
 1

Modeling and Preventing TOCTTOU Vulnerabilities in Unix-Style File Systems

Jinpeng Wei
1
and Calton Pu

2
1
Florida International University, 11200 SW 8th Street, Miami, FL, 33199 USA, weijp@cs.fiu.edu
2
Georgia Institute of Technology, 266 Ferst Dr, Atlanta, GA 30332 USA, calton@cc.gatech.edu

Abstract

TOCTTOU (Time-of-Check-To-Time-Of-Use) is a file-based race condition in Unix-style

systems and characterized by a pair of file object access by a vulnerable program: a check

operation establishes certain condition about the file object (e.g., the file exists), followed by a

use operation that assumes that the established condition still holds. Due to the lack of support

for transactions in Unix-style file systems, an attacker can modify the established file condition

in-between the check and use steps, thus causing significant harm. In this paper, we present a

model of the TOCTTOU problem (called STEM), which enumerates all the potential file system

call pairs (called exploitable TOCTTOU pairs) that form the check/use steps. The model shows

that a successful TOCTTOU attack requires a change in the mapping of pathname to logical disk

blocks between the check and use steps. We apply STEM to POSIX and Linux to demonstrate its

practical value for Unix-style file systems. Then we propose a defense mechanism (called EDGI)

that prevents an attacker from tampering with the file condition between exploitable TOCTTOU

pairs during a vulnerable program’s execution. EDGI works at the file system level and does not

require existing applications to change. We have implemented EDGI on Linux kernel 2.4.28 and

our evaluation shows that EDGI is effective and incurs little overhead to application benchmarks

such as Andrew and Postmark.

Key words: race condition; TOCTTOU; vulnerabilities; invariant; modeling; defense; kernel

 2

1 Introduction

TOCTTOU (Time-Of-Check-To-Time-Of-Use) is a well known security problem [1, 2]. An

illustrative example is sendmail, which used to check for a specific attribute of a mailbox file

(e.g., it is not a symbolic link) before appending new messages. However, the checking and

appending operations do not form an atomic unit. Consequently, if an attacker (the mailbox

owner) is able to replace his mailbox file with a symbolic link to /etc/passwd between the

checking and appending steps by sendmail, then he may trick sendmail into appending emails to

/etc/passwd. As a result, an attack message consisting of a syntactically correct /etc/passwd entry

with root access would give the attacker root access. TOCTTOU is a serious threat: A search of

the U.S. national vulnerability database [3] for the keywords “symlink attack” returns more the

600 hits .Our survey of the CERT advisories [4] from 2000 to 2004 discovered 20 TOCTTOU

vulnerabilities; in 11 out of these 20 cases, the attacker was able to gain unauthorized root

access. These 20 advisories cover a wide range of applications from system management tools

(e.g., /bin/sh, shar, tripwire) to user level applications (e.g., gpm, Netscape browser), and they

affected many operating systems including: Caldera, Conectiva, Debian, FreeBSD, HP-UX,

Immunix, MandrakeSoft, RedHat, Sun Solaris, and SuSE. A similar list of vulnerable

applications reported by the BUGTRAQ mailing list [5] is shown in Table 1. TOCTTOU

vulnerabilities are widespread and cause serious consequences.

The sendmail example shows the structural complexity of a TOCTTOU attack, which requires

(unintended) shared access to a file by the attacker and the victim (the sendmail), plus the two

distinct steps (check and use) in the victim. This complexity, plus the non-deterministic nature

of TOCTTOU attacks, makes the detection difficult. For example, TOCTTOU attacks usually

result in escalation of privileges, but no immediately recognizable damage. Furthermore,

 3

TOCTTOU attacks are inherently non-deterministic and not easily reproducible, making post

mortem analysis also difficult. These difficulties are illustrated by the TOCTTOU vulnerabilities

found in vi and emacs [6], which appear to have been in place since the time those venerable

programs were created.

Although general TOCTTOU problems are not limited to file access [7], in this paper we

focus on file-related TOCTTOU problems. Our first contribution is an abstract model of such

TOCTTOU problems (called STEM – Stateful TOCTTOU Enumeration Model) that captures all

potential vulnerabilities. The model is based on two mutually exclusive invariants: a file object

either does not exist, or it exists and is mapped to a logical disk block. For each file object, one

of these invariants must remain true between the check and use steps of every program.

Otherwise, potential TOCTTOU vulnerabilities arise. This model allows us to enumerate all the

file system call pairs of check and use (called exploitable TOCTTOU pairs), between which the

invariants may be violated. A protection mechanism derives from this model and maintains the

invariants across all the exploitable TOCTTOU pairs, by preventing access from other

concurrent processes/users that may change the invariants. The practical value of STEM is

demonstrated by the mapping of concrete Unix-style file systems to it. We have exhaustively

analyzed the file system calls of POSIX and Linux and classified them according to the STEM

model. From this classification we enumerated all the exploitable TOCTTOU pairs for POSIX

(485 pairs) and Linux (224 pairs).

The second contribution of this paper is an event-driven defense mechanism, the Event

Driven Guarding of Invariants (EDGI), a mechanism based on the STEM model, for preventing

exploitation of TOCTTOU vulnerabilities. The EDGI defense has several advantages over

previously proposed solutions. First, based on the STEM model, EDGI is a systematically

 4

developed defense mechanism with careful design (using Event-Condition-Action (ECA) rules)

and implementation. Assuming the completeness of the STEM model, EDGI can stop all

TOCTTOU attacks. Second, with explicit modeling of users, EDGI is able to prevent potential

abuse of the defense mechanism by malicious users, thus overcoming the limitation of existing

solutions such as pseudo-transactions [8] and RPS [9]. Third, it does not require changes to

applications or file system API. Fourth, our implementation on Linux kernel and its

experimental evaluation show that EDGI carries little overhead.

The rest of the paper is organized as follows. Section 2 introduces the Abstract File System,

on which the STEM model is defined. Section 3 describes the STEM model, defines the

TOCTTOU problem, and enumerates the TOCTTOU pairs in the Abstract File System. Section

4 applies the STEM model to concrete file systems such as POSIX and Linux. Section 5 presents

the EDGI defense mechanism against TOCTTOU attacks. Section 6 describes a Linux

implementation of EDGI and Section 7 presents an experimental evaluation of EDGI. Section 8

outlines related work and Section 9 concludes the paper.

2 The Abstract File System

Due to the complexity of the TOCTTOU problem in real file systems, in this section we define a

simplified Abstract File System (AbsFS), on which we define the TOCTTOU problem (see

Section 3) and design a defense mechanism (see Section 5). In Section 4 we map concrete file

systems (POSIX and Linux) to AbsFS and translate the results from the AbsFS to the concrete

file systems.

 5

2.1 Definition of Abstract File System

The Abstract File System (AbsFS) manages a set of file system (FS) objects. Each file system

object consists of a pathname, an ordered set of logical disk blocks, and a mapping of the

pathname to the corresponding set of logical disk blocks.

An AbsFS pathname f has the form eddd n//.../// 21 in which the first “/” represents the root

directory of the file system, id (ni ≤≤1) is a directory or a link to a directory, and e can be a

regular file, a link, or a directory. For simplicity of presentation, we use f to denote the entire

pathname eddd n//.../// 21 in most of the discussion.

For simplicity we also assume the AbsFS to contain only contiguous files, i.e., the set of

logical disk blocks is sequential for every file, and the AbsFS only needs to map the pathname to

the address (block number) of the initial logical disk block. Let F denote the set of all pathnames

and B denote the set of all logical disk blocks, the pathname mapping function resolve is defined

as:

Β⊄∅∅},∪→ {: BFresolve .

Given a pathname Ff ∈ , if the AbsFS object corresponding to f exists, with the initial logical

disk block number Bb∈ , then we define bfresolve =)(. If the AbsFS object corresponding to f

does not exist, we define ∅=)(fresolve .

The AbsFS defines an Application Programming Interface consisting of 4 operations on file

objects.

Definition 1: creation(pathname) is the operation that creates new FS objects in the AbsFS by

changing the mapping for pathname f from ∅=)(fresolve to bfresolve =)(, for some Bb∈ .

 6

Definition 2: removal(pathname) is the operation that changes the mapping for pathname f

from bfresolve =)(to ∅=)(fresolve .

Definition 3: normal use(pathname) is the operation that works on an existing file system

object and does not remove it.

Definition 4: check(pathname) is the operation that returns a predicate about the named FS

object. The predicate may be bfresolve =)(or ∅=)(fresolve . The file f has to be in one of

these two states.

An application uses the creation operation to create a new FS object, the check operation to

determine the invariant bfresolve =)(or ∅=)(fresolve , the normal use operation to read or

write the FS object, and the removal operation to delete an FS object. Currently, these four kinds

of operations (creation, normal use, removal, and check) are defined as AbsFS operations. The

creation and removal operations change the resolve mapping, while the check and normal use

operations do not change the resolve mapping. The AbsFS operations and FS object states can

be represented in a state transition diagram shown in Figure 1.

2.2 Concurrent Access to AbsFS

Since the TOCTTOU vulnerability happens with concurrent access by a victim process and an

attacker process, we extend the notation above to include explicit modeling of concurrent file

system object access.

Definition 5: Safe sequence of AbsFS operations. Given a sequence O of AbsFS operations

invoked by a process/user on FS object f,)(),...,(),()(21 fofofofO n= , 1>n , if 11, −≤≤∀ nii ,

)(fresolve remains an invariant between the end of)(foi and the beginning of)(1 foi+ , we say the

sequence)(fO is a safe sequence of AbsFS operations, with regard to concurrent access. Since

in most cases all the operations in the sequence belong to the same process/user, for notational

 7

simplicity, we omit the process/user id from the sequence. In case of interleaved operations, we

will add a superscript to denote the different processes/users.

