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Abstract

A new class of stealthy kernel-level malware, called tran-
sient kernel control flow attacks, uses dynamic soft timers
to achieve significant work while avoiding any persistent
changes to kernel code or data. We demonstrate that soft
timers can be used to implement attacks such as a stealthy
key logger and a CPU cycle stealer. To defend against these
attacks, we propose an approach based on static analysis of
the entire kernel, which identifies and catalogs all legitimate
soft timer interrupt requests (STIR) in a database. At run-
time, a reference monitor in a trusted virtual machine com-
pares each STIR with the database, only allowing the exe-
cution of known good STIRs. Our defensive technique has
no false negatives because it mediates every STIR execution
and prevents execution of all unknown, illegitimate STIRs,
and no false positives because the relevant kernel code an-
alyzed was unambiguous. The overhead for this additional
security is less than 7% for each of our benchmarks.

1. Introduction

Internet-scale attacks, such as botnets, often utilize mali-
cious software (malware) to hide their presence and extract
information from their host systems. Rootkits, for example,
are a common type of kernel-level malware that intercept
and modify system events with the goal of hiding illicit ac-
tivity [5, 12]. Other kernel-level malware can collect sensi-
tive data, cause a denial of service, or open backdoors into
the system. In this paper we present an attack technique that
allows an attacker to execute kernel-level malware while
evading detection from existing defensive tools. We then
focus on techniques for detecting and mitigating the attack.

Attacks designed to maintain stealthy control of the ker-
nel can be divided into three broad, and sometimes overlap-
ping, categories: (1) detours attacks, (2) persistent kernel
control flow attacks, and (3) transient attacks. The first cat-
egory consists of malware that changes code on disk or in
memory. These changes can be detected by trusted security
tools that compare the current state of the system against
a known good state. The second category consists of at-
tacks that are capable of invoking malicious functions dur-
ing execution by changing function pointers. The attacks in
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this category do not make any changes to the kernel code,
but can be detected by control flow integrity (CFI) [1] and
state-based control flow integrity (SBCFI) [20]. However,
the third category of attacks is capable of evading current
defensive techniques.

This category, transient kernel control flow attacks, is ca-
pable of achieving continual malicious function execution
without persistently changing either kernel code or data.
Transient attacks are also called soft timer attacks because
they leverage the soft timer mechanism found in nearly all
full-featured operating systems. These attacks are difficult
to detect because many legitimate kernel components use
soft timers and all soft timers share a dynamic queue, which
prevents CFI and SBCFI from working in this scenario.

This paper has two primary contributions:

A concrete understanding of the severity of soft-timer
attacks. We demonstrate that an attacker can use soft timer
interrupt requests (STIRs) to perform powerful attacks in-
cluding key logging, denial of service, and hidden process
scheduling. We also show why current defensive tools do
not work against these attacks.

A static analysis based tool that detects STIR attacks
at runtime. We discuss the design, implementation, and
evaluation of a new tool that detects STIR attacks. Under
our security assumptions (Section 3.1), this tool detects all
soft-timer attacks with less than 7% performance overhead.

The static analysis tool uses summary signatures to dif-
ferentiate STIRs from legitimate and malicious software.
Summary signatures characterize legitimate STIRs using
callback functions and other constraints, and are derived
through automated static analysis of the kernel source code.
At run time, a reference monitor mediates STIR execution
based on the summary signatures. We take several measures
to protect the reference monitor, including executing it in a
different virtual machine and using memory protections to
prevent an attacker from bypassing the mediation step. Sec-
tion 3 provides a complete discussion of our architecture
and its security properties.

The rest of this paper is organized as follows. Sec-
tion 2 provides background information on soft timers, and
outlines three timer-driven attacks that we have developed.
Section 3 presents our defense mechanism against such at-
tacks. Section 4 described the Xen-based prototype imple-
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mentation of the defense and its evaluation in terms of ef-
fectiveness and performance overhead. Section 5 discusses
related work, and we conclude in Section 6.

2. Soft Timer Based Attacks

Dynamic soft timers are a well-established mechanism
used by many kernel components to schedule the execution
of a timed event handling function [4]. Common uses of
soft timers include retries when polling a physical device,
retransmission of data, and handling of network protocol
timeouts. Unlike hardware timer interrupts, soft timers are
execution requests that need to be scheduled. A soft timer
interrupt request (STIR) typically specifies when to execute,
a callback function, and a data pointer to uninterpreted con-
textual information. This request is saved in a queue by the
kernel. To execute a STIR, the kernel invokes the callback
function and passes along the data pointer as a parameter.

The control flows due to STIR call back functions are in-
jected into the main kernel control loop upon request. Under
the assumption that everything in the kernel space is equally
trusted, such transfers of control are acceptable. However, if
one of the requesters is malicious, the soft timer mechanism
can be turned into a reliable way of maintaining stealthy
control. An attack can be divided into a sequence of STIRs
and executed using successive timer callback functions.

For ease of presentation, we adopt a simple and informal
model of kernel-level malware that executes useful work for
a botnet owner or renter. Under this model, the malware’s
life cycle can be divided into three steps: (1) system pene-
tration, (2) interpose on the kernel control flow, and (3) con-
tinually execute malicious functionality. Penetration meth-
ods (step 1) such as buffer overflows [9] are well known
and omitted from this discussion. Previous persistent ker-
nel control flow attacks (e.g., the rootkits listed in [20])
change kernel data structures (step 2) to force the kernel to
branch/jump to malicious functionality (step 3). Like per-
sistent attacks, our new transient attacks interpose on the
kernel’s control flow (step 2) at the time of the attack. How-
ever, unlike persistent kernel control flow attacks, which
typically replace a permanent function pointer in the ker-
nel, a transient kernel control flow attack simply installs a
malicious STIR. In our demonstration, malicious function-
ality is implemented using a Linux loadable kernel module
(LKM) that requests the first STIR in its initialization func-
tion. When the malicious LKM is loaded, the kernel invokes
its initialization function, and step 2 is completed. The mal-
ware’s persistent execution (step 3) is possible because each
STIR can request the next STIR that references the callback
function. For added stealth, the location of this callback
function can change with each STIR execution.

