
37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)

Multiprocessors May Reduce System Dependability under File-based Race

Condition Attacks

Jinpeng Wei and Calton Pu

Georgia Institute of Technology

{weijp,calton}@cc.gatech.edu

Abstract

Attacks exploiting race conditions have been

considered rare and “low risk”. However, the

increasing popularity of multiprocessors has changed

this situation: instead of waiting for the victim process

to be suspended to carry out an attack, the attacker

can now run on a dedicated processor and actively

seek attack opportunities. This change from fortuitous

encountering to active exploiting may greatly increase

the success probability of race condition attacks. This

point is exemplified by studying the TOCTTOU (Time-

of-Check-to-Time-of-Use) race condition attacks in

this paper. We first propose a probabilistic model for

predicting TOCTTOU attack success rate on both

uniprocessors and multiprocessors. Then we confirm

the applicability of this model by carrying out

TOCTTOU attacks against two widely used utility

programs: vi and gedit. The success probability of

attacking vi increases from low single digit percentage

on a uniprocessor to almost 100% on a

multiprocessor. Similarly, the success rate of attacking

gedit jumps from almost zero to 83%. These case

studies suggest that our model captures the sharply

increased risks, and hence the decreased dependability

of our systems, represented by race condition attacks

such as TOCTTOU on the next generation

multiprocessors.

Keywords: Probabilistic Modeling, Race Condition

1. Introduction

Emerging multiprocessors such as SMP (Symmetric

Multiprocessing) with multi-core processors expected

to dominate the next generation PC and server markets.

These multiprocessors offer significant performance

and power consumption advantages, making them

potentially more useful for secure systems. For

example, additional processors can be dedicated to

computationally intensive deep packet inspection in

IDS, IPS (Intrusion Detection and Prevention), and

anti-virus scanners [11]. However, the use of the

additional processing power by attackers to exploit

known or new vulnerabilities has received less

attention. This paper demonstrates that a concrete class

of exploits (file-based race condition called

TOCTTOU) will see the success rate of attacks

increase sharply from negligible to almost certainty.

TOCTTOU (Time-of-Check-to-Time-of-Use) is a

security problem known for more than 30 years [1][2].

An illustrative example is sendmail, which used to

check for a specific attribute of a mailbox file (e.g., it is

not a symbolic link) before appending new messages.

However, the checking and appending file system

operations are not executed in an atomic transaction.

Consequently, if an attacker (the mailbox owner) is

able to replace his/her mailbox file with a symbolic link

to /etc/passwd between the checking and appending

steps by sendmail, then sendmail may be tricked into

appending emails to /etc/passwd (assuming that

sendmail runs as setuid root). If successful, an attack

message containing a syntactically correct /etc/passwd

entry would give the attacker root access. TOCTTOU

vulnerabilities are widespread and cause serious

consequences [24].

The check and use file system calls in the victim

process of a TOCTTOU vulnerability are called

TOCTTOU pairs [18][24]. The time between the two

file system calls of a TOCTTOU pair is the window of

vulnerability (or critical section) of the TOCTTOU

vulnerability. To succeed, an attacker process must

complete the attack steps within the window of

vulnerability of the victim process. The success rate of

a TOCTTOU attack thus depends on the scheduling

events surrounding and during the window of

vulnerability, making it a race condition between the

victim and attacker processes. Some attempts have

been made to slow down the victim and increase the

probability of success, examples include: (1) using

slow storage devices (e.g. floppy disks); (2) using

extremely long pathnames (e.g. file system mazes [3]);

(3) using large files. This paper studies one method to

make the attacker faster and reduce scheduling

uncertainty by exploiting additional CPU resources

available in multiprocessors.

This paper offers two technical contributions. The

first is a probabilistic model for predicting TOCTTOU

attack success rate, both for uniprocessors and

multiprocessors. By comparing their different

capabilities, the model shows that multiprocessors give

an attacker more opportunities in winning the race.

The second contribution is an experimental study and

detailed event analysis of multiprocessor attacks on two

recently found TOCTTOU vulnerabilities against

popular applications: vi and gedit. Both attacks have

very low success rate on uniprocessors and almost

certain success on a multiprocessor (nearly 100% for vi

and up to 83% for gedit). The gedit experiments

demonstrate that when the vulnerability window is

extremely small, the race condition moves to a lower

level and the implementation of the attacker program

becomes crucial. These analyses give a better

understanding of the TOCTTOU attacks on

multiprocessors. The main conclusion of the paper is

the confirmation of sharply increased risks represented

by TOCTTOU attacks.

The rest of this paper is organized as follows.

Section 2 briefly introduces the TOCTTOU errors with

vi and gedit which are the target of the attacks

discussed in this paper. Section 3 introduces a

probabilistic model for TOCTTOU attack success rate.

Section 4 summarizes our previous TOCTTOU attack

experiments on uniprocessors as a baseline for

comparison. Section 5 describes TOCTTOU attacks

against vi on a SMP. Section 6 discusses TOCTTOU

attacks against gedit on both a SMP and a multi-core.

