted = false 

then return 0 
else  return -1. 

else  
if current user id = root 
then remove all invariants on d.gh_list,  d.fsuid ← 
root, record current pid and current time in 
d.gh_list, d.refcnt ←1, d.tainted ← false, return 0. 
else  

if d.fsuid = root 
then return 0. 
else  

if current user id is the owner of d 
then remove all invariants on d.gh_list, 
d.fsuid ← current user id, record current pid 
and current time in d.gh_list, d.refcnt←1, 
d.tainted ← false, return 0. 
else return 0. 

Figure 1: Invariant Holder Tracking Algorithm 

augments the existing directory entry (dentry) cache code 
and extends its data structures with the fields introduced in 
Section 4.2: fsuid, refcnt, tainted, gh_list. 

Before a system call uses a file object by name, it first 
needs to resolve the pathname to a dentry. Our implemen-
tation instruments the Linux kernel to call the invariant 
holder tracking algorithm after each such pathname resolu-
tion. There are two possible approaches to implementing 
this algorithm.  The first is to instrument the body of every 
system call (e.g., sys_open) that uses a file pathname as 
argument. The second is to instrument the pathname reso-
lution functions themselves (in the Linux case, 
link_path_walk and lookup_hash).  

The first approach has the disadvantage that instru-
mented code has to spread over many places, making test-
ing and maintenance difficult. Although techniques such 
as Aspect Oriented Programming (AOP) [22]  could  help, 
we were unable to find a sufficiently robust C language 
aspect weaver tool that can work on Linux kernel. The 
second approach has the advantage that only a few (in the 
Linux case, exactly two) places need to be instrumented, 
making the testing and maintenance relatively easy. We 
chose the second approach for our implementation. 

The invariant holder tracking algorithm GH is shown 
in Figure 1. This algorithm effectively implements the 



 

7 

rules summarized in Table 3, and it is called right before 
link_path_walk and lookup_hash successfully returns. 

Line 1-2 of the invariant holder tracking algorithm ad-
dresses the situation where a new invariant holder is iden-
tified: invariant related data structure is initialized, 
including the invariant holder user id (fsuid), the invariant 
holder process id, the tainted flag, and a timestamp. After 
these steps, the invariant maintenance part (Section 5.2) 
will start applying this invariant. We can see that the same 
sequence also occurs in Line 8 and 12, where a new in-
variant holder is decided due to preemption. 

Line 3-6 address the situation where an existing invari-
ant holder accesses the file object again. Notice that the 
tainted flag is checked to abort the invariant holder process 
if the name to disk binding of the file object has been 
changed by another user’s process (See 5.2). 

Line 8 corresponds to the preemption of invariant from 
a normal user to the root discussed in Section 4.4. Simi-
larly, line 12 handles the preemption by file object owner. 

The invariant holder tracking algorithm needs the cur-
rent process id and current user id runtime information, 
which are obtained from the current global data structure 
maintained by the Linux kernel. 
5.2. Invariant Maintenance 
The second part of implementation is invariant mainte-
nance by thwarting the attacker’s attempt to change the 
name to disk binding of a file object, which in turn is 
achieved by deleting or creating a file object.  We instru-
mented two kernel functions to perform invariant checks: 
• may_delete(d): this function is called to do permis-

sion check before deleting a file object d. We add in-
variant checking after all the existing checks have 
been passed: If d.refcnt > 0 and the current user id is 
not the same as d.fsuid, traverse d.gh_list to get the 
last access timestamp; if it is younger than 
MAX_AGE, return –EBUSY (file object in use and 
cannot be deleted). Otherwise set d.tainted as true and 
return 0. 

• may_create(d): this function is called to do permis-
sion check before creating a file object, similar invari-
ant checking is added after all the existing checks 
have been passed. 