To understand the effectiveness of transient kernel con-
trol flow attacks, this section outlines the design of three
soft-timer based malware examples to show that they can
perform a wide variety of malicious objectives. These ex-
amples are implemented as LKMs and run through the soft
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Figure 1: Flow of keyboard input in Linux.

timer facility. More specifically, they invoke the kernel API
add_timer to request a STIR. add_timer takes as input a
parameter that points to a data structure of type timer _list,
and the function field of this structure is set to a callback
function. A callback function is specific to the correspond-
ing malware, but all such functions request the next STIR
before they return, e.g., by calling add_timer.

The three malware examples below demonstrate viola-
tion of the three basic security properties: the stealthy key
logger violates confidentiality, and the cycle stealer and the
alter-scheduler violate both availability and integrity.

2.1. Stealthy Key Logger

A typical class of malware steals sensitive information
from the host node. A straightforward but easily detected
malware implementation intercepts the kernel functions that
process such sensitive information. For example, a key log-
ger [21] can replace the keyboard interrupt handler (e.g.,
IRQ 1) with a malicious handler that records the keyboard
input. The following implemented example shows that per-
sistent kernel modifications are not needed for this type of
malicious functionality.

A timer-driven key logger keeps kernel code and
interrupt-related data structures intact. It periodically looks
at various buffers in the kernel, where the keyboard input
information is stored. As Figure 1 shows, when a key is
pressed, the keyboard hardware generates an interrupt. The
keyboard interrupt handler fetches the key stroke informa-
tion and temporarily stores it in the TTY flip buffer before
transferring it into the TTY line discipline buffer. Finally,
when a user-level application reads from the standard input
device, keystroke data is copied into the user’s buffer.

The sampling rate determines whether or not a timer-
driven key logger can capture every keystroke. The key
logger can obtain keystroke information from the TTY flip
buffer, the TTY line discipline buffer, or the user’s buffer.
The TTY flip buffer has a very short retention time relative
to the TTY line discipline buffer, which is a large circular
buffer (normally 4096 bytes). Since each keystroke gener-
ates 2 bytes of information, the TTY line discipline buffer
can keep information on up to 2048 keystrokes. Since it can
take several minutes for the average user to fill up the line
discipline buffer, the key logger malware only needs to in-
spect the buffer periodically (e.g., once per minute should
be good enough) to collect all of the user’s keystrokes.
In the event that more frequent sampling is required, the
key logger can request faster soft timer interrupts. In this
case, techniques for hiding the higher resource consump-



tion should be employed (see Section 2.2) to keep the key
logger stealthy.

We have implemented the sampling key logger on
Linux to collect key strokes from an X Window desk-
top. It captures keystrokes entered into X Window appli-
cations, including the gedit editor, the Firefox web browser,
and terminal window emulators. These applications han-
dle many security-critical keystrokes including usernames,
passwords, and credit card numbers.

2.2. Stealthy Denial of Service Attack

A second common type of attack causes a denial of ser-
vice (DoS) or lowered quality of service. In a soft timer-
driven attack, the call back function can perform compu-
tationally intensive work to steal system resources thereby
slowing down or halting any legitimate application. One
simple CPU cycle stealer has been implemented by insert-
ing a program to compute the factorial of a given number in
the call back function. By adjusting the value of the num-
ber and the timer’s period, different slowdown factor can be
obtained. We measure the CPU usage during such an at-
tack where the timer’s period is fixed at one second. When
the value of the number is below 25, the CPU consumption
by the malware is negligible. As the value becomes larger,
there is an exponential increase in the CPU consumption
by the malware. For example, when the value is 36, the
CPU consumption is about 54%, and when the value grows
to 42, the CPU consumption is close to 100%. Note that
the actual algorithm used to steal CPU cycles is irrelevant
to the attack. Instead, this attack shows that a resource ex-
haustion attack can be stealthily deployed, preventing the
system from performing its intended tasks.

The attack becomes effective when the malware is able
to hide itself and its effects from detection for a significant
amount of time. One problem with typical DoS attacks is
that the wasted CPU cycles are detectable by system tools
such as fop. This is because the kernel maintains perfor-
mance accounting information for different sources of com-
putation. For example, the CPU time consumed by the
above malicious call back function is attributed to “software
interrupt”. To hide this attack, the malicious call back func-
tion further manipulates the kernel accounting data (e.g.,
kstat_cpu(0).cpustat) such that the CPU time used by the
malicious STIR is attributed towards the idle CPU time.
Therefore, it is not immediately obvious why the system
performance is degrading.

Our CPU cycle stealer violates the availability of CPU
resources and the integrity of the performance accounting
information. However, since the performance accounting
information is dynamic, there is no easy notion of what is
normal. Under such attacks, a system may report slowdown
of a service, but there can be many other reasons for poor
performance (network congestion, server overload, retries
due to device error, etc). Therefore, this type of attack is
not easily discovered.
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Figure 2: lllustration of a malicious STIR with
a legitimate callback function (dev_watchdog
in Linux kernel 2.6.16) and a malicious data
pointer (Shaded area means malicious). Here
dev_watchdog may invoke a function pointer de-
rived from the data field of the STIR.

tx_timeout

2.3. Running a Hidden Process: the Alter-Scheduler

A third kind of malware, called alter-scheduler, is capa-
ble of running a malicious process without relying on the le-
gitimate kernel scheduler. Some existing malware can hide
a malicious process by removing its entry from the all-task
linked list of the kernel. However, this malware must leave
the malicious task structure in the run queue in order for it
to be scheduled. Therefore, a detection tool such as [19]
that cross checks the all-task linked list and the run queue is
able to detect the malicious process.