Section 7 describes an implementation technique that

leverages parallelism opportunities provided by multi-

cores to significantly speedup the attack program.

Section 8 summaries the related work and Section 9

concludes the paper.

2. Background: TOCTTOU Vulnerabilities

in Unix-Style File Systems

Recently, several new TOCTTOU vulnerabilities

have been found in often-used utility programs such as

vi, rpm, emacs and gedit [24]. In this section, we

describe the TOCTTOU vulnerabilities with vi and

gedit, which are the target of attacks presented in this

paper. Each vulnerability is associated with a

TOCTTOU pair (e.g., <open, chown>), where the first

(check) call is used to establish some invariant about a

file object (e.g. the file exists), and the second (use)

call is an operation on that same file assuming that the

invariant is still valid.

Figure 1: vi 6.1 vulnerability (fileio.c)

Figure 2: A program to attack vi

2.1. The vi Vulnerability and Attack Scheme

The Unix “visual editor” vi is a widely used text

editor in many UNIX-style environments. For example,

Red Hat Linux distribution includes vi 6.1. We found

that if vi is run by root to edit a file owned by a normal

user, then the normal user may become the owner of

sensitive files such as /etc/passwd. The problem can be

summarized as follows. When vi saves the file

(wfname) being edited, it first renames the original file

to a backup, then creates a new file under the original

name (wfname in Figure 1). The new file is closed after

all the content in the edit buffer has been written to it.

Because this new file is created by root (vi runs as

root), its initial user is set to root, so vi needs to change

its owner back to the original user (the normal user).

This forms a <open, chown> window of vulnerability

every time vi saves the file (Figure 1). During this

window, if the normal user (also the attacker) could

replace wfname with a symbolic link to /etc/passwd, vi

can be tricked into changing the owner of /etc/passwd

to the normal user. A typical attack of this vulnerability

is to constantly check the ownership of file wfname,

and replace wfname when its owner becomes root

(Figure 2).

2.2. The gedit Vulnerability and Attack

Scheme

gedit [10] is a text editor for the GNOME desktop

environment. We find that gedit 2.8.3 (the current

distribution in Debian and Redhat Linux) has a

while ((fd = mch_open((char *)wfname, …)

……

chown((char*)wfname, st_old.st_uid, st_old.st_gid);

1 while (!finish){

2 if (stat(wfname, &stbuf) == 0){

3 if ((stbuf.st_uid == 0) && (stbuf.st_gid == 0))

4 {

5 unlink(wfname);

6 symlink(“/etc/passwd”, wfname);

7 finish = 1;

8 }

9 }

10 }

<rename, chown> TOCTTOU vulnerability (See

Figure 3). This happens when gedit is run by root to

edit a file (real_filename) owned by a normal user (also

the attacker), and gedit saves the file. What happens is

gedit first saves the current buffer content to a

temporary scratch file (temp_filename), then renames

the scratch file to the original file real_filename (after

backing up the original file properly). Because the

scratch file is created by root, the owner of the just

saved file (real_filename) is root, so gedit needs to

change its owner back to the original user. This forms a

<rename, chown> vulnerability window. An attack

(Figure 4) against this vulnerability is essentially the

same as the attack against vi in Section 2.1.

Figure 3: gedit 2.8.3 TOCTTOU vulnerability

(gedit-document.c)

Figure 4: gedit attack program version 1

2.3. Discussion

From the description above, we can see that a

successful attack against vi and gedit requires the

following preconditions: (1) The attacker has an

account on the system. (2) The system administrator

edits a file belonging to the attacker. (3) The system

administrator makes the mistake of logging in as ‘root’

instead of the attacker’s uid. (4) The attacker makes a

reasonable guess about which editor the administrator

will use. Such a list of preconditions seems to suggest

that a TOCTTOU attack can not easily succeed.

However, there are many kinds of TOCTTOU

vulnerabilities (e.g., 224 for Linux), and depending on

how the victim program is implemented, some

TOCTTOU vulnerabilities are much easier to attack

than those discussed here [15]. Interested readers are

referred to [18] and [24] for more information. The

point of this paper is that once these preconditions are

satisfied, the attacker can succeed much easier on a

multiprocessor than on a uniprocessor.

3. A Probabilistic Model for

Predicting TOCTTOU Attack Success Rate

3.1. The Basic General Model

A TOCTTOU attack succeeds when the attacker is

able to modify the mapping from file name to disk

block within the vulnerability window. In order to

succeed, the attacker must first find the vulnerability

window, and then change the file mapping. Therefore,

our model divides the attacker program into two parts:

(1) a detection part that finds the beginning of the

vulnerability window, and (2) an attack part that

modifies the file mapping.

One of the critical issues is whether the victim is

suspended within the vulnerability window, since the

suspension increases substantially the success rate.

Based on the law of total probability, the attack success

rate:

In order for the attack to succeed, the attacker

program must be scheduled within the vulnerability

window and the attack must finish within the

vulnerability window, so

We can derive P(attack succeeds | victim not

suspended) in a similar way and get the refined

probability in Equation 1.