The may_create kernel function is called by all the system 
calls in the CreationSet (Section 3.2) and the may_delete 
function is called by all the system calls in the correspond-
ing RemovalSet.  These invariant checks implement the 
Invariant Maintenance Rules 1 and 2 in Table 3. 
5.3. Engineering of EDGI Software  
Table 4 shows the size of EDGI implementation in Linux 
kernel 2.4.28.  The changes were concentrated in one file 
(dcache.c), which was changed by about 55% (LOC means 
lines of code).  The other changes were small, with less 

than 5% change in one other file (namei.c), plus single-line 
changes in three other files.  This implementation of less 
than 1000 LOC was achieved after careful control and data 
flow analysis of the kernel, plus some tracing. We consider 
this implementation to be highly modular and relatively 
easily portable to other Linux releases.  

From top-down point of view, the methodical design 
and implementation process benefited from the CUU 
model as a starting point.  Then, the ECA rules facilitated 
the reasoning of invariant maintenance.  The rules were 
translated into the Invariant Holder Tracking algorithm.  
These steps give us the confidence that the invariants are 
maintained by EDGI software.   

Conversely, from a bottom-up point of view, the Linux 
kernel was organized in a methodical way.  For example, it 
has exactly two functions (may_delete and may_create) 
controlling all file object status changes. By guarding these 
two functions, we were able to guard all 224 TOCTTOU 
pairs identified by the CUU model.  This kind of function 
factoring in the Linux kernel contributed to the modular 
implementation of EDGI. 

Table 4: Linux Implementation of EDGI 

Source File Modified 
Places 

Original 
LOC 

Added 
LOC 

fs/dcache.c 4 1307 749 

fs/namei.c 5 2047 84 

fs/exec.c 1 1157 1 

kernel/exit.c 1 602 1 

kernel/fork.c 1 896 1 

6. Experimental Evaluation of EDGI  
6.1. Discussion of False Negatives 
The EDGI system design follows the CUU model.  In Sec-
tion 4.4 we included an informal argument for the com-
pleteness of the CUU model, details of which can be found 
in [24].  If the ECA rules summarized in Table 3 captures 
all the TOCTTOU pairs identified by the CUU model, and 
the invariant holder tracking algorithm in Figure 1 imple-
ments all the rules in Table 3, and our Linux kernel im-
plementation (Section 5) is correct, then our 
implementation should have zero false negatives.   

We have run all the attack experiments we could find, 
including known TOCTTOU vulnerabilities such as log-
watch 2.1.1 [19] and new vulnerabilities recently detected, 
including rpm, vi/vim, and emacs. In all the experiments 
the EDGI system is able to stop the attacker program. 

One exception to the invariant maintenance rules is the 
preemption by programs running as root, which are al-
lowed to gain the invariant and change file object status at 



 

8 

will.  We consider this exception to be safe, since if an at-
tacker has already obtained root privileges, there is no fur-
ther gain for using TOCTTOU attacks. 
6.2. Discussion of False Positives 
As mentioned in Section 4.4, our conservation mainte-
nance of invariants may introduce long delays, if an in-
variant holder runs for a long time. These long delays can 
be considered a kind of false positives, since they may or 
may not be necessary. Our implementation introduces a 
time-out mechanism to mitigate this problem.  If another 
user’s process wants to create/delete the file object and en-
counters the last access time by the invariant holder to be 
older than the time-out period, the new process is allowed 
to preempt the invariant and the file object is marked as 
tainted.  If the original invariant holder attempts to use the 
file object again, then we have found a real conflict.  The 
current implementation aborts the original invariant 
holder, although other design choices are possible.   

The determination of a suitable time-out period, called 
MAX_AGE in Table 3, is probably dependent on each 
specific workload and a research question. If it is too short, 
an attacker may use it to abort a long running legitimate 
process by attempting to write to a shared file.  If it is too 
long, another legitimate process may be delayed for a long 
time. We have experimentally chosen a MAX_AGE of 60 
seconds.   
6.3. Overhead Measurements 
We use a variant of the Andrew benchmark [10] to evalu-
ate the overhead introduced by EDGI defense mechanism. 
The benchmark consists of five stages: 

1. Recursively create 110 directories with mkdir. 
2. copy 744 files (total 12MB). 
3. stat 1715 files and directories. 
4. grep these files and directories (total 26MB).  
5. Compile 150 source files.  