It is straightforward to see that the exclusive access by a single process to files is safe, i.e., the

state of each FS object persists from the end of each AbsFS operation to the beginning of the

next AbsFS operation under exclusive access.

Definition 6: Unsafe sequence of AbsFS operations: Given a sequence of operations

)(),...,(),()(21 fofofofO n= , 1>n , if 11, −≤≤∃ nii ,)(fresolve is not invariant between the end of

)(foi and the beginning of)(1 foi+ , i.e.,)()(
1

fresolvefresolve
ii oo +

≠ ,)(fO is an unsafe sequence of

AbsFS operations.

3 STEM Model of TOCTTOU

3.1 Exclusion of Careless Programming

Before we start the discussion of the TOCTTOU problem, we point out that the TOCTTOU

vulnerability is not due to a naively careless programming style. Consider the sendmail example.

Hypothetically, the sendmail could simply open the file name that is the user’s mailbox by

naming convention (e.g., /usr/mail/username) and then append emails to that file. This simplistic

approach fails immediately because the naming convention may or may not hold for all names

(e.g., a user may have created a symbolic link from /usr/mail/username to /etc/passwd). To

avoid this kind of problems, many system programmers have adopted a more careful

programming style. In case of files, this careful programming style establishes a predicate on the

file before using it. For example, sendmail establishes the predicate bfresolve =)(, where b

belongs to a regular file, not a symbolic link, before appending messages to f. The predicate

bfresolve =)(is an invariant that should remain true as long as the sendmail keeps appending

messages. We call the predicate an invariant instead of pre-condition, because the normal

 8

connotation of pre-condition is that it must be true before entering a function, but it may become

false after the function has started. In contrast, our invariant must remain true through the

duration of file usage.

In the rest of this paper we exclude the careless programming style and assume that all system

utilities of interest will establish an invariant on a pathname before using it. This is represented

in our notation by dividing a sequence of AbsFS operations)(),...,(),(),...,()(11 fofofofofO nii +=

into two subsequences. The first subsequence)(),...,(1 fofo i is called the “Check” part, and the

second subsequence)(),...,(1 fofo ni+ is called the “Use” part. The “Check” part establishes the

invariant)(fresolve
io and the “Use” part of the sequence relies on the invariant remaining true,

i.e.,)(fO is a safe sequence of AbsFS operations.

3.2 TOCTTOU Attacks in AbsFS

Definition 7: A TOCTTOU (Time-Of-Check-To-Time-Of-Use) attack on file object f consists of

two concurrent processes, victim v and attacker a, with interleaved AbsFS operations that make

v’s sequence unsafe. Consider the victim v executing the sequence

)()...,(),(),...,()(11 fofofofofO v

n

v

i

v

i

vv

+= , divided into the “Check” and “Use” parts. Concurrent with

v, attacker a is able to change the mapping)(fresolve
io established by v during the execution of

the sequence)(fO v , transforming it into an unsafe sequence. This is achieved by inserting the

sequence)(),...,(),()(21 fofofofO a

k

aaa
= between the “Check” and “Use” parts of)(fO v . The result

becomes:)()...,(),(),...,(),(),(),...,(1211 fofofofofofofo v

n

v

i

a

k

aav

i

v

+ .

To illustrate the definition with concrete scenario, we temporarily move from AbsFS to a

Unix-style file system environment. In such an environment, the function resolve(f), in which f

= eddd n//.../// 21 , depends on the name to disk block mappings for all elements along f, since

 9

the pathname resolution needs to start from the root directory and use each intermediate directory

name id to locate the next level on the directory tree, until e is located. Therefore, the final

mapping for f, bfresolve =)(or ∅=)(fresolve , implicitly depends on the mappings for all

pathname elements along f.

 Suppose the invariant established by v is bfresolve
io =)(, there can be two possible attack

sequences)(fOa of a: the first case modifies the last element e of f, and the second case modifies

some element on the pathname ahead of e, i.e., id where ni ≤≤1 . In the first case, an attack

would remove f and then create a symbolic link named f which points to another file object t

(',')(bbbtresolve ≠=), resulting in ')(bfresolve
a

ok
= . In the second case, an attack would change the

target directory of a symbolic link id from itd to some other directory '
itd , where both

eddtd nii //...// 1+ and eddtd nii //...// 1
'

+ are valid file pathnames. Again this can only be achieved

by first removing id and then creating a symbolic link named id which points to '
itd . Here we

only worry about symbolic links for the following reasons: (1) id cannot be a hard link because

hard links to directories are not allowed in Unix style file systems; and (2) if id is a regular

directory, it cannot be removed unless it is empty. Since we know that id contains at least one

element e, id cannot be removed without first removing e – then it reduces to the first type of

attack.

If the invariant established by v is ∅=)(fresolve
io , a possible attack sequence)(fOa is to

create the file object f, making ∅≠)(fresolve
a

ok
. Note that an attack that switches symbolic links

to directories also works: the trick is to prepare eddtd nii //...// 1
'

+ first, then modify id so it

points to '
itd , where eddtd nii //...// 1+ still does not exist. However, there is one more possibility:

 10

the attack can remove nd as a regular directory if it is empty and then create a symbolic link

under the same name (i.e., nd) which points to '
ntd that contains a file object named e.

The TOCTTOU attack is successful if)()(fresolvefresolve
a

o

v

o ki
≠ and victim v continues

execution without realizing the invariant created by the subsequence)(),...,(1 fofo v

i

v (the “Check”

part) has been violated. Consequently, the subsequence)()...,(1 fofo v

n

v

i+ (the “Use” part) will

execute under the assumption of the original invariant, which is no longer true.

The side effect of v executing the “Use” subsequence)()...,(1 fofo v

n

v

i+ after a successful

TOCTTOU attack is that v is actually working on some other unintended file object. For

example, if t = /etc/passwd in the sendmail example, emails may be appended to /etc/passwd.

Proposition 1: Violation of an invariant is a necessary condition for a successful TOCTTOU

attack.

The proposition 1 follows from Definition 7. If there is no violation of invariants, the

sequence)(fOv is a safe sequence, so there would be no TOCTTOU attack. Consequently,

through the entire duration of)(fOv , we can prevent TOCTTOU attacks by preserving the

invariant established by)(fOv and making the sequence a safe sequence.

3.3 An Enumeration of TOCTTOU pairs

Definition 8: Consider an unsafe sequence of AbsFS operations)(),...,(),()(21 fofofofO n= ,

where)()(
1

fresolvefresolve
ii oo +

≠ . The two operations surrounding the violation of the original

invariant (the last operation of the “Check” part and the first operation of the “Use” part),

)(foi and)(1 foi+ , are called a TOCTTOU pair.

 11

It is useful to identify the TOCTTOU pairs explicitly, since the combinations that yield such

pairs are non-trivial but manageable. The diagram in Figure 1 shows all the AbsFS operations

and the two states in which a file may be. On the left side of diagram is the non-existent state,

denoted by ∅=)(fresolve and on the right side of the diagram is the existent state, denoted by

bfresolve =)(.

Let us consider first the non-existent state and the invariant ∅=)(fresolve . The first term of a

TOCTTOU pair is an operation that results in the non-existent state of f. From the state

transition diagram in Figure 1, we see that two operations lead to the non-existent state: {check,

removal}. The removal operation explicitly makes f non-existent, while the check operation also

ends in the non-existent state if it does not find the pathname mapping. The second term of the

TOCTTOU pair is an operation that starts from the invariant ∅=)(fresolve (the non-existent

state). The two operations that start from the non-existent state are: {check, creation}. Therefore,

the TOCTTOU pairs associated with the non-existent state are contained in the set produced by

the Cartesian product of {check, removal}×{check, creation}.

While the Cartesian product contains all the TOCTTOU pairs, we will refine the second term,

which corresponds to the “Use” part of the TOCTTOU pair. For an attacker to exploit a

TOCTTOU vulnerability for some gain (e.g., escalation of privileges), the victim must be tricked

into doing something useful for the attacker in the “Use” part. Examples of useful actions are:

(1) set or modify the status information of an existing file object (e.g. make /etc/passwd world-

writable); (2) modify the runtime environment of the victim application (e.g. change the current

directory); and (3) release the content of a sensitive file object (e.g. read the content of

/etc/shadow into memory). Since the check operation does not produce any useful results for the

 12

attacker, we define exploitable TOCTTOU pairs by eliminating the check operation from the

second term of TOCTTOU pairs.

Now we consider the existent state of f, characterized by the invariant bfresolve =)(. The state

transition diagram in Figure 1 shows that the set of operations that lead into the existent state is

{creation, check, normal use}, and the set of operations that start from the existent state is

{check, normal use, removal}. So the TOCTTOU pairs associated with this invariant are in the

set {creation, check, normal use}×{check, normal use, removal}. As a second term of the

TOCTTOU pairs, check will not produce useful results for the attacker. Consequently, we also

eliminate check from the list of exploitable TOCTTOU pairs.

By deleting check from the second terms, the exploitable TOCTTOU pairs are {check,

removal}×{creation} for the first invariant and {creation, check, normal use}×{normal use,

removal} for the second invariant. Since there are only two invariants in AbsFS, we have

enumerated all the exploitable TOCTTOU pairs in Table 2.

Proposition 2: The enumeration of TOCTTOU pairs in Table 2 is complete, i.e., it contains

all the exploitable TOCTTOU pairs in AbsFS.