In Equation 1, all the events are under the context of

the victim vulnerability window. e.g. ‘attack finished’

means ‘attack finished within the vulnerability

window’.

Equation 1: The probability of a successful

TOCTTOU attack

3.2. Attack Success Rate on a Uniprocessor

On a uniprocessor, P(attack scheduled | victim not

suspended) = 0 since it is impossible to schedule the

attacker when the victim is running. Therefore on a

1 while (!finish){

2 if (stat(real_filename, &stbuf) == 0){

3 if ((stbuf.st_uid == 0) && (stbuf.st_gid == 0))

4 {

5 unlink(real_filename);

6 symlink(“/etc/passwd”, real_filename);

7 finish = 1;

8 }

9 }

10 }

if (rename (temp_filename, real_filename) != 0){

… }

chmod (real_filename, st.st_mode);

chown (real_filename, st.st_uid, st.st_gid);

P(attack succeeds | victim suspended) = P(attack scheduled

● attack finished | victim suspended)

= P(attack scheduled | victim suspended) * P(attack finished

| victim suspended)

P(attack succeeds) = P(victim suspended) * P(attack

succeeds | victim suspended) + P(victim not suspended) *

P(attack succeeds | victim not suspended)

P(attack succeeds) = P(victim suspended) * P(attack

scheduled | victim suspended) * P(attack finished | victim

suspended)

+ P(victim not suspended) * P(attack scheduled | victim not

suspended) * P(attack finished | victim not suspended)

uniprocessor the second part of Equation 1 contributes

nothing to the success rate. E.g., P(attack succeeds) =

P(victim suspended) * P(attack scheduled | victim

suspended) * P(attack finished | victim suspended).

Several observations can be made about P(attack

succeeds) on a uniprocessor:

• P(attack succeeds) ≤ P(victim suspended). The

probability that the victim is suspended within its

vulnerability window gives an upper bound for the

attack success rate. If the victim is always

suspended (e.g. rpm in [24]), the attacker can

achieve a success rate as high as 100%. In

contrast, if the victim is rarely suspended (e.g.

gedit in Section 2.2), the attack success rate can be

near zero.

• P(attack scheduled | victim suspended) is the

probability that the attacker process gets scheduled

when the victim relinquishes CPU. This value

depends on several factors such as the readiness of

the attacker, the system load (if round-robin

scheduling is used), or the priority of the attacker

(if priority-based scheduling is used). Typically in

a lightly loaded environment this value can be

nearly 100% if the attacker program uses an

infinite loop actively looking for the exploit

opportunity.

• P(attack finished | victim suspended) is the

probability that the attacker successfully modifies

the file mapping while the victim is suspended.

Since there is only one CPU, as long as the attack

part is not interrupted, this probability can be

100%. Typically this is the case because modifying

the file mapping requires very short processing

time and needs not block on I/O.

Based on the above analysis, the attack success rate

is mainly determined by P(victim suspended) on a

uniprocessor system, and the implementation of the

attack part is relatively less critical.

3.3. Attack Success Rate on Multiprocessors

On multiprocessors, the attacker can run on a

different processor than the victim when the victim is

running within its vulnerability window. This makes

the second part of Equation 1 non-zero, i.e., P(attack

scheduled | victim not suspended) > 0. This fact

increases the success rate of TOCTTOU attacks on

multiprocessors as compared to uniprocessors. If

P(victim suspended) is relatively large, then the success

rate on multiprocessors may not increase significantly.

However, if P(victim suspended) is very small

(approaching 0), then P(victim not suspended)

approaches 1, and the gain due to the second part of

P(attack succeeds) may become very significant.

Therefore for an attacker, the benefit of having

multiprocessors is maximized when the victim is rarely

suspended in the vulnerability window. An analysis of

the second part of Equation 1 shows that:

• P(attack scheduled | victim not suspended) is

similar to P(attack scheduled | victim suspended)

discussed in Section 3.2. The conclusion is that it

can be as high as 100%.

• P(attack finished | victim not suspended) is the

probability that the attack is finished within the

vulnerability window. Since the victim is running

concurrently with the attacker, the result of the

attack depends on the relative speed of the attacker

and the victim, a more detailed analysis is needed

(next Section).

3.4. Probabilistic Analysis of P(attack finished

| victim not suspended)

In order to predict P(attack finished | victim not

suspended) in more detail, we analyze the race

condition at different levels: the first level is CPU,

which is the main contention in uniprocessor attacks;

the next level is file object, because the file system

already has a synchronization mechanism to regulate

shared accesses. In Unix-style file systems, the

modifications to an inode are synchronized by a

semaphore. Since the operations of the victim and the

attacker on the shared file modify the same inode, they

both need to acquire the same semaphore. In this case,

the race is reduced to the competition for the

semaphore and we can model the success rate of the

attack in the following way.