The experiments were run on a Pentium III 800MHz lap-
top with 640MB memory, running Red Hat Linux in single 
user mode.  We report the average and standard deviation 
of 20 runs for each experiment in Table 5, which compares 
the measurements on the original Linux kernel and on the 
EDGI-augmented Linux kernel.  The same data is shown 
as bar chart in Figure 2. 

The Andrew benchmark results show that EDGI gener-
ally has a moderate overhead.  The only exception is stat, 
which has 47% overhead. The explanation is that stat 
takes less time than other calls (such as mkdir), but the 
extra processing due to invariant holder tracking (now part 
of pathname resolution) has a constant factor across differ-
ent calls.  This constant overhead weighs more in short 
system calls such as stat.  Fortunately, stat is used rela-
tively rarely, thus the overall impact remains small. 

PostMark benchmark [12] is designed to create a large 
pool of continually changing files and to measure the 

transaction rates for a workload approximating a large 
Internet electronic mail server. PostMark first tests the 
speed of creating new files, and then it tests the speed of 
transactions. Each transaction has a pair of smaller transac-
tions, which are either read/append or create/delete. 

On the original Linux kernel the running time of this 
benchmark is 40.0 seconds. On EDGI-augmented kernel, 
with all the same parameter settings, the running time is 
40.1 seconds (Again these results are averaged over 20 
rounds). So the overhead is 0.25%. This result corrobo-
rates the moderate overhead of EDGI. 

Table 5: Andrew Benchmark Results (in milliseconds) 

Functions Original Linux Modified Linux Overhead 

mkdir 6.35
±0.21

6.43
±0.19

1.3%

copy 217.0
±1.5

218.6
±1.4

0.7%

stat 132.0
±1.9

193.6
±0.8

47%

grep 777.0
±4.3

870.1
±5.3

12%

compile 53,971
±434

55,615
±367

3.0%

 

 
Figure 2: Andrew Benchmark Results 

7. Conclusion 
TOCTTOU (Time Of Check To Time Of Use) is a long-
standing security problem that is both numerous and seri-
ous [15][17].  Compared to other vulnerabilities such as 
buffer overflow, TOCTTOU attacks are complex, requir-
ing two-step accesses to a file by a victim process (check-
ing and use of the file) combined with an attacker process 
changing the file object mapping to storage objects pre-
cisely in-between the two steps. 



 

9 

In this paper, we describe a model-based, event-driven 
approach (called EDGI) to prevent the exploitation of 
TOCTTOU vulnerabilities.  The main idea of EDGI is to 
guard the file object invariant created by the checking step 
(e.g., the pathname mapping to disk objects) through the 
completion of the use step, thus protecting the potential 
victim from shared access by any attacker.   

The EDGI defense has several advantages. First, EDGI 
is a systematically developed defense mechanism (based 
on the CUU model [23][24]) with careful design (using 
ECA rules) and implementation.  Assuming the complete-
ness of the CUU model, EDGI can stop all TOCTTOU at-
tacks (no false negatives). Second, with careful handling 
of issues such as inference of invariant scopes and time-
outs, EDGI allows very few false positives.  Third, it does 
not require changes to applications or file system API by 
inferring automatically the scope of invariants to be pro-
tected.  Fourth, our modular implementation on Linux ker-
nel and its experimental evaluation show that EDGI carries 
little additional overhead. 

8. Acknowledgement 
This work was partially supported by NSF/CISE IIS and 
CNS divisions through grants CCR-0121643, IDM-
0242397 and ITR-0219902.  We also thank the anonymous 
ISSSE reviewers for their insightful comments. 

9. References 
[1] R. P. Abbott, J.S. Chin, J.E. Donnelley, W.L. Konigsford, S. 

Tokubo, and D.A. Webb. Security Analysis and Enhance-
ments of Computer Operating Systems. NBSIR 76-1041, In-
stitute of Computer Sciences and Technology, National 
Bureau of Standards, April 1976. 

[2] R. Bisbey and D. Hollingsworth. Protection Analysis Project 
Final Report. ISI/RR-78-13, DTIC AD A056816, 
USC/Information Sciences Institute, May 1978. 

[3] Matt Bishop and Michael Dilger. Checking for Race Condi-
tions in File Accesses. Computing Systems, 9(2):131–152, 
Spring 1996. 