The alter-scheduler malware implements a special
scheduler exclusively for the malicious process. It keeps
a record of the malicious process structure and detaches
it from both the all-task list and the standard run queue.
Within the STIR call back function, the alter-scheduler pre-
empts the currently running task, as if a higher-priority pro-
cess has become runnable. Then it forces a context switch to
the malicious process, as if the malicious process has been
chosen as the new task to run. The standard scheduler is
resumed when the malicious process surrenders the CPU.

This style of attack is very powerful because the mali-
cious process is made independent of (and thus invisible
to) the legitimate kernel scheduler and other relevant rou-
tines, and the malicious alter-scheduler instead supplies the
missing functionality (e.g., giving the malicious process op-
portunities to run). Therefore, malware based on the alter-
scheduler can remain stealthy against state-of-the-art detec-
tors such as [19].

3. Soft Timer Attack Detection and Defense

Each attack in Section 2 must usurp kernel control flow
in order to execute malicious code. Soft timers can be lever-
aged to do this in one of two ways: (Type 1) supply a ma-
licious timer callback function, or (Type 2) supply a legit-
imate timer callback function but a malicious data pointer
such that the control flow of the legitimate callback function
is modified to invoke malicious functionality as a subroutine
(similar to the “jump-to-libc” style attacks [26]). The latter
option is possible because when a STIR callback function is
invoked, a data pointer embedded in the STIR is passed as
the input parameter. In some cases, the STIR callback func-



tion may derive a function pointer from this input, thereby
allowing the data to alter the control flow.

3.1. Security Assumptions and Threat Model

Our defensive techniques against soft timer attacks are
based on four standard security assumptions. First, since
we use a virtualization-based architecture, we assume that
the virtual machine manager (VMM) and the security vir-
tual machine (VM) are part of the trusted computing base.
This assumption is based on the idea that the VMM code
base can be small, and therefore auditable, and the inter-
face between the guest VM and the VMM can be narrow
and protected. Our second assumption is that the legitimate
kernel code in the guest VM’s memory can not be tampered
with by malicious code. In a production setting, this must
be enforced by existing security tools such as Copilot [18]
or SecVisor [24]. Third, we assume that the source code
of the kernel and all kernel extensions are available for the
static analysis portion of our tool. Note that closed source
operating system vendors could perform the static analysis
and make the results available to the end-users. For open
source operating systems, the entire procedure can be per-
formed by end-users. Lastly, in order to provide protections
for this system, we require that the system can be booted
into a known good state (i.e., secure boot [2]). We then
perform a brief initialization phase to setup our defensive
system and then the guest VM is open to outside events and
may be placed under attack at any time.

Our threat model allows an attacker to install malicious
code on this system running at the highest privilege level.
The attacker is able to perform kernel-level attacks, but we
assume that protections are in place to prevent tampering
with kernel code as described above. Under this model, the
attacker is powerful and able to run soft timer attacks unless
our defensive system prevents them. This is a realistic threat
model and no more constraining to an attacker than previous
work in this space [20].

3.2. Legitimate STIR Identification

The basic idea of our proposed defense is to validate each
STIR before its execution, thereby preventing the execution
of malicious STIRs. Based on the “fail-safe defaults” prin-
ciple [23], we use a white list of STIR summary signatures
to distinguish legitimate STIRs from malicious ones. An
unknown STIR that does not have a matching STIR sum-
mary signature is considered suspect and denied execution.

3.2.1 STIR Summary Signatures

Recall that a malicious STIR can induce kernel control
flow in two ways: (1) supply a malicious timer callback
function, or (2) supply a legitimate timer callback func-
tion but a malicious data pointer. In order to detect type
1 malicious STIRs, we only need to check their callback
functions against a white list of legitimate timer callback
functions. However, in order to detect type 2 malicious
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Figure 3: Processing STIR summary signatures.

STIRs, we must check the data pointer in addition to check-
ing the callback function. Figure 2 illustrates a type 2 ma-
licious STIR (in shaded color). This figure shows that the
tx_timeout field of the data structure (in shaded color) ref-
erenced by the data pointer of the malicious STIR is set
to a malicious function (e.g., malicious_foo). Therefore, we
can detect this malicious STIR by comparing the tx_timeout
field against a white list of legitimate functions (for exam-
ple e1000_tx_timeout) that can be assigned to this field for
the legitimate STIRs.

Consequently, we choose the STIR summary signature
as a two-element tuple <function, assertion>, where func-
tion represents a legitimate timer callback function (e.g.,
dev_watchdog), and assertion represents properties of le-
gitimate data passed to the legitimate callback function as
input. Specifically, an assertion is the logical AND of 0 or
more parameterized predicates. Each predicate has the form
“deref equals functionlist”, where deref specifies a way
to dereference a function pointer (e.g., data->tx_timeout),
and functionlist is the logical OR of one or more legit-
imate functions that can be assigned to the dereferenced
function pointer. An example assertion associated with
dev_watchdog is:

(data->tx_timeout equals (el000_tx_timeout OR xir-
com_tx_timeout))

Figure 3 shows the overall processing of the STIR sum-
mary signatures, divided into three phases corresponding
to compile time, initialization time and evaluation time, re-
spectively. In the first phase, Linux kernel source code is
statically analyzed by the STIR Analyzer to generate the
symbolic STIR summary signatures. These signatures are
symbolic because the addresses of the functions in them
may be unknown at compile time (e.g., due to dynamic ker-
nel module loading). The actual mappings of these func-
tions to their runtime addresses happen in the second phase
(See details in Section 3.2.4), when the symbolic summary
signatures become resolved summary signatures. This pro-
cess is in some way similar to partial evaluation [8]. Finally,
during the normal operation of the guest VM (e.g., the eval-
uation time), the STIR Checker (Section 3.3) uses the re-
solved summary signatures to prevent control transfers due
to malicious STIRs.



In the first phase, the STIR Analyzer performs a top-level
analysis (Section 3.2.2) to derive the function part of the
STIR summary signatures and a transitive closure analysis
(Section 3.2.3) to generate the assertion part of the STIR
summary signatures. The latter analysis identifies all func-
tion pointer dereferences of the input parameter in the le-
gitimate STIR callback functions, as well as all legitimate
functions that they target.