In this model, we assume that the attacker runs in a

tight loop (the detection part), waiting for the

vulnerability window of the victim to appear. Let D be

the time consumed by each iteration of detection part,

and let 1t be the earliest start time for a successful

detection and 2t be the latest start time for a successful

detection followed by a successful attack (e.g. the

attacker acquires the semaphore first). 1t and 2t are

determined by the victim process. Some observations

can be made as follow (Figure 5):

A successful attack starts with a successful detection

as its precondition. This successful detection may start

as early as 1t (Figure 5, case (a)), and as late as Dt +1

(Figure 5, case (f)). Then the interval),[11 Dtt + is our

sample space. Out of this interval),[11 Dtt + , if the

detection is started before 2t , the attack succeeds

(Figure 5, cases (a) through (c)); otherwise the attack

fails (Figure 5, cases (d) through (f), because the attack

is launched too late). Let’s assume a uniform

distribution for the start time of the detection part, the

success rate is thus
D

tt 12 − .

In Figure 5 we assume that),[112 Dttt +∈ . Two

other cases are:

• If 12 tt < , then the success rate is 0;

• If Dtt +≥ 12 , then the success rate is 1.

Let 12 ttL −= , and we get:

The success rate =








≥

<≤

<

)(,1

)0(,/

)0(,0

DLif

DLifDL

Lif

 (1)

In formula (1), L measures the laxity of the

successful attacks, which is a characterization of the

victim: the larger L, the more vulnerable the victim. D

is a characterization of the detection part of the

attacker: the smaller D, the faster the attacker, and the

higher success rate. So L/D gives a very useful

measurement of the relative speed of the victim and the

attacker.

It should be noted that L and D in formula (1) are

not strictly constant, because the executions of the

victim as well as the attacker are interleaved with other

events (e.g. kernel timers) in the system. That is, the

running environment imposes variance on these

parameters. So formula (1) only offers a statistical

guidance about the attack success rate.

Figure 5: Different attack scheduling on a

multiprocessor

4. Baseline Measurements of TOCTTOU

Attacks on Uniprocessors

For comparison purposes, in this section we

summarize the measured success rates of vi and gedit

TOCTTOU attacks on uniprocessors from [24].

4.1. vi Attack Experiments on Uniprocessors

Since the vi vulnerability window includes the

writing of a whole file, the size of the window naturally

depends on the file size. The measured success rates

for file sizes ranging from 20KB to 10MB are the

following:

• When the file size is small (from 100KB to 1MB),

there is a rough correlation between attack success

rate and file size, as shown in Figure 6. However,

the correlation disappears for larger file sizes (e.g.,

between 2MB to 3MB), showing that file size

alone does not determine the success rate

completely.

• Besides file size, we studied other factors (e.g., I/O

operation, CPU slicing, and preemption by higher

priority kernel threads) that corroborate the non-

deterministic nature of TOCTTOU attacks on a

uniprocessor [24].

From Figure 6 we can see that for normal file sizes

(Using vi to edit a 2MB text file is considered rare in

real life), the success rate can be as low as 1.5% and as

high as 18%. Furthermore, when the file size

approaches 0, the success rate also approaches 0.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

100 200 300 400 500 600 700 800 900 1000

File size in KB

500 rounds attack success rate

Figure 6: Success rate of attacking vi (small

files) on a uniprocessor

4.2. gedit Attack Experiment on Uniprocessors

The experiments in which a TOCTTOU attack was

carried out against the gedit vulnerability saw no

successes. This is because the gedit vulnerability

window (Figure 3) does not include the writing of the

new file as in vi, so it is much shorter and bears no

relationship to the file size. These factors reduced the

success rate for gedit attacks to essentially zero on a

uniprocessor.

Failed detection Successful detection

Failed attack Successful attack

(f)

(a)
(b)
(c)
(d)
(e)

Dt −1

1t Dt +1

2t

5. vi Attack Experiments on SMP

We repeated the vi attack experiments described in

Section 4.1 on a SMP machine (2 Intel Xeon 1.7GHz

CPUs, 512MB main memory, and 18.2GB SCSI disk

with ext3 file system).

First we tried different file sizes ranging from 20KB

to 1MB with a stepping size of 20KB, and observed the

success rate of 100% for all file sizes. This confirms

the probabilistic predictions in Section 3.3 and shows

that a multiprocessor greatly increases the attacker’s

chance of success compared to a uniprocessor (Figure

6 in Section 4.1). We did a detailed event analysis to

confirm the attacker and victim processes ran on

separate CPUs during the vulnerability window. We

also eliminated the possibility that the attack success is

due to the victim being blocked on I/O operations

(which would have made the attack easier).

Consequently, we conclude that the attack success is

due to the length of vi vulnerability window being

much larger than the time it takes the attacker to finish

the attack steps (file name redirection).

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 100 200 300 400 500 600 700 800 900 1000 1100

File size in KB

T
im

e
 i

n
 m

ic
ro

s
e
c
o

n
d

s

L D
Figure 7: The L and D values for vi SMP attack

experiments

Figure 7 shows the L and D values (Section 3.4) for

the vi attack experiments that we conducted on the

SMP. We can see that L >> D when the file is large

(e.g.1MB); and the difference (L – D) decreases as the

file size decreases. But (L – D) is always positive, even

when the file size becomes very small. Therefore we

can say with almost certainty that for vi attack

experiments, L > D. By formula (1) we know that the

success rate of vi attacks is almost 100% all the time.

