
37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07) 

Multiprocessors May Reduce System Dependability under File-based Race 

Condition Attacks 
 

 

Jinpeng Wei and Calton Pu 

Georgia Institute of Technology 

{weijp,calton}@cc.gatech.edu 

 

 

Abstract 
 

Attacks exploiting race conditions have been 

considered rare and “low risk”. However, the 

increasing popularity of multiprocessors has changed 

this situation: instead of waiting for the victim process 

to be suspended to carry out an attack, the attacker 

can now run on a dedicated processor and actively 

seek attack opportunities. This change from fortuitous 

encountering to active exploiting may greatly increase 

the success probability of race condition attacks. This 

point is exemplified by studying the TOCTTOU (Time-

of-Check-to-Time-of-Use) race condition attacks in 

this paper. We first propose a probabilistic model for 

predicting TOCTTOU attack success rate on both 

uniprocessors and multiprocessors. Then we confirm 

the applicability of this model by carrying out 

TOCTTOU attacks against two widely used utility 

programs: vi and gedit. The success probability of 

attacking vi increases from low single digit percentage 

on a uniprocessor to almost 100% on a 

multiprocessor. Similarly, the success rate of attacking 

gedit jumps from almost zero to 83%. These case 

studies suggest that our model captures the sharply 

increased risks, and hence the decreased dependability 

of our systems, represented by race condition attacks 

such as TOCTTOU on the next generation 

multiprocessors. 
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1. Introduction 
 

Emerging multiprocessors such as SMP (Symmetric 

Multiprocessing) with multi-core processors expected 

to dominate the next generation PC and server markets.  

These multiprocessors offer significant performance 

and power consumption advantages, making them 

potentially more useful for secure systems.  For 

example, additional processors can be dedicated to 

computationally intensive deep packet inspection in 

IDS, IPS (Intrusion Detection and Prevention), and 

anti-virus scanners [11].  However, the use of the 

additional processing power by attackers to exploit 

known or new vulnerabilities has received less 

attention.  This paper demonstrates that a concrete class 

of exploits (file-based race condition called 

TOCTTOU) will see the success rate of attacks 

increase sharply from negligible to almost certainty.   

TOCTTOU (Time-of-Check-to-Time-of-Use) is a 

security problem known for more than 30 years [1][2].  

An illustrative example is sendmail, which used to 

check for a specific attribute of a mailbox file (e.g., it is 

not a symbolic link) before appending new messages. 

However, the checking and appending file system 

operations are not executed in an atomic transaction.  

Consequently, if an attacker (the mailbox owner) is 

able to replace his/her mailbox file with a symbolic link 

to /etc/passwd between the checking and appending 

steps by sendmail, then sendmail may be tricked into 

appending emails to /etc/passwd (assuming that 

sendmail runs as setuid root).  If successful, an attack 

message containing a syntactically correct /etc/passwd 

entry would give the attacker root access.  TOCTTOU 

vulnerabilities are widespread and cause serious 

consequences [24]. 

The check and use file system calls in the victim 

process of a TOCTTOU vulnerability are called 

TOCTTOU pairs [18][24].  The time between the two 

file system calls of a TOCTTOU pair is the window of 

vulnerability (or critical section) of the TOCTTOU 

vulnerability.  To succeed, an attacker process must 

complete the attack steps within the window of 

vulnerability of the victim process.  The success rate of 

a TOCTTOU attack thus depends on the scheduling 

events surrounding and during the window of 

vulnerability, making it a race condition between the 

victim and attacker processes.  Some attempts have 

been made to slow down the victim and increase the 

probability of success, examples include: (1) using 

slow storage devices (e.g. floppy disks); (2) using 



 

extremely long pathnames (e.g. file system mazes [3]); 

(3) using large files. This paper studies one method to 

make the attacker faster and reduce scheduling 

uncertainty by exploiting additional CPU resources 

available in multiprocessors.   

This paper offers two technical contributions.  The 

first is a probabilistic model for predicting TOCTTOU 

attack success rate, both for uniprocessors and 

multiprocessors. By comparing their different 

capabilities, the model shows that multiprocessors give 

an attacker more opportunities in winning the race.  

The second contribution is an experimental study and 

detailed event analysis of multiprocessor attacks on two 

recently found TOCTTOU vulnerabilities against 

popular applications: vi and gedit.  Both attacks have 

very low success rate on uniprocessors and almost 

certain success on a multiprocessor (nearly 100% for vi 

and up to 83% for gedit).  The gedit experiments 

demonstrate that when the vulnerability window is 

extremely small, the race condition moves to a lower 

level and the implementation of the attacker program 

becomes crucial. These analyses give a better 

understanding of the TOCTTOU attacks on 

multiprocessors.  The main conclusion of the paper is 

the confirmation of sharply increased risks represented 

by TOCTTOU attacks. 