Proof: according to Definition 8, for a TOCTTOU pair)(foi and)(1 foi+ , resolve(f) should

remain an invariant between the end of)(foi and the beginning of)(1 foi+ . Mapping this to Figure

1, this means that the edge representing)(foi should arrive in a state that the edge representing

)(1 foi+ leaves from. Therefore, the enumeration of TOCTTOU pairs reduces to the problem of

enumerating all combinations of one in-edge and one out-edge at each state in Figure 1. More

formally, the set of TOCTTOU pairs is U
s

soutsin))()((× , where s is a state in Figure 1, in(s) is

the set of AbsFS operations that end in s, and out(s) is the set of operations that begin in s. Table

 13

2 is the concrete instantiation of this formula, with the two invariants being the two states in

Figure 1 and by taking the check operation out of out(s) (because it does not produce any useful

results for the attacker).

3.4 Prevention of TOCTTOU Attacks

In the rest of this section, we will focus on the preservation of invariants across the exploitable

TOCTTOU pairs. This protection will be done in two steps. First, we will maintain explicitly

the invariant for each file object on behalf of a certain user (called the holder of the invariant).

Second, for every file system operation that may change the invariant, we check whether the

invoker of the operation is the holder. The operation is allowed if it’s invoked by the holder. It

is disallowed if it belongs to another process/user.

In Figure 1, we described the state transitions of a file with a single process/user. Figure 2

shows the state transitions of a file under concurrent access by multiple processes/users. Without

loss of generality, we adopt the policy that the first process/user accessing the file object

becomes the invariant holder. (Intuitively, we consider the invariant as an exclusive lock.) The

goal of our protection mechanism is to reject any changes to the invariant except by the invariant

holder.

The main difference between Figure 1 and Figure 2 is the addition of three states. Two of the

states (on the top part of Figure 2) are due to the explicit representation of the cases of invariants

with a holder (same as Figure 1) and without a holder (new states). These transitions are

allowed, since the pathname is free and the invariant holder is not in competition with any other

process/user. The third new state is at the bottom of Figure 2, representing a potential attack

since those transitions would change the invariant for the holder. These transitions are rejected

 14

as an error. The original invariant holder maintains the hold on the invariant and the invariant

remains unchanged.

The implementation of invariant holder lock relies on a lock table and maps the invariant

holder id to the invariant across all TOCTTOU pairs. Consider a TOCTTOU pair < 21,oo >.

When a process u accesses a pathname f through)(1 fo , u becomes the invariant holder, moving

from the top states of Figure 2 to one of the middle states. (Note that all four AbsFS operations

are allowed in this step.) Our protection mechanism uses the lock table to remember this

invariant/holder mapping. The lock is released when the invariant holder process ends. These

state transitions are denoted as exit(u), in which case u releases the invariant.

While the pathname f is in one of the middle states, with invariant holder u, another

process/user (u’) may attempt to change the invariant, which will result in “error”. Other

operations that do not affect the invariant (e.g., check and normal use) are allowed, as shown in

Figure 2. Thus this mechanism implements the assumption required in Proposition 2 to protect

the invariants across TOCTTOU pairs.

Changes to the invariant: as discussed in Section 3.2, there are multiple ways to change the

invariant ∅=)(fresolve or bfresolve =)(: (1) changing the end point of the pathname (i.e., e of

edddf n//.../// 21=); and (2) changing intermediate path components (e.g., symbolic links to

directories). For clarity, Figure 2 only depicts attacks against the end point.

For practical purposes, we note that our protection mechanism does not require explicit

request and release of invariant-related locks. The management of invariant locks can be done

automatically on behalf of applications. Furthermore, the implementation can be simplified with

the following proposition.

 15

Proposition 3: Blocking the creation and removal of a file object f across a sequence

)(),...,(),(21 fofofo n is sufficient to make the sequence safe. Specifically, for the file object

edddf n//.../// 21= , this blocking forbids the creation or removal of e and the removal of

symbolic links id and regular directory nd (Section 3.2).

By Definition 5, a sequence of execution)(),...,(),(21 fofofo n is safe if 11, −≤≤∀ nii ,)(fresolve

is an invariant between the end of)(foi and the beginning of)(1 foi+ . If we forbid creation or

removal of any element of f (as described in Proposition 3) across)(),...,(),(21 fofofo n , we forbid

such operations between)(foi and)(1 foi+ , and since we have blocked all possible operations that

can change)(fresolve ,)(fresolve must be an invariant between the end of)(foi and the beginning

of)(1 foi+ . So)(),...,(),(21 fofofo n is guaranteed to be a safe sequence of execution.

This proposition is the basis for the EDGI defense described in Section 5.

Proposition 4: Making all exploitable TOCTTOU pairs safe is sufficient to make all file

access sequences safe and prevent TOCTTOU attacks.

Proof: Proposition 3 shows the preservation of invariants through a file operation sequence

suffices in making the sequence safe. Proposition 2 shows that all exploitable TOCTTOU pairs

have been enumerated. Combining the two propositions we have the assurance that making all

file operation sequences safe (for each process/user) can prevent all TOCTTOU vulnerabilities

from being exploited.

4 Concrete File System Examples

4.1 Exclusion of Careless File Attribute Settings

The AbsFS contains a simplified model of file system objects, with a very simple mapping of

pathname to logical disk blocks, without any additional file system attributes such as access

 16

control. In concrete file systems, appropriate access control attributes need to be set to prevent

trivial unauthorized file access. For example, Unix files with world writable settings can be

easily exploited by many kinds of attacks. In our modeling and analysis of TOCTTOU attacks,

we assume that appropriate file access control settings are being used by careful system

administrators.

4.2 Unix-Style File Systems

Table 2 gives a complete list of TOCTTOU pairs in AbsFS. Now we map the AbsFS into

Unix-style file systems. The first observation in the mapping is that Unix-style file systems have

several kinds of file system objects: regular files, directories, and links. The second observation

is that the abstract operations of check, creation, normal use, and removal may be implemented

by several system calls. Therefore, we map these abstract operations into sets of system calls

(CreationSet, NormalUseSet, RemovalSet and CheckSet) and divide these sets into operations on

each kind of file system objects.

• CreationSet = FileCreationSet ∪ DirCreationSet ∪ LinkCreationSet

• NormalUseSet
1
 = FileNormalUseSet ∪ DirNormalUseSet

• RemovalSet = FileRemovalSet ∪ LinkRemovalSet ∪ DirRemovalSet

• CheckSet = FileCheckSet ∪ LinkCheckSet ∪ DirCheckSet

The third observation is that the removal operation in Unix-style file systems does not produce

any useful results for the attacker. This is because in Unix-style file systems, under the

assumption of careful file attribute settings (Section 4.1), there are only two ways for the attacker

to make)()(tresolvefresolve = in a TOCTTOU attack (t is an existing security sensitive file object

1
 On Unix-style file systems, the normal use of a link (symbolic or hard) is actually on the regular file or directory that the link

refers to, so we do not need to define a separate NormalUseSet for link.

 17

such as /etc/passwd and f is the file object accessed by a TOCTTOU pair >< 21 , oo in the victim

application): via symbolic link or hard link. If the attacker replaces f with a symbolic link to t,

then the victim’s removal operation on f only removes f itself, but not t; If the attacker replaces f

with a hard link to t, this will increase the number of hard links of t by 1, and when the victim

performs the removal operation on f, it decreases the number of hard links of t by 1 (restores the

original hard link number of t, but never decreases it). Since t is physically removed only when

its hard link number becomes 0, given t’s initial hard link number is nonzero, the attacker cannot

cause t to be removed.

Thus for Unix-style file systems we can eliminate those TOCTTOU pairs with removal as the

second term from Table 2. The remaining AbsFS TOCTTOU pairs can be mapped to Unix-style

file systems as shown in Table 3. For an actual file system, we can map the actual file system

calls to these sets to obtain the concrete TOCTTOU pairs.

4.3 Study of POSIX and Linux

We focus on POSIX [10] and Linux as representative examples of Unix-style file systems

with TOCTTOU vulnerabilities. We believe the same mapping can be done with the other

flavors of Unix file systems. The POSIX mapping is shown in Figure 3 and the Linux mapping

is shown in Figure 4. Compare Figure 4 to Figure 3 we can see that the sets are almost the same

due to the fact that Linux is POSIX-compliant. We do see some discrepancy though, notably the

FileNormalUseSet. For example, POSIX has 6 different system calls on executing a program

(execl, execle, execlp, execv, execve, execvp), but Linux only has one (execve). A closer look at

the Linux implementation reveals that Linux implements only execve as a system call and uses

library calls to implement the remaining 5 POSIX interfaces, which are different wrappers on top

of this basic system call.

 18

Applying the mapping of Figure 3 to the mapping in Table 3, we have identified 485

exploitable TOCTTOU pairs for POSIX. Similarly, by applying Figure 4 to the mapping in Table

3, we get 224 exploitable TOCTTOU pairs for Linux.

Proposition 5: If the classification of a concrete file system’s operations is complete, then the

enumeration of exploitable TOCTTOU pairs is complete for the concrete file system. By

complete we mean the classification contains all the concrete file system calls that operate on file

objects, and all the concrete file system calls are classified into check, creation, normal use, and

removal functions on the file objects. (File system calls that have multiple functions appear in

multiple categories.)

Proof: The Proposition 2 guarantees the completeness of exploitable TOCTTOU pairs for the

AbsFS. Assuming that we have exhaustively analyzed the concrete file system calls and

classified them, Proposition 5 follows from Proposition 2.

By exhaustively analyzing the POSIX file system calls (Figure 3), we can apply Proposition 5

to the enumeration of exploitable TOCTTOU pairs based on Table 3 and Figure 3 and conclude

that we have enumerated all the exploitable TOCTTOU pairs in POSIX. Analogously, we apply

Proposition 5 to the enumeration of exploitable TOCTTOU pairs in Linux, based on Table 3 and

Figure 4, and the result is in Table 4.