One thing to notice from Figure 7 is that as the file

size approaches 0, the difference (L – D) also

approaches 0. Is it possible that L becomes smaller

than D? Then according to formula (1) the attack

success rate will be smaller than 100%.

To see this we run the experiment again with the

smallest files (only 1 byte each). And the success rate

we get is around 96%. Again we did a detailed event

analysis of this experiment. We measure the average L

and D values and put them in Table 1. We can see that

although L > D in these attacks, they have become very

close. If we consider the fact that the values for L and

D are not strictly constant due to the environmental

influence, we realize that whether L > D all the time

becomes questionable when they are close enough

(When L >> D the inaccuracy introduced by the

environment does not change the relationship). This

helps to explain why the success rate can not be 100%

when the file contains only 1 byte.

Another point is that so far we actually treat

P(attack finished | victim not suspended) in Section 3.4

as the sole basis for predicting the success rate, which

is not always accurate (Equation 1). The justification is

that when the vi vulnerability window is large enough,

the effect of other factors in Equation 1 is negligible.

For example, P(attack scheduled | victim not

suspended) < 100% in general which means that the

attacker may not be scheduled during sometime in the

vulnerability window. However, if the vulnerability

window is very large, the attacker is still within it when

he/she is scheduled eventually. That is, the temporary

suspension does not affect the result of the attack.

However, when the vulnerability window becomes

small enough (e.g. L and D become close enough), the

suspension may cause the attacker to miss the

vulnerability window. In such a case the attack fails,

thus the suspension changes the attack result.

In several of the failed 1-byte vi experiments, we

find that some other processes prevents the attacker

from being scheduled on another CPU during the vi

vulnerability window.

This analysis tells us that although using a

multiprocessor can greatly increase the attack’s chance

of success, the success is still not guaranteed: the attack

is still influenced by other environmental factors such

as kernel activities and system load. However, 96% is

more than enough for an attacker.

Table 1: The average L and D values (in
microseconds) for vi SMP attack experiments

(file size = 1 byte)

 Average Stdev

L 61.6 3.78

D 41.1 2.73

6. gedit Attack Experiments on

Multiprocessors

6.1. gedit SMP Attack Event Analysis

As mentioned in Section 4.2, our attack experiments

against gedit on uniprocessors saw no successes.

However, when we try this attack on a SMP (the same

machine as in Section 5), we get roughly 83%, a

surprisingly high success rate. A detailed event analysis

is thus conducted to understand this result.

For the gedit attack, we have observed that if the

attacker’s unlink is invoked before gedit’s chmod

(Figure 3 and Figure 4), then attack succeeds. This is

because these two system calls compete for the same

semaphore, so if unlink wins, chmod as well as the

following chown will be delayed. As a result the

attacker’s unlink and symlink can have enough time to

finish before gedit’s chown. On the other hand, if

unlink loses, unlink and the following symlink of the

attacker will be delayed, so the attack will fail. So there

is an interesting cascading effect in gedit attack

experiment. Therefore, for gedit attacks, 1t is

somewhere within the execution of rename (the

attacker does not need to wait until the end of rename

to see that real_filename has been created), D is the

interval between the start of stat and the start of

unlink. Let 3t be the start of chmod, then Dtt −= 32 ,

and 1312 tDtttL −−=−= . We experimentally get the

L and D values as in Table 2.

Table 2: L and D values for gedit attacks on a
SMP (in microseconds)

 Average Stdev

L 11.6 3.89

D 32.7 2.83

The calculation of L here is not accurate because the

estimation of 1t is not accurate. Currently 1t is

established as the earliest observed start time of stat

which indicates a vulnerability window. So it may not

be optimal. An earlier (thus smaller) 1t will result in a

larger L. So the success rate indicated by Table 2

(35%) may be overly conservative compared to the

observed success rate.

An important contributing factor to L is the

computation time between the end of rename and the

start of chmod. The average length of this computation

is 43 microseconds. As we will see in Section 6.2, this

factor is very important for the high success rate of

gedit attack on the SMP.

There is another contributing factor. Usually when

gedit’s chmod is blocked, the Linux kernel will try to

schedule something else to run (e.g. internal kernel

events such as soft IRQs, kernel timers and tasklets),

which further lengthens gedit vulnerability window

(but this contributes just a little to the delay compared

with that due to the semaphore).

6.2. gedit Multicore Attack Experiment

6.2.1. Attack one

We repeat the gedit attack (Figure 4) on a multi-

core (Dell Precision 380 with 2 Intel Pentium D 3.2

GHz dual-core and Hyper-Threading CPUs, 4GB main

memory, and 80GB SCSI disk with ext3 file system).

We get very different result: now we see almost no

success in the same attack experiment. The main

change in the situation is that the victim spends much

less time between rename and chmod (3 microseconds

vs. 43 microseconds), so chmod happens before

unlink of the attacker, but in the SMP experiment

(Section 6.1) situation is the opposite.