The rest of this paper is organized as follows.  

Section 2 briefly introduces the TOCTTOU errors with 

vi and gedit which are the target of the attacks 

discussed in this paper.  Section 3 introduces a 

probabilistic model for TOCTTOU attack success rate.  

Section 4 summarizes our previous TOCTTOU attack 

experiments on uniprocessors as a baseline for 

comparison.  Section 5 describes TOCTTOU attacks 

against vi on a SMP.  Section 6 discusses TOCTTOU 

attacks against gedit on both a SMP and a multi-core.  

Section 7 describes an implementation technique that 

leverages parallelism opportunities provided by multi-

cores to significantly speedup the attack program.  

Section 8 summaries the related work and Section 9 

concludes the paper.  

 

2. Background: TOCTTOU Vulnerabilities 

in Unix-Style File Systems 
 

Recently, several new TOCTTOU vulnerabilities 

have been found in often-used utility programs such as 

vi, rpm, emacs and gedit [24]. In this section, we 

describe the TOCTTOU vulnerabilities with vi and 

gedit, which are the target of attacks presented in this 

paper. Each vulnerability is associated with a 

TOCTTOU pair (e.g., <open, chown>), where the first 

(check) call is used to establish some invariant about a 

file object (e.g. the file exists), and the second (use) 

call is an operation on that same file assuming that the 

invariant is still valid. 

 

 
Figure 1: vi 6.1 vulnerability (fileio.c) 

 

 
Figure 2: A program to attack vi 

 

2.1. The vi Vulnerability and Attack Scheme 
 

The Unix “visual editor” vi is a widely used text 

editor in many UNIX-style environments. For example, 

Red Hat Linux distribution includes vi 6.1. We found 

that if vi is run by root to edit a file owned by a normal 

user, then the normal user may become the owner of 

sensitive files such as /etc/passwd. The problem can be 

summarized as follows. When vi saves the file 

(wfname) being edited, it first renames the original file 

to a backup, then creates a new file under the original 

name (wfname in Figure 1). The new file is closed after 

all the content in the edit buffer has been written to it. 

Because this new file is created by root (vi runs as 

root), its initial user is set to root, so vi needs to change 

its owner back to the original user (the normal user). 

This forms a <open, chown> window of vulnerability 

every time vi saves the file (Figure 1). During this 

window, if the normal user (also the attacker) could 

replace wfname with a symbolic link to /etc/passwd, vi 

can be tricked into changing the owner of /etc/passwd 

to the normal user. A typical attack of this vulnerability 

is to constantly check the ownership of file wfname, 

and replace wfname when its owner becomes root 

(Figure 2). 

 

2.2. The gedit Vulnerability and Attack 

Scheme 
 

gedit [10] is a text editor for the GNOME desktop 

environment. We find that gedit 2.8.3 (the current 

distribution in Debian and Redhat Linux) has a 

while ((fd = mch_open((char *)wfname, …) 

…… 

chown((char*)wfname, st_old.st_uid, st_old.st_gid); 

1  while (!finish){ 

2     if (stat(wfname, &stbuf) == 0){ 

3        if ((stbuf.st_uid == 0) && (stbuf.st_gid == 0)) 

4          {    

5               unlink(wfname); 

6               symlink(“/etc/passwd”, wfname); 

7               finish = 1; 

8          } 

9     } 

10 } 



 

<rename, chown> TOCTTOU vulnerability (See 

Figure 3). This happens when gedit is run by root to 

edit a file (real_filename) owned by a normal user (also 

the attacker), and gedit saves the file. What happens is 

gedit first saves the current buffer content to a 

temporary scratch file (temp_filename), then renames 

the scratch file to the original file real_filename (after 

backing up the original file properly). Because the 

scratch file is created by root, the owner of the just 

saved file (real_filename) is root, so gedit needs to 

change its owner back to the original user. This forms a 

<rename, chown> vulnerability window. An attack 

(Figure 4) against this vulnerability is essentially the 

same as the attack against vi in Section 2.1. 

