
Guarding Sensitive Information Streams through the Jungle of Composite
Web Services

Jinpeng Wei, Lenin Singaravelu, Calton Pu
Georgia Institute of Technology, Atlanta, GA, USA

{weijp,lenin,calton}@cc.gatech.edu

Abstract

Complex and dynamic web service compositions
may introduce unpredictable and unintentional sharing
of security-sensitive data (e.g., credit card numbers) as
well as unexpected vulnerabilities that cause informa-
tion leak. This paper describes a fine-grain access
policy specification of security-sensitive data items for
each component web service. We propose the SF-
Guard architecture to enforce these access policies at
component web services. A prototype implementation
of SF-Guard (on Apache Axis2) and its evaluation
show that effective protection of security-sensitive
information can be achieved at low overhead (a few
percent addition to response time) while preserving the
functionality of flexible web service composition.

1. Introduction
Web services enable composition of loosely cou-

pled components into sophisticated applications [10].
As an example, consider the Travel Agent web service
shown in Figure 1. Each component may represent an
independent company which not only exposes a set of
web service interfaces, but also relies on web services
provided by other companies. While these composite
web services are very useful and increasingly popular,
they raise serious concerns about the protection of se-
curity-sensitive information such as credit card and
social security numbers. Current web service stan-
dards such as WS-Security [20] and Platform for Pri-
vacy Preferences (P3P) Specification [16] have been
defined to protect information exchange between a
client and server, but offer limited or no support for
composite services. For example, both WS-Security
and P3P assume that each web service node is trusted
to handle all user data, including the security-sensitive
information.

There are several reasons for avoiding the current
model of completely trusting component web services.
For example, a legitimate service may have been infil-

trated by malware capable of stealing security-sensitive
information. Another possibility is the acquisition of a
service provider by another company that may use pre-
viously collected information under different privacy
policies.

Compared to Mandatory Access Control [4] for
centralized operating systems [11][8], a composite web
service environment has the following properties that
make it different from traditional access control protec-
tion mechanisms:

Property 1: Decentralized authority of each com-
ponent web service. As expected in web service envi-
ronments, each component has its own protection
boundaries.

Property 2: Multiple namespace managers. In a
composite web service, node and component identities
need to be consistently understood by participating
nodes.

Property 3: Isolation of sensitive information
from the intermediate web service nodes that should
not have access.

The first contribution of the paper is the SF-Guard
architecture, which supports a fine-grain policy-based
access control model to control and protect propagation
of security-sensitive information through multiple
component services. We translate a user’s security and
privacy requirements into a set of access control poli-
cies, which are encoded into a security-policy envelope
(SPE) that encapsulates security-sensitive data. These
SPEs enforce appropriate access to encapsulated user
data by each component web service as defined by the
security policies.

The second contribution of this paper is a concrete
demonstration of SF-Guard architecture, consisting of
an API called WS-SensFlow and a prototype imple-
mentation. The current version of WS-SensFlow fo-
cuses on fine-grained access control. The prototype
implementation of SF-Guard is called SG-Wrapper
(built on Axis2 framework and toolkit) that performs
the following functions: (1) intercept incoming invoca-
tions and replace sensitive data with capabilities; (2)
carry out operations on the sensitive data on behalf of

the web service routines;
(3) intercept outgoing
invocations to ensure that
sensitive user data is not
leaked in unwanted ways.
An experimental evalua-
tion of SG-Wrapper shows
strong protection proper-
ties and low overhead.

The rest of this paper
is organized as follows.
Section 2 presents the WS-
SensFlow API and the
specification and genera-
tion of SPEs. Section 3 describes the SF-Guard archi-
tecture and its wrapper-style design on each web ser-
vice node. The Axis2-based implementation of SG-
Wrapper is outlined in Section 4 and its evaluation is
discussed in Section 5. We talk about related work in
Section 6 and conclude in Section 7.