4.4 Example of TOCTTOU Attacks

Table 5 shows some existing TOCTTOU vulnerabilities of applications running on Unix-style

Systems. The TOCTTOU pairs appear in the second column and their associated invariants in

the third column. Two of the under examination applications, the sendmail and the logwatch

2.1.1, are described in detail in the next paragraphs.

 19

Sendmail. In sendmail, the TOCTTOU vulnerability is a <stat, open> pair, the invariant is

bumboxresolve =)(, and the attack is first removing umbox and second creating a symbolic link

under the name umbox.

Logwatch 2.1.1. logwatch is an open-source script for monitoring log files in Linux. logwatch

2.1.1 running as root was reported [11] to allow a local attacker to gain elevated privileges, e.g.,

write access to /etc/passwd. This attack consists of the following steps:

1. Get the running process ID {pid} of logwatch;

2. Create a temporary directory named /tmp/logwatch.{pid};

3. Create a symbolic link with a specific name in the temporary directory, which points to

/etc/log.d/scripts/logfiles/samba/`cd etc;chmod 666 passwd #`

4. Wait for logwatch to use the temporary symbolic link. Although logwatch only opens it

for writing, the tricky file name causes the shell to execute it as a command line later.

The TOCTTOU pair in logwatch is <stat, mkdir>. logwatch first checks whether the

directory /tmp/logwatch.{pid} exists (stat) before creating it. However, an attacker may create

that directory (as shown above) between the stat and mkdir system calls. In this case,

logwatch’s mkdir fails, but since logwatch does not check the return value of its mkdir, it

continues blindly and uses the temporary directory. The invariant in logwatch is

∅=)(tmpdirresolve and the attack is a creation operation (mkdir) by the attacker. (Here the tmpdir

is /tmp/logwatch.{pid})

5 The EDGI Defense against TOCTTOU

5.1 Overview

Based on Section 3.4, we propose an event driven mechanism, called EDGI (Event Driven

Guarding of Invariants), to defend applications against TOCTTOU attacks. Due to the large

 20

number of existing applications that suffer from TOCTTOU vulnerabilities and the existence of

many different TOCTTOU pairs, it will not be a scalable approach to solve the TOCTTOU

problem on a per-application and per-TOCTTOU pair basis. Therefore, we propose a system-

level solution that fixes the entire class of TOCTTOU problems. Specifically, the design

requirements of EDGI are:

• It should solve the problem within the file system, and does not change the API, so that

legacy or future applications need not be modified.

• It should solve the problem completely, i.e., covering all TOCTTOU pairs and with no false

negatives.

• It should not add undue burden on the system, i.e., very low rate of false positives.

• It should incur very low overhead on the system.

EDGI prevents TOCTTOU attacks by making a sequence of system calls on a file object safe,

as suggested by Preposition 4. Under the STEM model’s assumption, the “Check” part of a

sequence of operations on a file object creates an invariant that should be preserved through the

corresponding “Use” part. Specifically, a file, certified to be non-existent (∅=)(fresolve) by the

“Check” operations, should remain non-existent until the “Use” operations create it. Similarly, a

file, certified to be existent (bfresolve =)() by the “Check” operations, should remain the same

file until the “Use” part (by the same user) accesses it. Identifying and preserving these two

invariants (∅=)(fresolve or bfresolve =)() are the main goals of EDGI.

In order to achieve the above goals, EDGI needs to recognize the existence of such a sequence

of system calls, including the user who is making this sequence of calls as well as the start and

end of the sequence. Since EDGI lacks application-level semantics information, it can do this

 21

only by automatic inference. Figure 5 shows the three components of EDGI and their

relationship to the STEM model. The STEM model “bootstraps” invariant scope inference by

dictating which TOCTTOU pairs are possible in a sequence of system calls (arrow 1), while

invariant scope inference decides when an invariant holder is valid (arrow 2), and invariant

maintenance needs the invariant holder id to protect the right user (arrow 3) and only when the

invariant is within scope (arrow 4). Finally, all three EDGI components are driven by system

level events such as file and process operations.

In the rest of this section, we will describe the three EDGI components: invariant holder

inference, invariant scope inference, and invariant maintenance, in more detail.

5.2 Automatic Inference of Invariant Holders

This part of EDGI answers the question of which user should be protected from a TOCTTOU

attack. We divide the life cycle of a file object into two kinds of distinct phases: free and actively

used. In the free phases, the file object is not operated on by any user in the system. In the

actively used phases, the file object is operated on by at least one user (through processes started

by that user). Obviously, TOCTTOU is an issue only when the file object is in the actively used

phases. When a file object is in an actively used phase, EDGI needs to decide among all the

active users which user should be protected. The identity of this user is maintained as a piece of

meta-information called invariant holder associated with the file object. Once the invariant

holder is decided, the EDGI defense is straightforward: preventing users other than the invariant

holder from creating or removing the file object, according to Preposition 3.

Since UNIX-style file systems were designed to be shared, EDGI treats all users equally in

terms of who can become the invariant holder, except that the root user can always preempt the

current invariant holder. Specifically, when a file object is free, the first user who operates on it

 22

becomes its invariant holder (the operation also causes the file object to enter an actively used

phase), and while this invariant holder is actively using the file object, other concurrent users of

the file object who come later than the invariant holder are considered potential attackers (this is

called the incarnation rule). However, there is one exception to the incarnation rule: if the late-

comer is the root user, it immediately becomes the new invariant holder (this is called the root

preemption rule). The observation behind the root preemption rule is that the root user is always

trusted and a process running as root has more value for an attacker than a normal process.

Once the current invariant holder finishes using the file object, the file object enters a free

phase again in which there is no invariant holder associated with it.

5.3 Automatic Inference of Invariant Scopes

This part of EDGI answers the question: how long should the protection be placed? We

define the length of this protection as the scope of the invariant. A significant technical challenge

is to correctly identify this scope - the boundaries of the TOCTTOU vulnerability window of the

application. Since current Unix-style file systems are oblivious to application-level semantics,

EDGI needs to infer the scope, so no changes are imposed on the applications or the file system

interfaces.

The inference of invariant scope is guided by the STEM model, which specifies the initial

TOCTTOU pair explicitly. The “Use” call of the initial pair becomes the “Check” call of the

next pair, completed by the following “Use” call. According to Proposition 2, the STEM model

correctly captures the TOCTTOU problem. The invariant of the initial pair is maintained from

the “Check” call through the “Use” call, and then to the additional “Use” calls.

EDGI infers the end of an invariant’s scope using several heuristics. First, when the invariant

holder’s process terminates, there is a good reason to believe that the invariant holder is done

 23

with the file object, so the protection can be lifted. This results in the termination rule. Another

heuristic is that when the current invariant holder is preempted by the root user, it cannot be

protected anymore, so the scope of its invariant ends. Finally, there is one more heuristic about

invariant scopes: the inheritance of invariants by children processes. For example, after a user

checks on a file object and becomes an invariant holder, its process spawns a child process, and

terminates. In the mean time, the child process continues, and uses the file object. If we only use

the first heuristic, the invariant will be removed when the owner (parent) process terminates. In

this case an attacker can achieve a TOCTTOU attack before the child process uses the file. Thus

we must extend the scope of invariants to the child process at every process creation. This

becomes the basis for the clone rule.

5.4 Invariant Maintenance Using ECA Rules

The EDGI mechanism keeps track of operations on a file object and dynamically recognizes the

need for protection against TOCTTOU attacks. Invariant holder inference (Section 5.2) decides

which user should be protected, and invariant scope inference (Section 5.3) decides the sequence

of file system calls that needs protection. When an invariant scope and the corresponding holder

are recognized, EDGI preserves such invariant by keeping users other than the invariant holder

from creating / removing the file object (except for the root user). Intuitively, an EDGI invariant

can be regarded as a sophisticated lock. While the invariant scope is active, the invariant holder

is the owner of the lock, and when the invariant is out of scope, the invariant holder releases the

lock. Due to the complications of Unix file system, the invariant handling is more complicated

than a normal lock compatibility table. Therefore, we represent the invariant handling using

ECA (Event-Condition-Action) rules [12, 13]. We note that we only use ECA rules as a model,

since our implementation does not support general-purpose rule processing.

 24

Specifically, the invariant-related information is maintained as extra state information for

each file object. When an invariant-related event is triggered, the corresponding set of

conditions is evaluated and if necessary, appropriate actions are taken to maintain the invariant

(e.g., extending the scope).

Table 6 shows the ECA rules used in EDGI. The specifications of the rules refer to invariant-

related information maintained by EDGI, which we describe in more detail below.

For each file object, EDGI maintains its state (free or actively used), invariant holder user id,

and a process list. In detail:

• refcnt – the number of active processes using the file object. When refcnt = 0, the file object

is free.

• fsuid – the user id of the processes that are actively using the file object, i.e., the invariant

holder id.

• gh_list – a doubly-linked list, in which each node contains a process id and the timestamp of

the latest system call made by the process on the file object.

In addition, invariant-related information is also associated with every symbolic link, as well

as the last regular directory if the invariant is non-existent (∅=)(fresolve), on the pathname of a

file object. Reasons for maintaining information for such objects are discussed in Section 3.2.

The information includes:

• refcnt – the number of active processes using the path element.

• gh_list – a doubly-linked list, in which each node contains a process id, a user id, and the

timestamp of the last system call made by the process.

 25

Note that such path elements do not have an fsuid field because they may appear on

pathnames requested by different users. Instead, the user identity information is added to the

gh_list. As long as no attempt is made to delete such an element, there will be no conflict. But

once there is one, we can use information on the gh_list to find all relevant parties, which is the

basis for resolving the access conflict. We discuss access conflicts in more detail in Section

5.5.2.