 
Figure 3: gedit 2.8.3 TOCTTOU vulnerability 

(gedit-document.c) 
 

 
Figure 4: gedit attack program version 1 

 

2.3. Discussion 
 

From the description above, we can see that a 

successful attack against vi and gedit requires the 

following preconditions: (1) The attacker has an 

account on the system. (2) The system administrator 

edits a file belonging to the attacker. (3) The system 

administrator makes the mistake of logging in as ‘root’ 

instead of the attacker’s uid. (4) The attacker makes a 

reasonable guess about which editor the administrator 

will use. Such a list of preconditions seems to suggest 

that a TOCTTOU attack can not easily succeed. 

However, there are many kinds of TOCTTOU 

vulnerabilities (e.g., 224 for Linux), and depending on 

how the victim program is implemented, some 

TOCTTOU vulnerabilities are much easier to attack 

than those discussed here [15]. Interested readers are 

referred to [18] and [24] for more information. The 

point of this paper is that once these preconditions are 

satisfied, the attacker can succeed much easier on a 

multiprocessor than on a uniprocessor. 

 

3. A Probabilistic Model for 

Predicting TOCTTOU Attack Success Rate 
 

3.1. The Basic General Model 
 

A TOCTTOU attack succeeds when the attacker is 

able to modify the mapping from file name to disk 

block within the vulnerability window. In order to 

succeed, the attacker must first find the vulnerability 

window, and then change the file mapping. Therefore, 

our model divides the attacker program into two parts: 

(1) a detection part that finds the beginning of the 

vulnerability window, and (2) an attack part that 

modifies the file mapping. 

One of the critical issues is whether the victim is 

suspended within the vulnerability window, since the 

suspension increases substantially the success rate.  

Based on the law of total probability, the attack success 

rate: 

 
In order for the attack to succeed, the attacker 

program must be scheduled within the vulnerability 

window and the attack must finish within the 

vulnerability window, so 

 
We can derive P(attack succeeds | victim not 

suspended) in a similar way and get the refined 

probability in Equation 1. 

In Equation 1, all the events are under the context of 

the victim vulnerability window. e.g. ‘attack finished’ 

means ‘attack finished within the vulnerability 

window’. 

 
Equation 1: The probability of a successful 

TOCTTOU attack 
 

3.2. Attack Success Rate on a Uniprocessor 
 

On a uniprocessor, P(attack scheduled | victim not 

suspended) = 0 since it is impossible to schedule the 

attacker when the victim is running. Therefore on a 

1  while (!finish){ 

2     if (stat(real_filename, &stbuf) == 0){ 

3        if ((stbuf.st_uid == 0) && (stbuf.st_gid == 0)) 

4          {    

5               unlink(real_filename); 

6               symlink(“/etc/passwd”, real_filename); 

7               finish = 1; 

8          } 

9     } 

10 } 

if (rename (temp_filename, real_filename) != 0){ 

… } 

chmod (real_filename, st.st_mode); 

chown (real_filename, st.st_uid, st.st_gid);         

P(attack succeeds | victim suspended) = P(attack scheduled 

● attack finished | victim suspended)  

= P(attack scheduled | victim suspended) * P(attack finished 

| victim suspended) 

P(attack succeeds) = P(victim suspended) * P(attack 

succeeds | victim suspended) + P(victim not suspended) * 

P(attack succeeds | victim not suspended) 

P(attack succeeds) = P(victim suspended) * P(attack 

scheduled | victim suspended) * P(attack finished | victim 

suspended)  

+ P(victim not suspended) * P(attack scheduled | victim not 

suspended) * P(attack finished | victim not suspended) 



 

uniprocessor the second part of Equation 1 contributes 

nothing to the success rate. E.g., P(attack succeeds) = 

P(victim suspended) * P(attack scheduled | victim 

suspended) * P(attack finished | victim suspended). 

Several observations can be made about P(attack 

succeeds) on a uniprocessor: 

• P(attack succeeds) ≤ P(victim suspended).  The 

probability that the victim is suspended within its 

vulnerability window gives an upper bound for the 

attack success rate.  If the victim is always 

suspended (e.g. rpm in [24]), the attacker can 

achieve a success rate as high as 100%.  In 

contrast, if the victim is rarely suspended (e.g. 

gedit in Section 2.2), the attack success rate can be 

near zero. 

• P(attack scheduled | victim suspended) is the 

probability that the attacker process gets scheduled 

when the victim relinquishes CPU. This value 

depends on several factors such as the readiness of 

the attacker, the system load (if round-robin 

scheduling is used), or the priority of the attacker 

(if priority-based scheduling is used). Typically in 

a lightly loaded environment this value can be 

nearly 100% if the attacker program uses an 

infinite loop actively looking for the exploit 

opportunity. 

• P(attack finished | victim suspended) is the 

probability that the attacker successfully modifies 

the file mapping while the victim is suspended. 