Figure 8 shows the important system events during

one failed attack on the multi-core. The upper bar

corresponds to the execution of gedit (rename, chmod,

chown) and the lower bar corresponds to that of the

attacker (stat, unlink, symlink). Notice that the gap

(the computation) between rename and chmod of gedit

is only 3 microseconds, but the gap between stat and

unlink of the attacker is 17 microseconds. It is because

of this relatively larger gap that the attacker’s unlink is

called later than the victim’s chmod. Actually we can

see that unlink is called later than chown and as a

result unlink has to wait on the semaphore during its

execution. The 17 microsecond gap of the attacker

includes 11 microseconds of computation and 6

microseconds of system trap processing (page fault).

Speaking in terms of D, these 17 microseconds are

counted so D is around 22. On the other hand L is

around 193 −=− D , so according to formula (1) the

attack success rate is probably 0. Putting this in another

way, the victim is now much faster than the attacker, so

it is very difficult for the attacker to win the race.

Figure 8: Failed gedit attack (program 1) on a

multi-core

0 50 100 150 200

gedit

attacker

Wake up

the attacker

stat symlink unlink

Time in microseconds

rename gedit comp chmod chown

Blocked on the

semaphore

attacker comp trap

6.2.2. Attack Two

We think that the 17 microsecond gap in Figure 8 is

mainly responsible for the low success rate. If we could

reduce the length of this gap then the situation may

change. A source code analysis tells us that before the

vulnerability window the true branch of statement 3 in

Figure 4 (statements 5 to 7) is never taken. Once the

vulnerability window starts, the true branch of

statement 3 is taken, and then statement 5 (unlink) is

about to be executed. Right at this point the attacker

program encounters a trap (page fault). We figure out

that this effect is due to the memory management for

shared libraries in Linux. Specifically, in Linux all

system calls are through libc, which is a dynamic

library shared among user-level applications. To save

physical memory, Linux kernel keeps only one copy of

libc in physical memory, and its virtual memory

mechanism maps the pages of this copy to the address

space of an application on demand. For example, the

physical page containing the wrapper for unlink is

mapped into an application’s address space when this

application first invokes unlink. This mapping is

preceded by a trap (page fault) and the corresponding

handler routine carries out the mapping. This is exactly

what happens in Figure 4, where unlink is first invoked

when the true branch of statement 3 is taken. As a

consequence, if we intentionally invoke unlink (and

symlink although it seems to be on the same page as

unlink) before the true branch of statement 3 is taken,

we may remove the trap (page fault).

Figure 9: gedit attack program version 2

So we re-implement the attacker program as shown

in Figure 9. Now unlink and symlink are called no

matter the vulnerability window appears or not. The

only trick is to switch in the correct file name when it

does appear.

Then we perform the gedit attack experiment again

using the program in Figure 9. And we begin to see

many successes!

We plot the important system events during one

successful gedit attack in Figure 10, similar to Figure 8.

We can see that now the gap between stat and unlink

of the attacker has decreased to 2 microseconds: the

trap has disappeared. On the other hand, the gap

between rename and chmod of gedit is 2

microseconds. So the attacker has a very narrow chance

of winning the race. In this particular case, the attacker

wins because his/her stat starts well before the end of

rename, so he/she identifies the vulnerability window

at the first moment, and invokes unlink ahead of

chmod. Has the attacker been 2 microseconds later, the

attack would fail.

Notice that during this attack the running time of

stat has been lengthened to 26 microseconds (typically

it needs 4 microseconds), probably due to some other

more complicated race condition (For example the

contention for directory entries along the path name).

We are not quite clear about the reason but this does

not change the applicability of formula (1) because

now we have a much earlier 1t (27 microseconds into

rename), which makes a L value of at least 1

microseconds.

This experience tells us that on multiprocessors the

implementation of the attacker program can be very

critical in determining the attack success rate,

especially when the vulnerability window is very

narrow.

Figure 10: Successful gedit attack (program 2)

on a multi-core

7. Pipelining Attacker Program

The multi-core gedit experiment highlights the

importance of the implementation of the attacker

program. Concretely, we found that among the three

0 20 40 60 80 100 120 140 160
Time in microseconds

rename gedit comp chmod chown stat

Wake up

the victim

gedit

symlink

attacker

1 while (!finish){ /* argv[1] holds real_filename */

2 if (stat(argv[1], &stbuf) == 0){

3 if ((stbuf.st_uid == 0) && (stbuf.st_gid == 0))

4 {

5 fname = argv[1];

6 finish = 1;

7 }

8 else

9 fname = dummy;

10

11 unlink(fname);

12 symlink(“/etc/passwd”, fname);

13 }//if stat(argv[1] ..

14 }//while

Blocked on the

semaphore

attacker comp unlink

steps of the attack (stat, unlink, symlink), unlink is

the most time-consuming. A closer look into the file

system source code shows that actually symlink needs

not wait on the completion of unlink. Instead symlink

can begin once the inode has been detached from the

directory by unlink, which happens relatively early.