3.2.2 Top-Level Analysis

We first consider the collection of legitimate STIR call-
back functions, which we call LegitTimerfuncs. These are
the top-level functions that require validation before exe-
cution. Each function in LegitTimerfuncs will become the
function part of a STIR summary signature after the transi-
tive closure analysis (as described in Section 3.2.3).

t.function = fn;

t = TIMER_INITIALIZER (fn, expires, data);
DEFINE_TIMER(t, fn, expires, data);
setup-timer(&t, fn, data);

Table 1: Different ways of assigning timer call-
back functions in the Linux kernel

LegitTimerfuncs is constructed by scanning the kernel
source code to identify all legitimate instances of soft timer
callback functions. Table 1 shows the four techniques
to link soft timer callback functions, denoted fn, to the
timer_list structure, denoted t. The first is by assignment.
The second and third techniques are macros that actually
expand to assignment. Therefore the first three cases are an-
alyzed in the same way: the STIR Analyzer traverses each
assignment statement (lval = rval) of each function in the
Linux kernel, and if lval ends with a field named function
within a structure of type timer_list, then rval is recognized
as a soft timer callback function. The last technique to link a
soft timer callback function is to use the setup_timer proce-
dure. This technique is handled by traversing each function
call to setup_timer and collecting the second parameter in
the function call.

We assume that benign programmers follow the standard
APIs in Table 1 to request STIRs. Since the top-level anal-
ysis considers all 4 ways in Table 1, it can capture all legit-
imate STIR callback functions.

3.2.3 STIR Callback Transitive Closure Analysis

Verification of the top-level LegitTimerfuncs is insuffi-
cient to guarantee defense because it only addresses type 1
malicious STIRs and not type 2. To detect potential attacks
in lower level subroutines, the second part of the STIR An-
alyzer checks the function calls within each callback func-
tion in LegitTimerfuncs to see if any of them allows indi-
rect control transfers. Concretely, if function pointers are
derived from the input parameter of a callback function that
further branches to one of those pointers, then the analyzer
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Transitive closure analysis of fn(arg):
(1) Initially arg is added to tainted_vars;
(2) For each assignment statement [val = rval or
lval = f'(rval) in fn:
If any part of rval is in tainted_vars, then lval
is added to tainted_vars.
(3) For each function call statement f(params) in
fn:
If any part of f(params) is in tainted_vars,
then raise a flag for fn.

Figure 4: Analysis for STIR callback functions.

raises a flag to indicate that the callback function needs a
transitive closure analysis of all such pointers.

Figure 4 shows the high-level algorithm for the transitive
closure analysis. Given a callback function fn with param-
eter arg, the STIR Analyzer first traverses each assignment
statement of fn to compute the set of variables (tainted_vars)
whose value can be influenced by arg, directly or indirectly.
Next, the STIR Analyzer searches every function call state-
ment of fn to see if the target function or its parameter is in-
fluenced by any variable in tainted_vars. Existence of such
a function call means that control can go to places decided
by arg, which could be exploited by malware.

If the STIR Analyzer does not raise a flag for a call-
back function in the transitive closure analysis, a signature
<function, assertion> is completed where function is the
name of the callback function, and assertion is simply the
boolean value true (which means that no further check is
needed on the data parameter arg of the callback function).

If the STIR Analyzer raises a flag, a further step is per-
formed to compute the assertion. This step can be further
subdivided into three cases.

Case 1: Only the function name part of a function call
statement (i.e., f in f(params) of Figure 4) is influenced by
the input parameter (arg), which means that arg is used to
derive a function pointer. In this case, the third step decides
the legitimate functions that can be assigned to the function
pointer derived from arg. For each distinct way of deref-
erencing arg, a predicate “deref equals functionlist” (intro-
duced in Section 3.2.1) is generated, where deref specifies
the way to dereference arg, and functionlist is the logical OR
of legitimate functions that can be assigned to the derefer-
enced function pointer. The assertion is the logical AND
of all such predicates. The process of deriving legitimate
functions in a predicate is similar to the top-level analysis
(section 3.2.2) which identifies the timer callback functions.

Case 2: Only the parameter part of a function call state-
ment (i.e., params in f(params) of Figure 4) is influenced
by the input parameter arg. In this case, the same analysis
in Figure 4 is applied to f, and all resultant predicates are
appended (ANDed) to the assertion.

Case 3: Both the function name and the parameter of
a function call statement are influenced by arg. The third
step treats this case as a composition of case 1 and case 2.
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Figure 5: Defense against soft timer attacks.

i.e., it first processes the function name part to derive the
legitimate functions and then processes the parameter part
on each of the identified legitimate functions.

The STIR Analyzer relies on accurate type information
to recognize function pointer dereferences. In the Linux
kernel (written in C), addresses could be calculated by
pointer arithmetic operations. In practice, we have found
no such unsafe pointer arithmetic operations in all of the
STIR related kernel functions we have inspected. Due to
the threat represented by kernel control flow attacks (both
persistent and transient), we encourage kernel developers
to continue avoiding pointer arithmetic operations in legiti-
mate kernel functions. This will help to support comprehen-
sive kernel code analysis that depends on type information.

3.24 Generating Resolved STIR Summary Signatures

The outcome of the STIR Analyzer is the symbolic STIR
summary signatures. These contain symbols (e.g., STIR
callback function names) whose runtime addresses may not
be determined statically. Specifically, Linux supports load-
able kernel modules (LKMs) that can be added to the ker-
nel at runtime. If a legitimate LKM uses a soft timer, the
address of its callback function cannot be known until after
the module is loaded. Therefore, we provide a mechanism
to register such symbol-address mappings at runtime.