Since there is only one CPU, as long as the attack 

part is not interrupted, this probability can be 

100%. Typically this is the case because modifying 

the file mapping requires very short processing 

time and needs not block on I/O. 

Based on the above analysis, the attack success rate 

is mainly determined by P(victim suspended) on a 

uniprocessor system, and the implementation of the 

attack part is relatively less critical. 

 

3.3. Attack Success Rate on Multiprocessors 
 

On multiprocessors, the attacker can run on a 

different processor than the victim when the victim is 

running within its vulnerability window.  This makes 

the second part of Equation 1 non-zero, i.e., P(attack 

scheduled | victim not suspended) > 0.  This fact 

increases the success rate of TOCTTOU attacks on 

multiprocessors as compared to uniprocessors.  If 

P(victim suspended) is relatively large, then the success 

rate on multiprocessors may not increase significantly.  

However, if P(victim suspended) is very small 

(approaching 0), then P(victim not suspended) 

approaches 1, and the gain due to the second part of 

P(attack succeeds) may become very significant. 

Therefore for an attacker, the benefit of having 

multiprocessors is maximized when the victim is rarely 

suspended in the vulnerability window.  An analysis of 

the second part of Equation 1 shows that: 

• P(attack scheduled | victim not suspended) is 

similar to P(attack scheduled | victim suspended) 

discussed in Section 3.2. The conclusion is that it 

can be as high as 100%. 

• P(attack finished | victim not suspended) is the 

probability that the attack is finished within the 

vulnerability window.  Since the victim is running 

concurrently with the attacker, the result of the 

attack depends on the relative speed of the attacker 

and the victim, a more detailed analysis is needed 

(next Section). 

 

3.4. Probabilistic Analysis of P(attack finished 

| victim not suspended) 
 

In order to predict P(attack finished | victim not 

suspended) in more detail, we analyze the race 

condition at different levels: the first level is CPU, 

which is the main contention in uniprocessor attacks; 

the next level is file object, because the file system 

already has a synchronization mechanism to regulate 

shared accesses. In Unix-style file systems, the 

modifications to an inode are synchronized by a 

semaphore. Since the operations of the victim and the 

attacker on the shared file modify the same inode, they 

both need to acquire the same semaphore.  In this case, 

the race is reduced to the competition for the 

semaphore and we can model the success rate of the 

attack in the following way. 

In this model, we assume that the attacker runs in a 

tight loop (the detection part), waiting for the 

vulnerability window of the victim to appear. Let D be 

the time consumed by each iteration of detection part, 

and let 1t  be the earliest start time for a successful 

detection and 2t  be the latest start time for a successful 

detection followed by a successful attack (e.g. the 

attacker acquires the semaphore first). 1t  and 2t  are 

determined by the victim process. Some observations 

can be made as follow (Figure 5): 

A successful attack starts with a successful detection 

as its precondition. This successful detection may start 

as early as 1t  (Figure 5, case (a)), and as late as Dt +1  

(Figure 5, case (f)). Then the interval ),[ 11 Dtt +  is our 

sample space. Out of this interval ),[ 11 Dtt + , if the 

detection is started before 2t , the attack succeeds 



 

(Figure 5, cases (a) through (c)); otherwise the attack 

fails (Figure 5, cases (d) through (f), because the attack 

is launched too late). Let’s assume a uniform 

distribution for the start time of the detection part, the 

success rate is thus 
D

tt 12 − . 

In Figure 5 we assume that ),[ 112 Dttt +∈ . Two 

other cases are: 

• If 12 tt < , then the success rate is 0; 

• If Dtt +≥ 12 , then the success rate is 1. 

Let 12 ttL −= , and we get: 

The success rate = 


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In formula (1), L measures the laxity of the 

successful attacks, which is a characterization of the 

victim: the larger L, the more vulnerable the victim. D 

is a characterization of the detection part of the 

attacker: the smaller D, the faster the attacker, and the 

higher success rate. So L/D gives a very useful 

measurement of the relative speed of the victim and the 

attacker. 

It should be noted that L and D in formula (1) are 

not strictly constant, because the executions of the 

victim as well as the attacker are interleaved with other 

events (e.g. kernel timers) in the system. That is, the 

running environment imposes variance on these 

parameters. So formula (1) only offers a statistical 

guidance about the attack success rate. 

 
Figure 5: Different attack scheduling on a 

multiprocessor 
 

4. Baseline Measurements of TOCTTOU 

Attacks on Uniprocessors 
 

For comparison purposes, in this section we 

summarize the measured success rates of vi and gedit 

TOCTTOU attacks on uniprocessors from [24]. 