Finally, two kinds of events trigger condition evaluation:

• File system calls such as access, open, mkdir, etc.

• Process operations: fork, execve, exit.

The conditions evaluated by each event and their associated actions are summarized in Table

6 (f denotes the file object). The conditions refer to the file object status (whether the invariant is

∅=)(fresolve or bfresolve =)(), and actions include the creation, removal and potentially more

complex invariant maintenance actions. Note that Table 6 only covers the “end point” file object

to simplify presentation, because the rules for intermediate points (e.g., symbolic links to

directories) are similar.

5.5 Discussion

5.5.1 Completeness of EDGI

One important question is whether the EDGI mechanism is a complete solution, capable of

stopping all TOCTTOU attacks. For every file system call, the rules summarized in Table 6 are

checked and followed. The first time a “Check” call is invoked on a file object in a free phase,

that user becomes the file object’s invariant holder. At any given time there is at most one

invariant holder for each file object. Users other than the invariant holder (except for root users)

are not allowed to create or remove the file object (including changes to mapping between the

 26

name and disk objects). Therefore, the EDGI defense is able to stop all TOCTTOU attacks

identified by the STEM model.

5.5.2 Discussion about Access Conflict

EDGI’s agnostic to application-level semantics may cause false positives. If we consider the

invariants as similar to locks, then the question of dead-lock and live-lock arises. For example, it

is possible that an invariant holder is a long-running process which only touches a file object at

the very beginning and then never uses it again. Consequently, a legitimate user may be

prevented from creating/deleting the file object for a long time - a situation that can be

considered a false positive. This is particularly an issue if the invariant holder in question is

malicious: by blocking a legitimate user, the malicious invariant holder is essentially mounting a

denial of service attack. In order to address this issue, EDGI maintains enough information

about the current invariant holder (including user id and process id) and logs such access

conflicts (in terms of creating / deleting the file object). Such logged information can help an

analyst identify the parties involved in the conflict and identify the malicious user if there is one.

This logging facility helps deter a malicious user from holding on to a file object just to deny its

creation/deletion by another user, and also helps two benign users resolve the access conflict

between them.

Below we argue that EDGI correctly addresses the access conflicts, whether the file in

question is shared or not. A summary of our proof is also presented in Figure 6.

If the file is private, the legitimate user (e.g., the owner) should be chosen as the invariant

holder by accessing the file object first. This is typically expected because only the legitimate

user knows which pathname to use to refer to the file. In this case, another user’s attempt to

create / delete the file object (a possible attack step) will be denied by EDGI, a correct behavior.

If another user happens or manages to learn about the pathname of such a file and leverages the

 27

EDGI mechanism to become the holder (i.e., by accessing the file before the legitimate user

does), it should be considered an anomaly. Specifically,

• If the invariant is non-existent, this means that the legitimate user is about to create a

file and the second user anticipates the pathname already – most likely the second user

is malicious. In this case, it is a correct behavior for the system to warn the legitimate

user that some other user has “owned” the pathname.

• If the invariant is existent, this means that the second user accesses the (private) file

first (an anomaly). In this case, it is a correct behavior for the system to warn the

legitimate user that some other user may have tampered with the pathname when the

legitimate user tries to delete the file.

If the file is intended for sharing, we can have two situations: (1) neither user needs to create

or delete the shared file. In this case, there will be no access conflicts in terms of creating /

deleting the shared file; (2) at least one user needs to do that. While one user creates or deletes

the shared file, the other user must be aware that the file may or may not exist, and may appear

or disappear suddenly, all depending on the first user’s activities. Purely relying on file system

interfaces to implement synchronization among different users is awkward. Obviously, a good

programmer should design the applications in a way that they coordinate with each other using

some other application-level protocols. To better support coordination, we can add a system call

for registering friends group on a file object which lets EDGI know that two users are friends so

the lock does not apply to a friend. For example, 1P checks the status of a file; then 2P tries to

create the same file, which should be allowed if 1P and 2P are in a friends group.

 28

6 Linux Implementation of EDGI

We have implemented the mechanism described in the previous section in the Linux file system.

The implementation consists of modular kernel modifications to maintain the invariants for every

file object and its user/owner. We outline the process that remembers the invariant holder of each

file object (Section 6.1) and then the maintenance of the invariants (Section 6.2).

6.1 Invariant Holder Tracking

Invariant holder tracking is accomplished by maintaining a hash table that keeps track of the

processes that are actively using each file object. The index to this hash table is the file

pathname, and for each entry, a list of process ids is maintained. Our modular implementation

augments the existing directory entry (dentry) cache code and extends its data structures with the

fields introduced in Section 5.4: fsuid, refcnt, and gh_list.

Before a system call uses a file object by name, it first needs to resolve the pathname to a

dentry. Our implementation instruments the Linux kernel to call the invariant holder tracking

algorithm during each such pathname resolution. There are two possible approaches to

implementing this algorithm. The first is to instrument the body of every system call (e.g.,

sys_open) that uses a file pathname as argument. The second is to instrument the pathname

resolution functions themselves (in the Linux case, link_path_walk and lookup_hash).

The first approach has the disadvantage that instrumented code has to spread over many

places, making testing and maintenance difficult. Although techniques such as Aspect Oriented

Programming (AOP) [14] could help, we were unable to find a sufficiently robust C language

aspect weaver tool that can work on Linux kernel. The second approach has the advantage that

only a few (in the Linux case, exactly two) places need to be instrumented, making the testing

and maintenance relatively easy. We chose the second approach for our implementation.

 29

The invariant holder tracking algorithm GH is shown in Figure 7. This algorithm effectively

implements the rules summarized in Table 6, and it is called right before link_path_walk and

lookup_hash successfully returns.

Line 1-2 of the invariant holder tracking algorithm addresses the situation where a new

invariant holder is identified: invariant related data structure is initialized, including the invariant

holder user id (fsuid), the invariant holder process id, and a timestamp. After these steps, the

invariant maintenance part (Section 6.2) will start applying this invariant. We can see that the

similar sequence also occurs in Line 6, where a new invariant holder is decided due to

preemption.

Lines 3-4 address the situation in which an existing invariant holder accesses the file object

again.

Lines 5-6 correspond to the preemption of invariant from a normal user to the root discussed

in Section 5.2.

The invariant holder tracking algorithm needs the current process id and current user id

runtime information, which are obtained from the current global data structure maintained by the

Linux kernel.

6.2 Invariant Maintenance

The second part of implementation is invariant maintenance by thwarting the attacker’s attempt

to change the name to disk binding of a file object, which in turn is achieved by deleting or

creating a file object. We instrumented two kernel functions to perform invariant checks:

• may_delete(d): this function is called to do permission check before deleting a file object d.

We add invariant checking after all the existing checks have been passed: If d is an end point,

d.refcnt > 0, and the current user id is not the same as d.fsuid, return –EBUSY (file object in

 30

use and cannot be deleted) and log the access conflict; otherwise return 0. If d is a symbolic

link to a directory or a regular directory, d.refcnt > 0, and there are users other than the

current user on d.gh_list, return –EBUSY (file object in use and cannot be deleted) and log

the access conflict; otherwise return 0. Note that the root user is always able to pass this

check because d.fsuid becomes root irrespective of its initial value due to the root preemption

rule in Table 6.

• may_create(d): this function is called to do permission check before creating a file object,

similar invariant checking (as may_delete above) is added after all the existing checks have

been passed. The difference is that the new checks are performed only on end point file

objects, because symbolic link replacement attacks must first delete the symbolic link, which

are stopped by the checks added to may_delete.

The may_create kernel function is called by all the system calls in the CreationSet (Section 4.2)

and the may_delete function is called by all the system calls in the corresponding RemovalSet

(Section 4.2). These invariant checks implement the Invariant Maintenance Rules 1 and 2 in

Table 6.

6.3 Engineering of EDGI Software

Table 7 shows the size of EDGI implementation in Linux kernel 2.4.28. The changes were

concentrated in one file (dcache.c), which was changed by about 55% (LOC means lines of

code). The other changes were small, with less than 5% change in one other file (namei.c), plus

single-line changes in three other files. This implementation of less than 1000 LOC was

achieved after careful control and data flow analysis of the kernel, plus some tracing. We

consider this implementation to be highly modular and relatively easily portable to other Linux

releases.

 31

From top-down point of view, the methodical design and implementation process benefited

from the STEM model as a starting point. Then, the ECA rules facilitated the reasoning of

invariant maintenance. The rules were translated into the Invariant Holder Tracking algorithm.

These steps give us the confidence that the invariants are maintained by EDGI software.

Conversely, from a bottom-up point of view, the Linux kernel was organized in a methodical

way. For example, it has exactly two functions (may_delete and may_create) controlling all

file object status changes. By guarding these two functions, we were able to guard all 224

TOCTTOU pairs identified by the STEM model. This kind of function factoring in the Linux

kernel contributed to the modular implementation of EDGI.

7 Experimental Evaluation of EDGI

7.1 Discussion of False Negatives

EDGI has to correctly identify the application that needs to be protected against TOCTTOU

attacks. Our root preemption rule is very critical in this respect because by allowing the root

process to become the invariant holder, EDGI prevents privilege escalation attacks through

shared access to files.

The EDGI system design follows the STEM model, and the completeness of the STEM model

is given in Proposition 5. If the ECA rules, summarized in Table 6, captures all the TOCTTOU

pairs identified by the STEM model, and the invariant holder tracking algorithm in Figure 7

implements all the rules in Table 6, and our Linux kernel implementation (Section 6) is correct,

then our implementation should have zero false negatives.