Because we employ a VMM-based detection architec-
ture (described in Section 3.3), the registration mechanism
is split into two components: a guest VM component (called
a STIR Symbol Mapper) and a security VM component
(called a STIR Symbol Resolver), as shown in Figure 3. At
the guest VM initialization time, the STIR Symbol Map-
per first generates mappings from function names in the
symbolic STIR summary signatures to virtual addresses in
the guest kernel’s address space. It then informs the STIR
Symbol Resolver about these mappings through an inter-
VM communication. When the STIR Symbol Resolver re-
ceives the mapping list, it merges the addresses with the
corresponding symbolic STIR summary signatures, which
become resolved STIR summary signatures that can be used
to check the legitimacy of pending STIRs.

3.3. The STIR Checker

Because soft timer attacks are at the kernel-level, a de-
fense mechanism inside the same kernel would be vulnera-
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ble to tampering by an attacker. Consequently, an effective
defense must be isolated from the victim kernel. Virtual ma-
chine managers (VMMs) are one environment that provides
such isolation, allowing us to run the defensive mechanism
in a VM that is isolated from the guest VM. Our implemen-
tation uses Xen [3] for these isolation properties.

As shown in Figure 5, our architecture places the STIR
Checker outside of the victim guest kernel in a separate do-
main (called the security VM). The purpose of the STIR
Checker is to prevent control transfers from the guest ker-
nel to malicious functionality such as those outlined in Sec-
tion 2. Specifically, the software timer dispatcher of the
guest kernel is modified to inform the STIR Checker about
the callback function and related data when a pending STIR
expires, and invokes the callback function only if the STIR
Checker returns true. During the time when the STIR
Checker is making a decision, the guest kernel is suspended.
The communication between the STIR Checker in the secu-
rity VM and the guest VM is facilitated by an inter-VM
communication channel. The modification to the guest ker-
nel is protected using memory-protection capabilities from
the Lares architecture [17]; therefore the STIR Checking
cannot be trivially bypassed.

The STIR Checker module compares the next STIR to be
dispatched against a list of resolved STIR summary signa-
tures (Section 3.2.4). As Figure 5 shows, all STIR summary
signatures are stored in a database, indexed by their function
element (Section 3.2.1). Given a STIR, the STIR Checker
first uses its function field as the index to look up the sum-
mary signature database. If a signature is found, and the
assertion evaluates to true on the data field, the STIR is con-
sidered legitimate. Otherwise it is considered malicious.

4. Linux Implementation and Evaluation

4.1. STIR Analyzer

We used the Common Intermediate Language (CIL) [15]
to implement a prototype STIR Analyzer, which consists of
several program analysis modules that implement the algo-
rithms in sections 3.2.2 and 3.2.3. These modules receive
high-level representations of the kernel source files gener-
ated by CIL, analyze them, and output the results.

The STIR Analyzer can analyze the entire Linux kernel
2.6.16 in about one hour on our test system (a 2.4 GHz In-
tel Core 2 Duo with 2 GB of RAM). The analyzer found a
total of 365 legitimate STIR callback functions in the 3688
kernel source files analyzed.

A majority of these STIR callback functions (333 out
of 365) do not derive function pointers from the input pa-
rameter, therefore they can not be used to construct type 2
malicious STIRs (Section 3.2.1).

On the other hand, 32 of the 365 top-level callback func-
tions do derive function pointers from their input param-
eter. Transitive closure analysis was carried out on these
functions to identify the legitimate subroutines to which the
derived function pointers can point. We describe these in



Source file Timer Callback Function

Function Pointers Derived From Input

drivers/input/joystick/db9.c

db9_timer(struct db9 *private)

private- >pd- >port->ops->read_data
rivate->pd- >port->ops- >read_status
Brlvate >pd->port->ops->write_control

drivers/input/gameport/gameport.c

gameport_run_poll_handler (struct gameport *d)

d->poll_ hand]er

drivers/isdn/hisax/isdnl3.c

13ExpireTimer (struct L3Timer *t)

t->pe->st->111.1413

drivers/scsi/scsi_debug.c

timer_intr_handler (unsigned long indx)

queued_arr[indx].done_funct

net/sched/sch_generic.c

dev_watchdog (struct net_device *arg)

arg->tx_timeout

Table 2: Representative STIR callback functions that need transitive closure analysis (Linux-2.6.16)

some detail, since they represent potential vulnerabilities
(e.g., type 2 malicious STIRs).

Table 2 lists some of the 32 STIR callback functions that
derive function pointers from the input parameter. From
these functions, we can make the following observations.
First, the dereferences in some functions are complicated.
For example, the input parameter private in db9_timer goes
through 4 layers of indirection before reaching a function
pointer (private->pd->port->ops->read_data). Second, it
is normal for a STIR callback function (such as db9_timer)
to dereference the input parameter in multiple ways. Corre-
spondingly the assertion part of the STIR summary signa-
ture for such a function will have multiple predicates (Sec-
tion 3.2.1). Finally, most of the callback functions interpret
the input parameter as a pointer to a structure. The only
exception is timer_intr_handler in drivers/scsi/scsi_debug.c,
which uses the input parameter as an index into a global
array of structures. A function pointer is in turn retrieved
from the array element indexed by the input parameter.

When a callback function such as dev_watchdog is en-
countered, the STIR Analyzer goes through a further step
(the third step in 3.2.3) of transitive closure analysis. For
dev_watchdog, the STIR Analyzer reveals 113 functions in
the Linux kernel that can be assigned to dev->tx_timeout.
Due to space limitations, only four are shown in Table 3.

Uses of the Symbolic STIR Summary Signatures. As
shown in Figure 3, the output of the STIR Analyzer is the
symbolic STIR summary signatures. We use this informa-
tion to implement the rest of our defense. The usage falls
into two categories: first, the function names in the sym-
bolic summary signatures are retrieved and incorporated
into the STIR Symbol Mapper (Section 4.2.1) in the guest
kernel and the STIR Symbol Resolver (Section 4.2.2) in
the security VM; second, the function pointer dereference
information in the symbolic summary signatures are trans-
formed into offsets within data structures (through an offline
type analysis) and then incorporated into the STIR Checker
(Section 4.2.3).