 

4.1. vi Attack Experiments on Uniprocessors 
 

Since the vi vulnerability window includes the 

writing of a whole file, the size of the window naturally 

depends on the file size. The measured success rates 

for file sizes ranging from 20KB to 10MB are the 

following: 

• When the file size is small (from 100KB to 1MB), 

there is a rough correlation between attack success 

rate and file size, as shown in Figure 6.  However, 

the correlation disappears for larger file sizes (e.g., 

between 2MB to 3MB), showing that file size 

alone does not determine the success rate 

completely.  

• Besides file size, we studied other factors (e.g., I/O 

operation, CPU slicing, and preemption by higher 

priority kernel threads) that corroborate the non-

deterministic nature of TOCTTOU attacks on a 

uniprocessor [24]. 

From Figure 6 we can see that for normal file sizes 

(Using vi to edit a 2MB text file is considered rare in 

real life), the success rate can be as low as 1.5% and as 

high as 18%. Furthermore, when the file size 

approaches 0, the success rate also approaches 0. 
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Figure 6: Success rate of attacking vi (small 

files) on a uniprocessor 
 

4.2. gedit Attack Experiment on Uniprocessors 
 

The experiments in which a TOCTTOU attack was 

carried out against the gedit vulnerability saw no 

successes. This is because the gedit vulnerability 

window (Figure 3) does not include the writing of the 

new file as in vi, so it is much shorter and bears no 

relationship to the file size. These factors reduced the 

success rate for gedit attacks to essentially zero on a 

uniprocessor. 
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5. vi Attack Experiments on SMP 
 

We repeated the vi attack experiments described in 

Section 4.1 on a SMP machine (2 Intel Xeon 1.7GHz 

CPUs, 512MB main memory, and 18.2GB SCSI disk 

with ext3 file system).  

First we tried different file sizes ranging from 20KB 

to 1MB with a stepping size of 20KB, and observed the 

success rate of 100% for all file sizes.  This confirms 

the probabilistic predictions in Section 3.3 and shows 

that a multiprocessor greatly increases the attacker’s 

chance of success compared to a uniprocessor (Figure 

6 in Section 4.1).   We did a detailed event analysis to 

confirm the attacker and victim processes ran on 

separate CPUs during the vulnerability window. We 

also eliminated the possibility that the attack success is 

due to the victim being blocked on I/O operations 

(which would have made the attack easier).  

Consequently, we conclude that the attack success is 

due to the length of vi vulnerability window being 

much larger than the time it takes the attacker to finish 

the attack steps (file name redirection).  
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Figure 7: The L and D values for vi SMP attack 

experiments 
 

Figure 7 shows the L and D values (Section 3.4) for 

the vi attack experiments that we conducted on the 

SMP. We can see that L >> D when the file is large 

(e.g.1MB); and the difference (L – D) decreases as the 

file size decreases. But (L – D) is always positive, even 

when the file size becomes very small. Therefore we 

can say with almost certainty that for vi attack 

experiments, L > D. By formula (1) we know that the 

success rate of vi attacks is almost 100% all the time. 

One thing to notice from Figure 7 is that as the file 

size approaches 0, the difference (L – D) also 

approaches 0. Is it possible that L becomes smaller 

than D? Then according to formula (1) the attack 

success rate will be smaller than 100%. 

To see this we run the experiment again with the 

smallest files (only 1 byte each). And the success rate 

we get is around 96%. Again we did a detailed event 

analysis of this experiment. We measure the average L 

and D values and put them in Table 1. We can see that 

although L > D in these attacks, they have become very 

close. If we consider the fact that the values for L and 

D are not strictly constant due to the environmental 

influence, we realize that whether L > D all the time 

becomes questionable when they are close enough 

(When L >> D the inaccuracy introduced by the 

environment does not change the relationship). This 

helps to explain why the success rate can not be 100% 

when the file contains only 1 byte. 

Another point is that so far we actually treat 

P(attack finished | victim not suspended) in Section 3.4 

as the sole basis for predicting the success rate, which 

is not always accurate (Equation 1). The justification is 

that when the vi vulnerability window is large enough, 

the effect of other factors in Equation 1 is negligible. 

For example, P(attack scheduled | victim not 

suspended) < 100% in general which means that the 

attacker may not be scheduled during sometime in the 

vulnerability window. However, if the vulnerability 

window is very large, the attacker is still within it when 

he/she is scheduled eventually. That is, the temporary 

suspension does not affect the result of the attack. 