We have run all the attack experiments we could find, including known TOCTTOU

vulnerabilities such as logwatch 2.1.1 [11] and new vulnerabilities recently detected, including

 32

rpm, vi/vim, and emacs. In all the experiments the EDGI system is able to stop the attacker

program.

7.2 Discussion of False Positives

As mentioned in Section 5.5.2, our conservative maintenance of invariants may introduce

unnecessary denials of creation / deletion of file objects, if an invariant holder runs for a long

time. These unnecessary denials can be considered a kind of false positives. Theoretically, one

major source of false positives seems to center on symbolic links to directories that may appear

in pathnames of many different user applications, especially when such directories are system-

wise (e.g., containing system libraries). By analyzing the log generated by EDGI, we find that

such symbolic links are just a few (less than ten) and despite the fact that they are widely shared

(by more than ten processes concurrently), we have not found any false positives because an

attempt to remove / create such symbolic links is rejected. For example, one such symbolic link

is /usr/lib/X11 that points to /usr/X11R6/lib/X11, and this symbolic link appears in the

pathnames of 17 processes. However, we have not observed any user application that wants to

remove this symbolic link in a normal Linux environment.

To help reduce the false positives, EDGI logs the users and their processes in an access

conflict, as a way to identify real access conflicts among legitimate users.

7.3 Overhead Measurements

We use a variant of the Andrew benchmark [15] to evaluate the overhead introduced by EDGI

defense mechanism. The benchmark consists of five stages. First, it uses mkdir to recursively

create 110 directories. Second it copies 744 files with a total size of 12MB. Third, it stats 1715

files and directories. Fourth, it greps (scan through) these files and directories, reading a total

 33

amount of 26M bytes. Fifth, it does a compilation of around 150 source files. For every stage, the

total running time is calculated and recorded.

The experiments ran on a Pentium III 800MHz laptop with 640MB memory, where Red Hat

Linux in single user mode was installed. We report the average and standard deviation of 20 runs

for each experiment in Table 8, which compares the measurements on the original Linux kernel

and on the EDGI-augmented Linux kernel. The same data is shown as bar chart in Figure 8.

The Andrew benchmark results show that EDGI generally has a moderate overhead. The only

exception is stat, which has 47% overhead. The explanation is that stat takes less time than other

calls (such as mkdir), but the extra processing due to invariant holder tracking (now part of

pathname resolution) has a constant factor across different calls. This constant overhead weighs

more in short system calls such as stat. Fortunately, stat is used relatively rarely, thus the

overall impact remains small.

PostMark benchmark [16] is designed to create a large pool of continually changing files and

to measure the transaction rates for a workload approximating a large Internet electronic mail

server. PostMark first tests the speed of creating new files, and then it tests the speed of

transactions. Each transaction has a pair of smaller transactions, which are either read/append or

create/delete.

On the original Linux kernel the running time of this benchmark is 40.0 seconds. On EDGI-

augmented kernel, with all the same parameter settings, the running time is 40.1 seconds (Again

these results are averaged over 20 rounds). So the overhead is 0.25%. This result corroborates the

moderate overhead of EDGI.

 34

8 Related Work

TOCTTOU is a well known security problem [1, 2, 17]. Bishop and Dilger [18, 19] gave the first

comprehensive exploration of this problem, developed a prototype analysis tool that used pattern

matching to look for TOCTTOU pairs in the application source code, and suggested solutions to

TOCTTOU problem including the modifications of file system interfaces. We have carried out a

study on TOCTTOU vulnerabilities detection [6], experimental risk analysis [20], and prevention

[21]. This paper is extended from our previous work with the addition of the Abstract File

System model, the STEM model, the mapping of concrete Unix-style file systems to it, and an

improved design and implementation of EDGI that addresses attacks that leverage symbolic links

to directories. We note that the STEM model is extended from the CUU model in [6] with more

theoretical rigor.

Static analysis of source code has shown some success in finding bugs in systems software

recently. For example, Meta-compilation [22] and RacerX [23] uses compiler-extensions to find

software bugs, and MOPS [24, 25] uses model checking to verify that a program preserves

certain security properties. These static analysis tools could be used to detect TOCTTOU pairs

in programs. However, they are limited in the detection of real TOCTTOU problems because of

dynamic states (e.g., file names, ownership, and access rights) and the inherent limitations of

static analysis (e.g., pointer analysis [26]).

In contrast to static analysis, dynamic detection monitors application execution to find

software bugs without access to source code. These tools can be further classified into dynamic

online analysis tools such as [27, 28] and post mortem analysis tools such as the one proposed by

Ko et al. [29]. However, [29] can only detect the result of exploiting a TOCTTOU vulnerability

and cannot locate the error.

 35

The difficulty of detection contrasts with the simplicity of some of the technical suggestions

in advisories and reports on TOCTTOU exploits from US-CERT [4] and BUGTRAQ [5],

including setting proper file/directory permissions and checking the return code of function calls.

However, some other suggested programming fixes are varied and non-trivial: using random

numbers to obfuscate file names, replacing mktemp() with mkstemp(), and using a strict umask

to protect temporary directories. More significantly, none of these fixes can be considered a

comprehensive solution for TOCTTOU vulnerabilities.

Several research projects have tried to prevent subset of TOCTTOU vulnerabilities.

RaceGuard [30] prevents the temporary file creation race condition in UNIX systems,

specifically the <stat, open> TOCTTOU pair where open is used to create a file. It detects a

potential race attack when a file already exists at open time and aborts the open operation. k-race

[31] protects another specific TOCTTOU pair: <access, open>. The idea is to add to the original

pair multiple <access, open> pairs (called strengthening rounds). An attack has to succeed in all

the rounds. Due to the non-deterministic nature of TOCTTOU attacks, their approach makes the

probability of successful attack exponentially lower with the number of rounds. Interestingly

however, Borisov [32] described an effective attack against k-race which uses extremely long

pathnames. Then Tsafrir proposed column-oriented k-race or atomic k-race [33] to counter

Nikita’s attack, and later Cai showed that atomic k-race can still be defeated [34]. The story is

likely to continue, which demonstrates the challenging nature of TOCTTOU problems.

 Several more generic defense mechanisms are TxOS [35], pseudo-transactions [8], and RPS

[9]. Their basic ideas are the same: wrapping known susceptible TOCTTOU pairs inside real or

pseudo-transactions, which can be used to prevent some classes of TOCTTOU vulnerabilities

from being exploited. TxOS [35] adds two system calls for an application to specify code

 36

regions that needs to run in system transactions, including TOCTTOU pairs. However, TxOS

requires existing vulnerable applications to change their implementation. Pseudo-transactions [8]

support a flexible specification of allowed and denied file system call sequences. However, they

were only able to generate a set of specifications from empirical refinement through practical

use, and they do not consider abuse of pseudo-transactions by malicious users. RPS [9] used a

similar idea as [8] (also called pseudo transactions) to protect pre-defined TOCTTOU pairs.

RPS’s classification of TOCTTOU pairs is similar to ours, e.g., according to the existence of the

file object. However, RPS, again, does not model user at all, which enables abuse of RPS by

malicious users to attack legitimate ones. The last main difference between the STEM model

and the transactions work [8, 9, 35] is the complete enumeration of exploitable TOCTTOU pairs

by the STEM model. To the best of our knowledge, this complete enumeration has not been

achieved before.

9 Conclusion

Due to its structural complexity (a victim process with a checking step and a use step, concurrent

with an attacker process that interleaves fortuitously with the victim), TOCTTOU is a well-

known and difficult problem. It is difficult to detect and reproduce because of its non-

deterministic nature and typically non-obvious damages to the system. It is also difficult to

prevent due to its complex interactions with the file system.

The first contribution of this paper is the STEM model of TOCTTOU vulnerabilities. The

STEM model divides file system operations into four categories: check, creation, normal use,

and removal. The model considers two states (existent and non-existent, defined by the mapping

from a pathname to logical disk blocks) for each file object, and carefully analyzes the transitions

between the two states (see Figure 1). The model is able to capture all the important state

 37

transitions between vulnerable file system operations, called TOCTTOU pairs. By enumerating

all the TOCTTOU pairs, we are able to capture all the potential TOCTTOU vulnerabilities of a

file system.

The second contribution of this paper is the EDGI mechanism that prevents TOCTTOU

attacks. EDGI keeps track of operations on a file object and automatically recognizes and

preserves the two file invariants in the STEM model. Assuming the completeness of the STEM

model, EDGI can defeat all possible TOCTTOU attacks, while not requiring any existing

applications to change. Furthermore, with automatic inference of invariant holders and scopes,

EDGI ensures that only a legitimate user’s (e.g., the root user’s) applications are protected, not

those of a malicious user. Finally, a prototype of EDGI has been designed and implemented on

Linux. The implementation is relatively small (less than 1000 lines of code) and carries little

overhead (a few percent for application-level benchmarks).

10 References

[1] McPhee, W. S. “Operating system integrity in OS/VS2.” IBM Systems Journal 13(3): 230-252, 1974.

[2] Abbott, R. P., Chin, J.S., Donnelley, J.E., Konigsford, W.L., Tokubo, S., and Webb, D.A. “Security Analysis and Enhance-

ments of Computer Operating Systems.” NBSIR 76-1041, Institute of Computer Sciences and Technology, National Bureau

of Standards, April 1976.

[3] NIST. “National Vulnerability Database.” NIST website. http://nvd.nist.gov/, accessed July 2010.

[4] United States Computer Emergency Readiness Team. “US-CERT Vulnerability Notes.” US-CERT website.

http://www.kb.cert.org/CERT_WEB\services\vul-notes.nsf/bypublished, accessed July 2010.

[5] SecurityFocus. “Bugtraq Archive.” SecurityFocus website. http://www.securityfocus.com/archive/1, accessed July 2010.