(The main part of unlink is spent physically truncating

the file.) This observation shows that on a

multiprocessor, the attacker can distribute its attack

steps to multiple CPUs to speed up the attack part and

increase its success rate.

To confirm this hypothesis, we implemented a

multithreaded gedit attack program with two threads:

the first thread carries out the stat, unlink steps and the

second thread carries out the symlink step

asynchronously. Figure 11 shows the effect of

parallelizing the attack program for three different file

sizes. For each file size (e.g. 500KB), there are three

bars: the first two bars correspond to the execution of

the two threads in a parallelized attack program, and

the third bar corresponds to the execution of the normal

sequential attack program. In the parallelized attack,

symlink can finish (and so does the attack) well before

the end of unlink. This is in contrast to the sequential

attack, where symlink has to wait until unlink finishes.

The comparison between the end times of symlink

shows that leveraging on the parallelism provided by a

multiprocessor can greatly reduce the amount of time

needed for a successful attack. This is especially

important when the vulnerability window is very

narrow so the attacker needs to be very fast. This

experiment shows one feasible way of doing it.

Figure 11: The effect of parallelizing the attack

program

8. Related Work

TOCTTOU is one example of race condition

problem. In general, every shared resource has the

potential for such problems [23]. Percival [17] shows

that shared access to memory caches in Hyper-

Threading technology allows a malicious thread to steal

RSA keys. Similar attacks have also been reported on

AES [16]. While carrying out such attacks do not rely

on multiprocessors, it would be interesting to see if

they become easier on multiprocessors.

Timing attacks have long been used to infer secret

keys in cryptosystems [4][13][21]. This kind of attacks

share a common attribute with TOCTTOU attacks -

both try to infer something about the victim. The

difference between them is that the former only read

(steal) information from the victim to violate its

confidentiality but the latter modify the information

used by the victim to violate its integrity.

TOCTTOU vulnerabilities can be detected in two

ways: static analysis or dynamic analysis. The first

approach analyzes the application source code to find

TOCTTOU pairs. One such tool is MOPS [5] which

uses model checking and is able to find 41 TOCTTOU

bugs in an entire Linux distribution [20]. Other

potentially useful techniques include compiler

extensions [8][9]. The main difficulty with these static

tools is high false positive rate. The second approach to

detect TOCTTOU vulnerabilities is dynamic

monitoring and analysis. These tools can be further

classified into dynamic online detection tools such as

[14] and [19] and post mortem analysis tools such as

[12] and [24]. Compared to static analysis, dynamic

analysis has lower false positive rate, but it suffers from

false negatives because the search space is incomplete.

The high success rate of exploiting TOCTTOU

vulnerabilities calls for effective defense against such

attacks. Various technical remedies have been

suggested, including setting proper file/directory

permissions, randomizing file names, replacing

mktemp() with mkstemp(), and using a strict umask to

protect temporary directories. However, none of these

fixes can be considered a comprehensive solution for

TOCTTOU vulnerabilities.

There have been specialized mechanisms such as

RaceGuard [6] and a probabilistic approach [7] which

protect particular TOCTTOU pairs. Pseudo-transaction

[22] is a more generic mechanism to protect some

classes of TOCTTOU vulnerabilities. We have

proposed a complete defense against TOCTTOU

attacks called EDGI (Event Driven Guarding if

Invariants) [18]. The details of EDGI are out of the

scope of this paper.

9. Conclusion

TOCTTOU (Time-of-Check-to-Time-of-Use) is a

file-based race condition that can cause serious

0 100 200 300 400 500 600 700

blocked

800

sequential

Time in microseconds

stat symlink

File

size

(KB)

20

100

500

parallel

sequential

parallel

sequential

unlink

consequences. However, traditionally TOCTTOU

vulnerabilities have been considered “low risk”

because the success rate of exploits appears to be low

and results non-deterministic. This paper shows that in

multiprocessor environments, the uncertainty due to

scheduling is greatly reduced for an attacker sitting on

a dedicated CPU; as a result some TOCTTOU attacks

can have very high success rates. Thus TOCTTOU

attacks on multiprocessors are practical security

threats.

The first contribution of this paper is a probabilistic

model for TOCTTOU attack success rate. It predicts

the probability of success of a TOCTTOU attack. It

provides a basic guideline for modeling TOCTTOU

attacks and performing experiments, showing higher

success rates on a multiprocessor compared to a

uniprocessor. This model can be applied to many race

condition attacks, not just TOCTTOU.

The second contribution of this paper is a set of

attack experiments against two concrete and well

known applications: vi and gedit. The vi experiments

show that even for the smallest files involved in the

vulnerability window, the attacker can achieve nearly

100% success rate on a multiprocessor, compared to

low single digit percentages on uniprocessors. The

gedit experiments demonstrate that when the

vulnerability window is extremely small, the race

moves to a lower level and the implementation of the

attacker program becomes very important. The gedit

experiments show a success rate of up to 83%

compared to essentially zero on uniprocessors. These

experiments corroborate our probabilistic model.