However, when the vulnerability window becomes 

small enough (e.g. L and D become close enough), the 

suspension may cause the attacker to miss the 

vulnerability window. In such a case the attack fails, 

thus the suspension changes the attack result. 

In several of the failed 1-byte vi experiments, we 

find that some other processes prevents the attacker 

from being scheduled on another CPU during the vi 

vulnerability window. 

This analysis tells us that although using a 

multiprocessor can greatly increase the attack’s chance 

of success, the success is still not guaranteed: the attack 

is still influenced by other environmental factors such 

as kernel activities and system load. However, 96% is 

more than enough for an attacker. 

 

Table 1: The average L and D values (in 
microseconds) for vi SMP attack experiments 

(file size = 1 byte) 

 Average Stdev 

L 61.6 3.78 

D 41.1 2.73 

 

6. gedit Attack Experiments on 

Multiprocessors 
 

6.1. gedit SMP Attack Event Analysis 
 



 

As mentioned in Section 4.2, our attack experiments 

against gedit on uniprocessors saw no successes. 

However, when we try this attack on a SMP (the same 

machine as in Section 5), we get roughly 83%, a 

surprisingly high success rate. A detailed event analysis 

is thus conducted to understand this result. 

For the gedit attack, we have observed that if the 

attacker’s unlink is invoked before gedit’s chmod 

(Figure 3 and Figure 4), then attack succeeds. This is 

because these two system calls compete for the same 

semaphore, so if unlink wins, chmod as well as the 

following chown will be delayed. As a result the 

attacker’s unlink and symlink can have enough time to 

finish before gedit’s chown. On the other hand, if 

unlink loses, unlink and the following symlink of the 

attacker will be delayed, so the attack will fail. So there 

is an interesting cascading effect in gedit attack 

experiment. Therefore, for gedit attacks, 1t  is 

somewhere within the execution of rename (the 

attacker does not need to wait until the end of rename 

to see that real_filename has been created), D is the 

interval between the start of stat and the start of 

unlink. Let 3t  be the start of chmod, then Dtt −= 32 , 

and 1312 tDtttL −−=−= . We experimentally get the 

L and D values as in Table 2. 

Table 2: L and D values for gedit attacks on a 
SMP (in microseconds) 

 Average Stdev 

L 11.6 3.89 

D 32.7 2.83 

The calculation of L here is not accurate because the 

estimation of 1t  is not accurate. Currently 1t  is 

established as the earliest observed start time of stat 

which indicates a vulnerability window. So it may not 

be optimal. An earlier (thus smaller) 1t  will result in a 

larger L. So the success rate indicated by Table 2 

(35%) may be overly conservative compared to the 

observed success rate. 

An important contributing factor to L is the 

computation time between the end of rename and the 

start of chmod. The average length of this computation 

is 43 microseconds. As we will see in Section 6.2, this 

factor is very important for the high success rate of 

gedit attack on the SMP. 

There is another contributing factor. Usually when 

gedit’s chmod is blocked, the Linux kernel will try to 

schedule something else to run (e.g. internal kernel 

events such as soft IRQs, kernel timers and tasklets), 

which further lengthens gedit vulnerability window 

(but this contributes just a little to the delay compared 

with that due to the semaphore). 

 

6.2. gedit Multicore Attack Experiment 
 

6.2.1. Attack one 

 

We repeat the gedit attack (Figure 4) on a multi-

core (Dell Precision 380 with 2 Intel Pentium D 3.2 

GHz dual-core and Hyper-Threading CPUs, 4GB main 

memory, and 80GB SCSI disk with ext3 file system). 

We get very different result: now we see almost no 

success in the same attack experiment. The main 

change in the situation is that the victim spends much 

less time between rename and chmod (3 microseconds 

vs. 43 microseconds), so chmod happens before 

unlink of the attacker, but in the SMP experiment 

(Section 6.1) situation is the opposite. 

Figure 8 shows the important system events during 

one failed attack on the multi-core. The upper bar 

corresponds to the execution of gedit (rename, chmod, 

chown) and the lower bar corresponds to that of the 

attacker (stat, unlink, symlink). Notice that the gap 

(the computation) between rename and chmod of gedit 

is only 3 microseconds, but the gap between stat and 

unlink of the attacker is 17 microseconds. It is because 

of this relatively larger gap that the attacker’s unlink is 

called later than the victim’s chmod. Actually we can 

see that unlink is called later than chown and as a 

result unlink has to wait on the semaphore during its 

execution. The 17 microsecond gap of the attacker 

includes 11 microseconds of computation and 6 

microseconds of system trap processing (page fault). 