[6] Wei, J., Pu, C. “TOCTTOU Vulnerabilities in UNIX-Style File Systems: An Anatomical Study.” Proceedings of the 4th

USENIX Conference on File and Storage Technologies (FAST '05), San Francisco, CA, December 2005.

[7] Chen, S., Xu, J., Sezer, E. C., Gauriar, P., and Iyer, R. K. “Non-Control-Data Attacks Are Realistic Threats.” Proceedings of

the 14th USENIX Security Symposium, Baltimore, MD, August 2005.

 38

[8] Tsyrklevich, E. and Yee, B. “Dynamic detection and prevention of race conditions in file accesses.” Proceedings of the 12th

USENIX Security Symposium, pages 243–256, Washington, DC, August 2003.

[9] Park, J., Lee, G., Lee, S., and Kim, D. “RPS: An Extension of Reference Monitor to Prevent Race-Attacks.” In K. Aizawa,

Y. Nakamura, and S. Satoh (Eds.): PCM 2004, LNCS 3331, pp. 556-563, 2004. Springer-Verlag Berlin Heidelberg 2004.

[10] The Open Group. “The Single UNIX Specification, Version 3, 2004 Edition.” Open Group Publications website.

http://www.unix.org/single_unix_specification/, accessed July 2010.

[11] IBM Internet Security Systems. “LogWatch /tmp directory race condition.” IBM Internet Security Systems website.

http://xforce.iss.net/xforce/xfdb/8652, accessed July 2010.

[12] McCarthy, D. R., Dayal, U. “The Architecture of an Active Data Base Management System.” ACM SIGMOD Record 18

(June 1989): 215-224.

[13] Harel, D. “Statecharts: A visual formalism for complex systems.” Science of Computer Programming 8 (June 1987): 231–

274.

[14] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J. M., and Irwin, J. “Aspect-Oriented Program-

ming.” Proceedings of the European Conference on Object-Oriented Programming (ECOOP), Finland. Springer-Verlag

LNCS 1241. June 1997.

[15] Howard, J. H., Kazar, M. L., Menees, S. G., Nichols, D. A., Satyanarayanan, M., Sidebotham, R. N., and West, M. J. “Scale

and performance in a distributed file system.” ACM Transactions on Computer Systems 6 (February 1988): 51-81.

[16] FreshPorts. “PostMark 1.51_1.” FreshPorts website. http://www.freshports.org/benchmarks/postmark/, accessed July 2010.

[17] Bisbey, R. and Hollingsworth, D. “Protection Analysis Project Final Report.” ISI/RR-78-13, DTIC AD A056816,

USC/Information Sciences Institute, May 1978.

[18] Bishop, M. and Dilger, M. “Checking for Race Conditions in File Accesses.” Computing Systems 9(Spring 1996):131–152.

[19] Bishop, M. “Race Conditions, Files, and Security Flaws; or the Tortoise and the Hare Redux.” Technical Report 95-8, De-

partment of Computer Science, University of California at Davis, September 1995.

[20] Wei, J., Pu, C. “Multiprocessors May Reduce System Dependability under File-Based Race Condition Attacks.” In Proc. of

the 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks 2007 (DSN '07), pp.358-367,

25-28 June 2007. doi: 10.1109/DSN.2007.67.

[21] Pu, C., Wei, J. “A Methodical Defense against TOCTTOU Attacks: The EDGI Approach.” Proceedings of the International

Symposium on Secure Software Engineering (ISSSE '06), Arlington, Virginia, March 13-15, 2006.

 39

[22] Engler, D., Chelf, B., Chou, A., and Hallem, S. “Checking System Rules Using System-Specific, Programmer-Written

Compiler Extensions.” Proceedings of Operating Systems Design and Implementation (OSDI), San Diego, CA, October 23-

25, 2000.

[23] Engler, D. and Ashcraft, K. “RacerX: Effective, Static Detection of Race Conditions and Deadlocks.” Proceedings of the

19th ACM Symposium on Operating Systems Principles (SOSP), Lake George, NY, October 19-22, 2003.

[24] Chen, H. and Wagner, D. “MOPS: an Infrastructure for Examining Security Properties of Software.” Proceedings of the 9th

ACM Conference on Computer and Communications Security (CCS), Washington, DC, November 2002.

[25] Schwarz, B., Chen, H., Wagner, D., Morrison, G., West, J., Lin, J., and Tu, W. “Model Checking an Entire Linux Distribu-

tion for Security Violations.” Proceedings of the 21th Annual Computer Security Applications Conference, December 6,

2005.

[26] Hind, M. “Pointer analysis: haven't we solved this problem yet?” Proceedings of the 2001 ACM SIGPLAN-SIGSOFT

workshop on Program analysis for software tools and engineering, Snowbird, Utah, June 18-19, 2001.

[27] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T. “Eraser: A Dynamic Data Race Detector for Multith-

readed Programs.” ACM Transactions on Computer Systems 15 (November 1997): 391-411.

[28] Lhee, K. and Chapin, S. J. “Detection of File-Based Race Conditions.” International Journal of Information Security 4 (Feb-

ruary 2005): 105-119.

[29] Ko, C., Fink, G., and Levitt, K. “Automated Detection of Vulnerabilities in Privileged Programs by Execution Monitoring.”

Proceedings of the 10th Annual Computer Security Applications Conference, Orlando, FL, December 1994.

[30] Cowan, C., Beattie, S., Wright, C., and Kroah-Hartman, G. “RaceGuard: Kernel Protection From Temporary File Race

Vulnerabilities.” Proceedings of the 10th USENIX Security Symposium, Washington DC, August 2001.

[31] Dean, D. and Hu, A. J. “Fixing Races for Fun and Profit: How to use access(2).” Proceedings of the 13th USENIX Security

Symposium, San Diego, CA, August 2004.

[32] Borisov, N., Johnson, R., Sastry, N., and Wagner, D. “Fixing Races for Fun and Profit: How to Abuse atime.” Proceedings

of the 14th USENIX Security Symposium, Baltimore, MD, July 31-August 5, 2005.

[33] Tsafrir, D., Hertz, T., Wagner, D., and Silva, D. “Portably Solving File TOCTTOU Races with Hardness Amplification.” In

Proceedings of the 6th USENIX Conference on File and Storage Technologies (FAST 2008), Mary Baker, Erik Riedel

(Eds.), February 26-29, 2008, San Jose, CA, USA. USENIX 2008, ISBN 978-1-931971-56-0, pp. 189-206.

[34] Cai, X., Gui, Y., and Johnson, R. “Exploiting Unix File-System Races via Algorithmic Complexity Attacks.” Proceedings of

the 30th IEEE Symposium on Security and Privacy, Berkeley, CA, May 17-20, 2009.

 40

[35] Porter, D., Hofmann, O., Rossbach, C., Benn, A., and Witchel, E. “Operating System Transactions.” In Proc. of the SOSP'09,

October 11-14, 2009, Big Sky, Montana, USA, pp. 161-176.

Vitae

Jinpeng Wei received a PhD in Computer Science from Georgia Institute of Technology,

Atlanta, GA in 2009. He is currently an assistant professor at the School of Computing and

Information Sciences, Florida International University, Miami, FL. His research interests include

malware detection, information flow security in distributed systems, could computing security,

and file-based race condition vulnerabilities. He is a member of the IEEE and the ACM.

Calton Pu received the PhD degree from the University of Washington in 1986. He is a

professor and the John P. Imlay Jr. chair in software at Georgia Institute of Technology, Atlanta,

GA. He has published more than 60 journal papers and book chapters, 170 refereed workshop

and conference papers in operating systems, transaction processing, systems reliability and

security, and Internet data management. He has served on more than 100 program committees

for more than 50 international conferences and workshops. He is a member of the ACM, a senior

member of the IEEE, and a fellow of the AAAS.

 41

Figures

Figure 1: State Transition Diagram for FS Object f

Figure 2: The Enhanced State Transition Diagram with Two Users

 42

Figure 3: POSIX File Operations

Figure 4: Linux File Operations

Figure 5: EDGI Modules and Their Interconnections

FileCreationSet = {creat, open, mknod, rename}

DirCreationSet = {mkdir, rename}

LinkCreationSet = {link, symlink, rename}

FileNormalUseSet = {chmod, chown, truncate,

utime, open, execve}

DirNormalUseSet = {chmod, chown, utime,

mount, chdir, chroot, pivot_root}

FileRemovalSet = {unlink, rename}

DirRemovalSet = {rmdir, rename}

LinkRemovalSet = {unlink, rename}

FileCheckSet = {stat, access}

DirCheckSet = {stat, access}

LinkCheckSet = {stat, access}

FileCreationSet = {creat, open, mknod, mkfifo,

rename}

DirCreationSet = {mkdir, rename}

LinkCreationSet = {link, symlink, rename}

FileNormalUseSet = {chmod, chown, truncate,

utime, open, fopen, fdopen, popen, execl, execle,

execlp, execv, execve, execvp, pathconf}

DirNormalUseSet = {chmod, chown, utime, chdir,

pathconf}

FileRemovalSet = {remove, unlink, rename}

DirRemovalSet = {remove, rmdir, rename}

LinkRemovalSet = {remove, unlink, rename}

FileCheckSet = {access, stat}

DirCheckSet = {access, stat}

LinkCheckSet = {lstat, readlink}

 43

Let the file object be f, the legitimate user be u, and the other user be u’.

if f is private to u (u’ is the attacker),

if u becomes the invariant holder, u’ attempts will be denied by EDGI, correct;

if u’ becomes the invariant holder (by guessing and accessing f first),

if invariant is non-existent, u gets warning when trying to create f, correct,

if invariant is existent, u gets warning when trying to delete f, correct.

if f is shared between u and u’ ,

if neither u nor u’ needs to create / delete f, no conflict;

if at least one needs to create / delete f, requires application level cooperation between u and u’.