[4] Matt Bishop. Race Conditions, Files, and Security Flaws; or 
the Tortoise and the Hare Redux. Technical Report 95-8, 
Department of Computer Science, University of California 
at Davis, September 1995. 

[5] Hao Chen, David Wagner. MOPS: an Infrastructure for Ex-
amining Security Properties of Software. In Proceedings of 
the 9th ACM Conference on Computer and Communica-
tions Security (CCS), Washington, DC, November 2002. 

[6] Crispin Cowan, Steve Beattie, Chris Wright, and Greg 
Kroah-Hartman. RaceGuard: Kernel Protection From Tem-
porary File Race Vulnerabilities. In Proceedings of the 10th 
USENIX Security Symposium, Washington DC, August 
2001. 

[7] Drew Dean and Alan J. Hu. Fixing Races for Fun and Profit: 
How to use access(2).  In Proceedings of the 13th USENIX 
Security Symposium, San Diego, CA, August 2004. 

[8] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hal-
lem. Checking System Rules Using System-Specific, Pro-
grammer-Written Compiler Extensions. In Proceedings of 
Operating Systems Design and Implementation (OSDI), 
September 2000. 

[9] Dawson Engler, Ken Ashcraft. RacerX: Effective, Static 
Detection of Race Conditions and Deadlocks. Proceedings 
of the Nineteenth ACM Symposium on Operating Systems 
Principles (SOSP'2003). 

[10] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. 
Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale 
and performance in a distributed file system, Transactions 
on Computer Systems, vol. 6, pp. 51-81, February 1988. 

[11] Calvin Ko, George Fink, Karl Levitt. Automated Detection 
of Vulnerabilities in Privileged Programs by Execution 
Monitoring. Proceedings of the 10th Annual Computer Se-
curity Applications Conference, page 134-144. 

[12] PostMark benchmark. 
http://www.netapp.com/tech_library/3022.html 

[13] Stefan Savage, Michael Burrows, Greg Nelson, Patrick So-
balvarro, and Thomas Anderson. Eraser: A Dynamic Data 
Race Detector for Multithreaded Programs. ACM Transac-
tions on Computer Systems, Vol. 15, No. 4, November 1997. 

[14] Eugene Tsyrklevich and Bennet Yee. Dynamic detection 
and prevention of race conditions in file accesses. In Pro-
ceedings of the 12th USENIX Security Symposium, pages 
243–256, Washington, DC, August 2003.  

[15] United States Computer Emergency Readiness Team, 
http://www.kb.cert.org/vuls/ 

[16] U.S. Department of Energy Computer Incident Advisory 
Capability. http://www.ciac.org/ciac/ 

[17] BUGTRAQ Archive http://msgs.securepoint.com/bugtraq/ 
[18] BUGTRAQ report RHSA-2000:077-03: esound contains a 

race condition. http://msgs.securepoint.com/bugtraq/ 
[19] Security holes in logwatch. 

http://xforce.iss.net/xforce/xfdb/8652. 
[20] Dennis R. McCarthy, Umeshwar Dayal. The Architecture 

Of An Active Data Base Management System. SIGMOD 
Conference 1989: 215-224 

[21] David Harel. Statecharts: A visual formalism for complex 
systems. Science of Computer Programming, 8(3):231–274, 
June 1987. 

[22] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris 
Maeda, Cristina Lopes, Jean-Marc Loingtier and John Irwin. 
Aspect-Oriented Programming. Proceedings European Con-
ference on Object-Oriented Programming, 1997. 

[23] Jinpeng Wei, Calton Pu. TOCTTOU Vulnerabilities in 
UNIX-Style File Systems: An Anatomical Study. 4th 
USENIX Conference on File and Storage Technologies 
(FAST '05), San Francisco, CA, December 2005. 

[24] Calton Pu, Jinpeng Wei. A theoretical study of TOCTTOU 
problem modeling. Submitted for publication. 

[25] S. Chen, J. Xu, E. C. Sezer, P. Gauriar and R. K. Iyer. Non-
Control-Data Attacks Are Realistic Threats. USENIX Secu-
rity Symposium, Baltimore, MD, August 2005. 

 