Speaking in terms of D, these 17 microseconds are 

counted so D is around 22. On the other hand L is 

around 193 −=− D , so according to formula (1) the 

attack success rate is probably 0. Putting this in another 

way, the victim is now much faster than the attacker, so 

it is very difficult for the attacker to win the race. 

 
Figure 8: Failed gedit attack (program 1) on a 

multi-core 
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6.2.2. Attack Two 

 

We think that the 17 microsecond gap in Figure 8 is 

mainly responsible for the low success rate. If we could 

reduce the length of this gap then the situation may 

change. A source code analysis tells us that before the 

vulnerability window the true branch of statement 3 in 

Figure 4 (statements 5 to 7) is never taken. Once the 

vulnerability window starts, the true branch of 

statement 3 is taken, and then statement 5 (unlink) is 

about to be executed. Right at this point the attacker 

program encounters a trap (page fault). We figure out 

that this effect is due to the memory management for 

shared libraries in Linux.  Specifically, in Linux all 

system calls are through libc, which is a dynamic 

library shared among user-level applications. To save 

physical memory, Linux kernel keeps only one copy of 

libc in physical memory, and its virtual memory 

mechanism maps the pages of this copy to the address 

space of an application on demand. For example, the 

physical page containing the wrapper for unlink is 

mapped into an application’s address space when this 

application first invokes unlink. This mapping is 

preceded by a trap (page fault) and the corresponding 

handler routine carries out the mapping. This is exactly 

what happens in Figure 4, where unlink is first invoked 

when the true branch of statement 3 is taken. As a 

consequence, if we intentionally invoke unlink (and 

symlink although it seems to be on the same page as 

unlink) before the true branch of statement 3 is taken, 

we may remove the trap (page fault). 

 
Figure 9: gedit attack program version 2 

 

So we re-implement the attacker program as shown 

in Figure 9. Now unlink and symlink are called no 

matter the vulnerability window appears or not. The 

only trick is to switch in the correct file name when it 

does appear. 

Then we perform the gedit attack experiment again 

using the program in Figure 9. And we begin to see 

many successes! 

We plot the important system events during one 

successful gedit attack in Figure 10, similar to Figure 8. 

We can see that now the gap between stat and unlink 

of the attacker has decreased to 2 microseconds: the 

trap has disappeared. On the other hand, the gap 

between rename and chmod of gedit is 2 

microseconds. So the attacker has a very narrow chance 

of winning the race. In this particular case, the attacker 

wins because his/her stat starts well before the end of 

rename, so he/she identifies the vulnerability window 

at the first moment, and invokes unlink ahead of 

chmod. Has the attacker been 2 microseconds later, the 

attack would fail. 

Notice that during this attack the running time of 

stat has been lengthened to 26 microseconds (typically 

it needs 4 microseconds), probably due to some other 

more complicated race condition (For example the 

contention for directory entries along the path name). 

We are not quite clear about the reason but this does 

not change the applicability of formula (1) because 

now we have a much earlier 1t  (27 microseconds into 

rename), which makes a L value of at least 1 

microseconds. 

This experience tells us that on multiprocessors the 

implementation of the attacker program can be very 

critical in determining the attack success rate, 

especially when the vulnerability window is very 

narrow. 

 
Figure 10: Successful gedit attack (program 2) 

on a multi-core 
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steps of the attack (stat, unlink, symlink), unlink is 

the most time-consuming.  A closer look into the file 

system source code shows that actually symlink needs 

not wait on the completion of unlink. Instead symlink 

can begin once the inode has been detached from the 

directory by unlink, which happens relatively early.  

(The main part of unlink is spent physically truncating 

the file.)  This observation shows that on a 

multiprocessor, the attacker can distribute its attack 

steps to multiple CPUs to speed up the attack part and 

increase its success rate. 

To confirm this hypothesis, we implemented a 

multithreaded gedit attack program with two threads: 

the first thread carries out the stat, unlink steps and the 

second thread carries out the symlink step 

asynchronously. Figure 11 shows the effect of 

parallelizing the attack program for three different file 

sizes. For each file size (e.g. 500KB), there are three 

bars: the first two bars correspond to the execution of 

the two threads in a parallelized attack program, and 

the third bar corresponds to the execution of the normal 

sequential attack program.  In the parallelized attack, 

symlink can finish (and so does the attack) well before 

the end of unlink.  This is in contrast to the sequential 

attack, where symlink has to wait until unlink finishes.  