Location

drivers/net/acenic.c
drivers/net/ariadne.c
drivers/net/wireless/arlan-main.c
drivers/net/e1000/e1000_main.c

Function
ace_watchdog
ariadne_tx_timeout
arlan_tx_timeout
e1000_tx_timeout

Table 3: A sampling of legitimate functions
that can be assighed to dev->tx_timeout in
dev_watchdog
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4.2. Implementation of the STIR Defense

Our implementation uses the Lares architecture [17] to
transfer control to the STIR Checker in the security VM
and to ensure that the STIR Dispatcher cannot be circum-
vented. Lares provides the infrastructure needed to place
hooks into the guest kernel, which divert execution into the
security VM. Lares also provides protections to ensure that
these hooks are not tampered or circumvented.

This functionality is supported, in part, by a new hy-
percall (lares_op) that is effectively a system call from an
operating system kernel into the VMM. The security VM
first invokes lares_op to register a shared memory region
for exchanging information between itself and the VMM.
When the hook in the guest VM is triggered, a VMCALL
to lares_op is made with input parameters that contain the
hook’s location and function arguments. Upon receiving the
VMCALL, lares_op pauses the guest VM, copies the param-
eters from the guest VM to the memory region shared with
the security VM, and triggers a virtual IRQ. The security
VM handles the virtual IRQ by copying the event context
from the guest into its address space. It then performs its
monitoring function and places the response in the shared
memory block. Next, lares_op is invoked again to inform
the VMM that the response is ready. Upon receiving this
hypercall, the VMM unpauses the guest and enforces the
response from the security VM in the guest VM.

For this work, we extended Lares by defining a new pa-
rameter structure passed through the VMCALL from the
guest kernel to the security VM. Two commands are de-
fined in this structure: REGISTER_STIR_.SYMBOLS, and
CHECK_STIR. The first command is used by the STIR
Symbol Mapper, and the second command is used by the
modified soft timer dispatching logic.

4.2.1 Implementation of the STIR Symbol Mapper

The STIR Symbol Mapper (Section 3.2.4) is imple-
mented in the guest VM as a loadable kernel module that
notifies the STIR Symbol Resolver (Section 4.2.2) about
symbol-address mappings through a VMCALL with the
command REGISTER_STIR_SYMBOLS, and the address
and length of an array of <symbol id, address> tuples. The
return value of this VMCALL indicates success or failure.

Our implementation of the Symbol Mapper first per-
forms a filtering of available kernel and module symbols
before invoking the VMCALL, such that only STIR-related
symbol-address mappings are passed to the Symbol Re-



solver. In order to perform the filtering, the STIR Symbol
Mapper is initialized with a static list of STIR-related sym-
bols, which is derived from the symbolic STIR summary
signatures generated by the STIR Analyzer (Section 4.1).

4.2.2 Implementation of the STIR Symbol Resolver

As discussed in Section 3.2.4, the STIR Symbol Re-
solver is the security VM component to support STIR re-
lated symbol registration. The main task of this component
is to handle the REGISTER_STIR_.SYMBOLS command
from the guest VM. It first copies the STIR-related symbol
mappings (in a list of <symbol id, address>) from the guest
kernel using the XenAccess [16] virtual machine introspec-
tion library. Next, it merges the addresses in the mappings
to the STIR summary signature database (Figure 3) for that
guest, using the symbol id as a search index.

In our implementation, each guest has its own instance
of the STIR summary signature database. This database is
initialized by a template generated from the STIR Analyzer
(Section 4.1), where the addresses of the function symbols
are undefined (the signatures are initially symbolic signa-
tures). When the REGISTER_STIR_SYMBOLS command
is executed, these symbols are resolved, and the correspond-
ing signatures become resolved STIR summary signatures.

The symbol-address mapping registration must be car-
ried out in a secure way, to ensure that the malware is un-
able to register a malicious callback function. Therefore
we assume that some other measure is taken to ensure that
this registration is performed only when the guest OS is in
a “known good” state. Since a guest OS is less likely to
be compromised in the early stage of its life (e.g., during a
secure boot [2]), our current implementation approximates
this requirement by dividing the life time of a guest OS into
a symbol registration phase (i.e., the initialization time in
Figure 3) followed by a guarding phase (the evaluation time
in Figure 3), where symbol mappings can be registered only
in the symbol registration phase (during this phase the guest
OS is assumed to be in a “known good” state). We fur-
ther perform the phase transition automatically for the guest
kernel when it performs such registration for the first time,
which is intended to minimize the attack window where a
malware can misuse the VMCALL interface to insert mali-
cious address mappings. However, a side effect of this im-
plementation decision is that all legitimate LKMs that use
soft timers must be loaded prior to the registration phase.

We note that this requirement may be undesirable for
on-demand kernel module loading, but it can be resolved
by other implementation options, such as verifying the run-
time integrity of the guest kernel using Copilot [18] before
allowing symbol mappings to be registered for a second
time. Addressing these issues would improve the usabil-
ity of the system, but security is already assured based on
our assumptions. For these reasons, the usability issues are
beyond the scope of this paper.

104

boolean check_stir (unsigned long function, unsigned

long data){
Use function as index to look up the resolved

STIR summary signature database.
If no signature is located, return false.
Otherwise, if the assertion part of the located sig-

nature is empty, return true.
Otherwise, return assertion (data).

}

boolean assertion (unsigned long data){
for each predicate (deref equals functionlist){
if deref(data) matches no address in functionlist
return false.

eturn frue.

Figure 6: Pseudocode of check _stir.

4.2.3 Implementation of the STIR Checking

As shown in Figure 5, the current STIR Checker is im-
plemented in a security VM running on Xen. Its core func-
tion is check_stir, which performs verification of pending
STIRs. As Figure 6 shows, check_stir takes as input two in-
teger parameters: function and data, and returns true (suc-
cess) or false (failure). It uses the resolved STIR summary
signatures that are transformed from symbolic STIR Signa-
tures by the STIR Symbol Resolver (Section 4.2.2).