Figure 6: Proof that EDGI Correctly Handles Access Conflicts

1

2

3

4

5

6

7

8

Input: dentry d

Output: 0 – succeed, -1 – the binding of d is tainted.

if d.refcnt = 0

then d.fsuid ← current user id, record current pid and current time in d.gh_list, d.refcnt++, return 0.

else

if d.fsuid = current user id

then record current pid and current time in d.gh_list, return 0.

else

if current user id = root

then remove all invariants on d.gh_list, d.fsuid ← root, record current pid and current time in

d.gh_list, d.refcnt ←1, return 0.

else

return 0.

Figure 7: Invariant Holder Tracking Algorithm

 44

Figure 8: Andrew Benchmark Results

 45

Tables

Table 1: Applications with TOCTTOU Vulnerabilities Reported at the Bugtraq Mailing List [5]

Domain Application Name

Enterprise applications

Apache, bzip2, gzip, getmail, Imp-webmail, procmail, openldap, openSSL, Kerbe-

ros, OpenOffice, StarOffice, CUPS, SAP, samba

Administrative tools at, diskcheck, GNU fileutils, logwatch, patchadd

Device managers Esound, glint, pppd, Xinetd

Development tools make, perl, Rational ClearCase, KDE, BitKeeper, Cscope

Table 2: Exploitable TOCTTOU Pairs (AbsFS)

Invariant TOCTTOU Pairs

∅=)(fresolve <check, creation>

<removal, creation>

bfresolve =)(
<creation, normal use>

<check, normal use>

<normal use, normal use>

<creation, removal>

<check, removal>

<normal use, removal>

 46

Table 3 Enumeration of Exploitable TOCTTOU Pairs (Unix-Style File Systems)

Invariant Exploitable TOCTTOU Pairs

∅=)(fresolve

(FileCheckSet × FileCreationSet) ∪ (FileRemovalSet × FileCreationSet) ∪

(DirCheckSet × DirCreationSet) ∪ (DirRemovalSet × DirCreationSet) ∪

(LinkCheckSet × LinkCreationSet) ∪ (LinkRemovalSet × LinkCreationSet)

bfresolve =)(

(FileCheckSet × FileNormalUseSet) ∪ (FileCreationSet × FileNormalUseSet) ∪

(LinkCreationSet × FileNormalUseSet) ∪ (FileNormalUseSet × FileNormalUseSet)∪

(DirCheckSet × DirNormalUseSet) ∪ (DirCreationSet × DirNormalUseSet) ∪

(LinkCreationSet × DirNormalUseSet) ∪ (DirNormalUseSet × DirNormalUseSet)

Table 4: Exploitable TOCTTOU Pairs in Linux

Invariant TOCTTOU Pairs

∅=)(fresolve

<stat, creat> <stat, open> <stat, mknod> <stat, rename> <access, creat> <access, open> <access, mknod>

<access, rename> <unlink, creat> <unlink, open> <unlink, mknod> <unlink, rename> <rename, creat>

<rename, open> <rename, mknod> <rename, rename> <stat, mkdir> <access, mkdir> <rmdir, mkdir>

<rmdir, rename> <rename, mkdir> <stat, link> <stat, symlink> <access, link> <access, symlink> <unlink,

link> <unlink, symlink> <rename, link> <rename, symlink>

bfresolve =)(

<stat, chmod> <stat, chown> <stat, truncate> <stat, utime> <stat, open> <stat, execve> <access, chmod>

<access, chown> <access, truncate> <access, utime> <access, open> <access, execve> <creat, chmod>

<creat, chown> <creat, truncate> <creat, utime> <creat, open> <creat, execve> <open, chmod> <open,

chown> <open, truncate> <open, utime> <open, open> <open, execve> <mknod, chmod> <mknod,

chown> <mknod, truncate> <mknod, utime> <mknod, open> <mknod, execve> <rename, chmod> <re-

name, chown> <rename, truncate> <rename, utime> <rename, open> <rename, execve> <link, chmod>

<link, chown> <link, truncate> <link, utime> <link, open> <link, execve> <symlink, chmod> <symlink,

chown> <symlink, truncate> <symlink, utime> <symlink, open> <symlink, execve> <chmod, chmod>

<chmod, chown> <chmod, truncate> <chmod, utime> <chmod, open> <chmod, execve> <chown, chmod>

 47

<chown, chown> <chown, truncate> <chown, utime> <chown, open> <chown, execve> <truncate,

chmod> <truncate, chown> <truncate, truncate> <truncate, utime> <truncate, open> <truncate, execve>

<utime, chmod> <utime, chown> <utime, truncate> <utime, utime> <utime, open> <utime, execve>

<open, chmod> <open, chown> <open, truncate> <open, utime> <open, open> <open, execve> <execve,

chmod> <execve, chown> <execve, truncate> <execve, utime> <execve, open> <execve, execve> <stat,

mount> <stat, chdir> <stat, chroot> <stat, pivot_root> <access, mount> <access, chdir> <access, chroot>

<access, pivot_root> <mkdir, chmod> <mkdir, chown> <mkdir, utime> <mkdir, mount> <mkdir, chdir>

<mkdir, chroot> <mkdir, pivot_root> <rename, mount> <rename, chdir> <rename, chroot> <rename, pi-

vot_root> <link, chmod> <link, chown> <link, utime> <link, mount> <link, chdir> <link, chroot> <link,

pivot_root> <symlink, chmod> <symlink, chown> <symlink, utime> <symlink, mount> <symlink, chdir>

<symlink, chroot> <symlink, pivot_root> <chmod, mount> <chmod, chdir> <chmod, chroot> <chmod,

pivot_root> <chown, mount> <chown, chdir> <chown, chroot> <chown, pivot_root> <utime, mount>

<utime, chdir> <utime, chroot> <utime, pivot_root> <mount, chmod> <mount, chown> <mount, utime>

<mount, mount> <mount, chdir> <mount, chroot> <mount, pivot_root> <chdir, chmod> <chdir, chown>

<chdir, utime> <chdir, mount> <chdir, chdir> <chdir, chroot> <chdir, pivot_root> <chroot, chmod>

<chroot, chown> <chroot, utime> <chroot, mount> <chroot, chdir> <chroot, chroot> <chroot, pivot_root>

<pivot_root, chmod> <pivot_root, chown> <pivot_root, utime> <pivot_root, mount> <pivot_root, chdir>

<pivot_root, chroot> <pivot_root, pivot_root>

 48

Table 5: Some Existing TOCTTOU Vulnerabilities on Unix-style Systems

Applications TOCTTOU pair Classification and Invariant

BitKeeper, Cscope 15.5, CUPS, get-

mail 4.2.0, glint, Kerberos 4, openl-

dap, OpenOffice 1.0.1, patchadd,

procmail, samba, Xinetd

<stat, open> FileCheckSet × FileCreationSet

∅=)(fresolve

Rational ClearCase, pppd <stat, chmod> FileCheckSet × FileNormalUseSet

bfresolve =)(Sendmail <stat, open>

logwatch 2.1.1 <stat, mkdir> DirCheckSet × DirCreationSet

∅=)(fresolve

bzip2-1.0.1, gzip, SAP <open, chmod> FileCreationSet × FileNormalUseSet

bfresolve =)(Mac OS X 10.4 – launchd <open, chown>

StarOffice 5.2 <mkdir, chmod> DirCreationSet × DirNormalUseSet

bfresolve =)(

 49

 Table 6: Invariant Maintenance Rules in EDGI

Name Event Condition Action

Incarnation

rule

Any system call

on f

refcnt == 0 Set f’s state as actively used (refcnt++); fsuid as cur-

rent user id, record current pid and current system

time in the gh_list.

Reinforcement

rule

Any system call

on f

refcnt > 0 and

fsuid == current user id

Record current pid and current system time in the

gh_list.

Root preemp-

tion rule

Any system call

on f

refcnt > 0 and

fsuid != current user id and

current user id == root

Remove all invariant holder information from the

gh_list; set f’s fsuid as current user id, set refcnt as 1,

record current pid and current system time in the

gh_list.

Invariant

maintenance

rule 1

Any system call in

the RemovalSet

(4.2) on f

refcnt > 0 and

fsuid != current user id

Deny the current request.

Invariant

maintenance

rule 2

Any system call in

the CreationSet

(4.2) on f

refcnt > 0 and

fsuid != current user id

Deny the current request.

Clone rule fork (parent,

child)

True For each file object that has parent in its gh_list,

record child and current system time, and increment

the refcnt.

Termination

rule

exit True Remove current pid from the gh_list of each file ob-

ject that has it on its gh_list, and decrement the cor-

responding refcnt.

Distract rule execve True Remove current pid from the gh_list of each file ob-

ject that has it on its gh_list, and decrement the cor-

responding refcnt.

 50

Table 7: Linux Implementation of EDGI

Source File

Modified

Places

Original

LOC

Added

LOC

fs/dcache.c 5 1307 793

fs/namei.c 5 2047 118

fs/exec.c 1 1157 1

kernel/exit.c 1 602 1

kernel/fork.c 1 896 1

Table 8: Andrew Benchmark Results (in milliseconds)

Functions Original Linux Modified Linux Overhead

mkdir 6.35

±0.21

6.43

±0.19

1.3%

copy 217.0

±1.5

218.6

±1.4

0.7%

stat 132.0

±1.9

193.6

±0.8

47%

grep 777.0

±4.3

870.1

±5.3

12%

compile 53,971

±434

55,615

±367

3.0%