The comparison between the end times of symlink 

shows that leveraging on the parallelism provided by a 

multiprocessor can greatly reduce the amount of time 

needed for a successful attack.  This is especially 

important when the vulnerability window is very 

narrow so the attacker needs to be very fast. This 

experiment shows one feasible way of doing it. 

 

 
Figure 11: The effect of parallelizing the attack 

program 
 

8. Related Work 
 

TOCTTOU is one example of race condition 

problem. In general, every shared resource has the 

potential for such problems [23].  Percival [17] shows 

that shared access to memory caches in Hyper-

Threading technology allows a malicious thread to steal 

RSA keys. Similar attacks have also been reported on 

AES [16]. While carrying out such attacks do not rely 

on multiprocessors, it would be interesting to see if 

they become easier on multiprocessors. 

Timing attacks have long been used to infer secret 

keys in cryptosystems [4][13][21]. This kind of attacks 

share a common attribute with TOCTTOU attacks - 

both try to infer something about the victim. The 

difference between them is that the former only read 

(steal) information from the victim to violate its 

confidentiality but the latter modify the information 

used by the victim to violate its integrity. 

TOCTTOU vulnerabilities can be detected in two 

ways: static analysis or dynamic analysis. The first 

approach analyzes the application source code to find 

TOCTTOU pairs. One such tool is MOPS [5] which 

uses model checking and is able to find 41 TOCTTOU 

bugs in an entire Linux distribution [20]. Other 

potentially useful techniques include compiler 

extensions [8][9]. The main difficulty with these static 

tools is high false positive rate. The second approach to 

detect TOCTTOU vulnerabilities is dynamic 

monitoring and analysis. These tools can be further 

classified into dynamic online detection tools such as 

[14] and [19] and post mortem analysis tools such as 

[12] and [24]. Compared to static analysis, dynamic 

analysis has lower false positive rate, but it suffers from 

false negatives because the search space is incomplete. 

The high success rate of exploiting TOCTTOU 

vulnerabilities calls for effective defense against such 

attacks. Various technical remedies have been 

suggested, including setting proper file/directory 

permissions, randomizing file names, replacing 

mktemp() with mkstemp(), and using a strict umask to 

protect temporary directories.  However, none of these 

fixes can be considered a comprehensive solution for 

TOCTTOU vulnerabilities. 

There have been specialized mechanisms such as 

RaceGuard [6] and a probabilistic approach [7] which 

protect particular TOCTTOU pairs. Pseudo-transaction 

[22] is a more generic mechanism to protect some 

classes of TOCTTOU vulnerabilities. We have 

proposed a complete defense against TOCTTOU 

attacks called EDGI (Event Driven Guarding if 

Invariants) [18]. The details of EDGI are out of the 

scope of this paper. 

 

9. Conclusion 
 

TOCTTOU (Time-of-Check-to-Time-of-Use) is a 

file-based race condition that can cause serious 
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consequences.  However, traditionally TOCTTOU 

vulnerabilities have been considered “low risk” 

because the success rate of exploits appears to be low 

and results non-deterministic.  This paper shows that in 

multiprocessor environments, the uncertainty due to 

scheduling is greatly reduced for an attacker sitting on 

a dedicated CPU; as a result some TOCTTOU attacks 

can have very high success rates.  Thus TOCTTOU 

attacks on multiprocessors are practical security 

threats. 

The first contribution of this paper is a probabilistic 

model for TOCTTOU attack success rate. It predicts 

the probability of success of a TOCTTOU attack.  It 

provides a basic guideline for modeling TOCTTOU 

attacks and performing experiments, showing higher 

success rates on a multiprocessor compared to a 

uniprocessor.  This model can be applied to many race 

condition attacks, not just TOCTTOU. 

The second contribution of this paper is a set of 

attack experiments against two concrete and well 

known applications: vi and gedit. The vi experiments 

show that even for the smallest files involved in the 

vulnerability window, the attacker can achieve nearly 

100% success rate on a multiprocessor, compared to 

low single digit percentages on uniprocessors.  The 

gedit experiments demonstrate that when the 

vulnerability window is extremely small, the race 

moves to a lower level and the implementation of the 

attacker program becomes very important.  The gedit 

experiments show a success rate of up to 83% 

compared to essentially zero on uniprocessors. These 

experiments corroborate our probabilistic model. 

Our main conclusion is that an attacker can exploit 

the parallelism provided by multiprocessors to achieve 

more effective and more efficient attacks. More 

generally, our model and experiments show that 

multiprocessors can potentially reduce overall system 

dependability, so we should re-evaluate the risks of 

known vulnerabilities and effectiveness of security 

mechanisms in multiprocessor environments. 
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