The function deref(data) in Figure 6 uses the APIs pro-
vided by XenAccess [16] to dereference the data pointer
(data) passed from the guest kernel (e.g., data->tx_timeout).
The offset information is statically computed by using the
output of the STIR Analyzer. For example, in order to
dereference data->tx_timeout, where data is of type struct
net_device *, we statically compute the offset of the field
tx_timeout by analyzing the definition of struct net_device.

Finally, the soft timer dispatching logic of the guest
Linux kernel is modified to make a VMCALL into Xen.
Specifically, when a STIR in the pending timers queue ex-
pires, the guest kernel invokes a VMCALL, with the com-
mand CHECK_STIR, plus the function and data fields of the
STIR as parameters. If the VMCALL returns true, function
is called as normal. Otherwise, a warning message is gen-
erated and function is not invoked.

4.3. Evaluation of Linux Case Study
4.3.1 Effectiveness of Malicious STIR Detection

To evaluate the efficacy of our approach, we experi-
mentally confirmed that our implementation of the STIR
Checker is able to detect the key logger, the CPU cycle
stealer and the alter-scheduler discussed in Section 2. We
first installed our three “malware” kernel modules into an
unprotected guest Linux kernel and confirmed that they
are able to achieve their intended malicious purposes (e.g.,
stealing key strokes). We then activated the STIR-Aware en-
vironment containing the modified guest kernel, the Lares-
patched Xen VMM, and the security VM running the STIR-
Checker. We first instructed the STIR Symbol Mapper in



the guest kernel to register symbols with the STIR Sym-
bol Resolver; currently this is initiated by loading the Sym-
bol Mapper LKM. Then we installed the malware kernel
modules. The STIR Checker is able to immediately gener-
ate warnings about the suspicious STIRs used by the newly
loaded modules, and the malware functions are not invoked
by the guest kernel as a result. The “malware” modules have
been implemented using both attack techniques mentioned
in Section 3. These results confirm that our approach can
stop both types of STIR attacks.

False Positives. Under the assumption that the STIR An-
alyzer processes the complete source code of the guest ker-
nel (including all legitimate modules), and the guest kernel
installs all necessary and legitimate modules before regis-
tering symbol-address mappings, our detection has no false
positives. This is because all potential legitimate STIRs
have been captured in the resolved STIR summary signature
database before the guest Linux enters the guarding phase
(Section 4.2.2).

False Negatives. Due to our detection methodology,
in order to obtain control, the malware must reuse legit-
imate STIR callback functions (such as dev_watchdog in
Figure 2), and manipulate the parameter passed to the STIR
callback function in such a way that control will eventually
go to its malicious code. One way to leverage dev_watchdog
has been shown in Figure 2. However, our detection tech-
niques counter this type of attack by calculating and veri-
fying the legitimate functions that can be assigned to dev-
>tx_timeout as shown in Table 3.

However, it is possible for the malware to search deeper
in the control flow for opportunities, such as looking at the
function ace_watchdog in Table 3, since ace_watchdog takes
dev as the input parameter. This approach will also fail be-
cause the transitive closure analysis covers this case.

In summary, we believe that our detection can have no
false negatives under the threat model in Section 3.1. How-
ever, since we may be facing a powerful adversary, our de-
tection is not a panacea. A determined attacker may find
a way not covered by our threat model to evade detection,
although the STIR checking clearly raises the bar for an at-
tacker.

Attacks on the STIR checking mechanism and our
counter-measures. We anticipate that attackers may use
either of two different kinds of attacks in an attempt to de-
feat the STIR checking. (1) The malware may disable the
modification to the soft timer dispatcher so that it does not
make the VMCALL, or ignores the return value. We protect
against this by using Lares to make the code page of the soft
timer dispatcher read-only. (2) The malware may try to reg-
ister false mappings for legitimate symbols. By performing
the phase transition (Section 4.2.2), such actions are ignored
and therefore have no effect.
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4.3.2 Performance Overhead

In order to measure the performance overhead of the
STIR Checker, we ran a set of synthetic workloads: cat -
read and display the content of 8000 small files (with size
ranging from 5K to 7.5K bytes) in a complicated directory
tree. ccrypt - encrypt a text stream of 64M bytes, where
cerypt! is an open source encryption and decryption tool.
gzip - compress a text file of 64M bytes using the —best op-
tion. ¢p - recursively copy a Linux kernel source tree. make
- perform a full build of the Apache HTTP server (version
2.2.2) from source.

Table 4 shows the execution times of the workloads un-
der Linux and our modified Linux (denoted STIR-aware).
The VMM used in these experiments is Xen 3.0.4, and the
guest Linux kernel is version 2.6.16. The host CPU is an In-
tel Core 2 Duo running at 2.4 GHz with VT-x enabled. The
host and the HVM (i.e., fully virtualized) guest are allocated
1.5 GB and 512 MB of RAM, respectively.

cat | ccrypt gzip cp make
Original 20.85 3.30 592 | 43.95 | 217.95
STIR-aware 20.96 3.30 6.01 46.61 | 218.58
Overhead 0.52% 0% | 1.52% | 6.05% | 0.29%
Callbacks/Sec 46.9 46.3 473 61.4 81.6

Table 4: Overhead measurement of the STIR
Checker in execution time (seconds)

From Table 4 we can see that the performance overhead
of the STIR Checker on the synthetic work-loads is low
(less than 7%). Our testing found that out of the 365 STIR
callback functions identified by the STIR Analyzer, only 74
are present in the guest kernel at runtime, and the major-
ity of these STIR callbacks are dormant most of the time
(although there may be multiple STIRs sharing the same
call back function), therefore the frequency that a STIR ac-
tually expires (e.g., the frequency of the callbacks) is not
high. For example, the baseline frequency of callbacks is
around 45 per second. Table 4 shows the average frequency
of callbacks during the experiment, which is similar to the
baseline frequency.