Our main conclusion is that an attacker can exploit

the parallelism provided by multiprocessors to achieve

more effective and more efficient attacks. More

generally, our model and experiments show that

multiprocessors can potentially reduce overall system

dependability, so we should re-evaluate the risks of

known vulnerabilities and effectiveness of security

mechanisms in multiprocessor environments.

10. Acknowledgement

This work was partially supported by NSF/CISE IIS

and CNS divisions through grants CCR-0121643,

IDM-0242397 and ITR-0219902. We also thank the

anonymous reviewers for their insightful comments.

11. References
[1] R. P. Abbott, J.S. Chin, J.E. Donnelley, W.L.

Konigsford, S. Tokubo, and D.A. Webb. Security Analysis

and Enhancements of Computer Operating Systems. NBSIR

76-1041, Institute of Computer Sciences and Technology,

National Bureau of Standards, April 1976.

[2] Matt Bishop and Michael Dilger. Checking for Race

Conditions in File Accesses. Computing Systems, 9(2):131–

152, Spring 1996.

[3] N. Borisov, R. Johnson, N. Sastry, and D. Wagner.

Fixing Races for Fun and Profit: How to Abuse atime.

USENIX Security Symposium, 2005.

[4] David Brumley and Dan Boneh. Remote Timing Attacks

Are Practical. USENIX Security Symposium, 2003.

[5] Hao Chen, David Wagner. MOPS: an Infrastructure for

Examining Security Properties of Software. In Proceedings

of the 9th ACM Conference on Computer and

Communications Security (CCS), November 2002.

[6] Crispin Cowan, Steve Beattie, Chris Wright, and Greg

Kroah-Hartman. RaceGuard: Kernel Protection From

Temporary File Race Vulnerabilities. USENIX Security

Symposium, 2001.

[7] Drew Dean and Alan J. Hu. Fixing Races for Fun and

Profit: How to use access(2). USENIX Security Symposium,

2004.

[8] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth

Hallem. Checking System Rules Using System-Specific,

Programmer-Written Compiler Extensions. Operating

Systems Design and Implementation (OSDI), 2000.

[9] Dawson Engler, Ken Ashcraft. RacerX: Effective, Static

Detection of Race Conditions and Deadlocks. ACM

Symposium on Operating Systems Principles, 2003.

[10] http://www.gnome.org/projects/gedit/

[11] Amer Haider. Multi-Core Microprocessor Architecture

for Network Services and Applications.

http://www.commsdesign.com/design_corner/showArticle.jht

ml?articleID=57703590

[12] Calvin Ko, George Fink, Karl Levitt. Automated

Detection of Vulnerabilities in Privileged Programs by

Execution Monitoring. Proceedings of the 10th Annual

Computer Security Applications Conference, page 134-144.

[13] P. Kocher. Cryptanalysis of Diffie-Hellman, RSA, DSS,

and other cryptosystems using timing attacks. In Advances in

cryptology, CRYPTO’95, pages 171–183, 1995.

[14] K. Lhee and S. J. Chapin, Detection of File-Based Race

Conditions, Intl. Journal of Information Security, 2005.

[15] http://xforce.iss.net/xforce/xfdb/8652

[16] Dag Arne Osvik, Adi Shamir, Eran Tromer. Cache

Attacks and Countermeasures: the Case of AES. Proceedings

of RSA Conference 2006, Cryptographer’s Track (CT-RSA).

[17] Colin Percival. Cache Missing for Fun and Profit.

BSDCan 2005.

[18] Calton Pu, Jinpeng Wei. A Methodical Defense against

TOCTTOU Attacks: The EDGI Approach. International

Symposium on Secure Software Engineering (ISSSE '06).

[19] Stefan Savage, Michael Burrows, Greg Nelson, Patrick

Sobalvarro, and Thomas Anderson. Eraser: A Dynamic Data

Race Detector for Multithreaded Programs. ACM

Transactions on Computer Systems, Vol. 15, No. 4,

November 1997, Pages 391–411.

[20] Benjamin Schwarz, Hao Chen, David Wagner, Geoff

Morrison, Jacob West, Jeremy Lin, and Wei Tu. Model

Checking An Entire Linux Distribution for Security

Violations. Annual Computer Security Applications

Conference, December 6, 2005.

[21] Dawn Song, David Wagner, Xuqing Tian. Timing

Analysis of Keystrokes and Timing Attacks on SSH.

USENIX Security Symposium, 2001.

[22] Eugene Tsyrklevich and Bennet Yee. Dynamic detection

and prevention of race conditions in file accesses. USENIX

Security Symposium, 2003.

[23] Jerome H. Saltzer and Michael D. Schroeder. The

Protection of Information in Computer Systems. Proceedings

of the IEEE, 63(9): 1278-1308, September 1975.

[24] Jinpeng Wei, Calton Pu. TOCTTOU Vulnerabilities in

UNIX-Style File Systems: An Anatomical Study. In

Proceedings of the 4th USENIX Conference on File and

Storage Technologies (FAST '05), San Francisco, CA,

December 2005.