We also evaluate the overhead of the STIR Checker by
running the Iperf-2.0.2 benchmark?. In this experiment the
security VM ran the Iperf server, and the guest VM ran the
Iperf client. Iperf is used to measure the maximum through-
put between the virtual NIC in the guest VM (the front end)
and the virtual bridge in the security VM (the backend). The
experiment is run for 60 seconds, using 64KB buffers and
10 concurrent connections. The average throughput in the
original environment is 717.9 MB/s, and it is 688.4 MB/s in
the STIR-Aware environment. This suggests a performance
drop of 4.1% (decrease in network throughput). In addi-
tion, we measured the frequency of STIR callbacks during
the Iperf experiment and found that it increased to 287 per

Ihttp://sourceforge.net/projects/ccrypt/
2http://dast.nlanr.net/Projects/Iperf/



second, which explains the slightly higher overhead of the
STIR Checker compared to the synthetic workloads.

In summary, the performance overhead for the STIR-
Aware environment is small compared to the added security
benefit that it provides.

5. Related Work

Defenses Against Stealthy Attacks. Defense tech-
niques against attacks that change kernel code include Trip-
wire [13], a file system integrity checker, IMA [22], a
load-time kernel and application code integrity checker, and
Copilot [18] and Pioneer [25], runtime kernel code check-
ers. Representative defenses for attacks that change kernel
data include CFI [1] and SBCFI [20].

To the best of our knowledge, there have been few con-
crete instances of attacks that do not change kernel code
or data, but insert transient execution units into a schedu-
lable queue. The “cheat” attack described in [27] may be
regarded as a user-level example, since it uses the to-be-
scheduled task queue. Known malware detection methods
have difficulties with transient kernel control flow attacks.
For example, signatures of known malicious STIRs can be
created by reverse engineering the malware. This approach
suffers from the same problems seen in the anti-virus com-
munity. Specifically, they are unable to detect or prevent
zero-day attacks, and the process of finding appropriate sig-
natures is difficult and error prone. For these reasons, sig-
nature checking alone is insufficient to mitigate this threat.

Another possible approach for detecting these attacks
is to extend control flow integrity techniques such as
SBCFI [20] and CFI [1]. SBCFI is a checker for persis-
tent kernel control flow attacks. It starts by looking at
kernel global variables and performs a garbage-collection
style traversal of kernel data structures to verify that all of
the function pointers target trusted addresses in the kernel.
SBCEFI can potentially catch a type 1 malicious STIR, since
the function pointer targets can be validated when SBCFI
scans the kernel variables. However, SBCFI can not detect
type 2 STIRs because it does not follow the uninterpreted
data field included as part of the callback: it is not defined
as a pointer type. The definition of data is intended to al-
low maximum flexibility for different call back functions.
In order to make SBCFI work on type 2 STIRs, accurate
type information for the data field in each call back func-
tion must be added, which would require a static analysis of
all STIR callback functions. Such an approach would then
be similar to our STIR Analyzer (Section 3.2).

A more general approach, CFI [1] uses inline reference
monitors [11] to compare the dynamic execution flow of a
program against a statically computed control flow graph
(CFG). CFI is a general framework that can be instantiated
into an alternative implementation of the STIR Checker,
however the exact checks that must be performed against
the STIR callback functions would still need to be con-
structed by tools such as the STIR Analyzer.
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Secure Kernel Extensions. Soft timer-driven malware
exploits an interface exposed by the core kernel to its exten-
sions. There have been significant efforts to achieve finer-
grained divisions within a monolithic kernel, with the goal
of improving security. For example, Palladium [6] demotes
the privileges of the kernel extensions so that misbehaving
or malicious extensions cannot harm the core portion of the
kernel. However, such approaches can only prevent the ma-
licious extensions from corrupting the core kernel, but can-
not prevent sensitive information stealing (section 2.1) and
denial of service attacks (Section 2.2).

Applications of Static Analysis in Systems and Secu-
rity Research. In recent years, static analysis of software
has been used for many purposes including deriving appli-
cation behavior models for intrusion detection systems [28],
building control flow graphs of an application [1], and deter-
mining type and global variable information for the Linux
kernel [20]. This technique has also been applied to finding
bugs in both kernel and application code [7, 10, 14]. In this
paper, we add one more use case by applying this technique
to derive summary signatures for legitimate STIRs.

6. Conclusion

In this paper, we introduce the class of transient kernel
control flow attacks that control a kernel through soft timer
interrupt requests (STIRs), without changing kernel code or
data (as in persistent kernel control flow attacks [20]). We
demonstrated the attack by implementing prototype mal-
ware in Linux (Section 2), including a key logger, a CPU
cycle stealer, and an alter-scheduler, that demonstrate effec-
tive exploitation of soft timer requests to violate integrity,
confidentiality, and availability of the kernel. Mechanisms
effective in detecting persistent kernel control flow attacks
such as SBCFI [20] have difficulties with STIR-based at-
tacks, since these transient kernel control flow attacks pre-
serve kernel code and data integrity.

Due to the widespread use of soft timers in typical ker-
nels such as Linux, it is impractical to eliminate soft timers
just to stop these attacks. Consequently, we designed a
VMM-based defense mechanism against STIR-based tran-
sient kernel control flow attacks. The main idea of the de-
fense is to analyze the entire kernel and build a summary
signature database of legitimate STIRs. In Linux 2.6.16, a
total of 365 legitimate STIR callback functions were found
in the 3688 kernel source files analyzed. 32 of the 365
STIRs may further branch to function pointers derived from
their input parameters, requiring a more detailed transitive
closure analysis of the functions invoked by these 32 STIRs.
If a STIR can be found in the signature database, then it is
considered legitimate and executed. Otherwise, it is consid-
ered suspect and rejected. This defense is effective in stop-
ping each of the prototype malware STIRs we implemented
(no false negatives), and it allows all legitimate STIRs to ex-
ecute (no false positives). The performance overhead of our
defense is small (less than 7%) in several application-level



benchmark experiments.
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