2. WS-SensFlow
WS-SensFlow is an API for fine-grain, policy-

based protection of security-sensitive information
propagation through multiple composite web services.
It is policy-based because it allows the specification
and attachment of security policies to the web service
invocation requests. It is fine-grain because different
policies can be specified for different input data items
within the same invocation. These policy specifications
are guarded by the SG-Wrapper on participating web
service nodes (Section 3).

2.1. Security Policies
We regard sensitive information as a special re-

source, to which accesses should be controlled. Thus
we reduce the information protection problem into an
access control problem. The subjects here are the web
service nodes, and the objects are sensitive informa-
tion. Due to the open and distributed nature of our
problem domain, a complete access control matrix
cannot possibly be created. Fortunately, this is not nec-
essary because each user only needs to specify which
subjects can or cannot access her data. So we define
security policies in WS-SensFlow as access control
lists (ACLs), which are encoded into Security Policy
Envelopes (SPEs). Specifically, a SPE L lists the web
service nodes that are allowed to access a data item
(white list), and the web service nodes that are not
(black list).
 L = <white list>; <black list>
 <white list> = allow <node list>
 <black list> = deny <node list>
 <node list> = * | <node id> | <node id>, <node list>

The asterisk (*) is a notation that represents all
participating web service nodes.

We assume that there is a way of uniquely map-
ping node id to a web service node, e.g., URI or public
key. The list of web service nodes involved in a com-
position can be discovered using the tool described in
Section 4.1.

Discussion: We can also use the traditional format
of <category, level> [8] for the SPEs. The problem is
that receive levels (clearances) need to be assigned for
each service node before invocation. The ACL-style
SPE removes such a configuration phase, so that each
invocation message is self-contained − each intermedi-
ate web service node only needs to look at the SPE to
make a decision whether to forward a data item to the
next web service node or not.

Our current policy specification of white lists and
black lists is a simple one. More complex policies, e.g.,
a policy with time attributes, can also be incorporated
in WS-SensFlow with modifications to the enforce-
ment mechanism (described in Section 3.3.3).

Running Example. In the Travel Agent applica-
tion (Figure 1), a client needs to buy a plane ticket,
book a hotel room, and rent a car. She invokes the ser-
vice provided by a travel agent. She tells the travel
agent her name, address, phone number, frequent flyer
number and credit card number. The travel agent uses
such information to invoke the Airline, the Hotel and
the Car Rental web services on behalf of the client.
Each of the latter three web services in turn invokes a
Credit Card Company to charge the client. Occasion-
ally the Airline rebooks tickets from a Third Party Air-
line. Note that this last invocation does not always
happen, but it may be undesirable to the client because
she does not want her frequent flyer number to be re-
leased to the Third Party Airline. To prevent this kind
of situation, the client-side application can attach the
SPE L1 = {allow Travel Agent, Airline, Hotel, Car
Rental, Credit Card Co.; deny Third Party Airline} to
the frequent flyer number in the invocation message.
Then the basic access control rule guarantees that the

Figure 1: Travel agent composite web service

client’s frequent flyer number can be propagated to all
web services in Figure 1 except the Third Party Airline
web service. However, the client may specify the SPE
L2 = {allow *} for her name in the same invocation
message, because she does not care if the Third Party
Airline knows her name.

2.2. Security Policy Specifications
Due to the loosely-coupled nature of composite

web services, a participating node can change its im-
plementation by invoking different external web ser-
vices without notifying its callers. As a result, the set
of web service nodes participated in an invocation
(composite service topology) can change from time to
time. Even if the composite service topology remains
static, the amount of trust put on each of the web ser-
vice nodes by a client can change (e.g., through experi-
ence or recommendations). Therefore, WS-SensFlow
supports dynamic service policy specifications.

A security policy specification in WS-SensFlow is
a function from a set of web service nodes to the set
{allow, deny}. In other words, a security policy speci-
fication maps a web service node to either the white
list or the black list.

This specification process can be refined into two
orthogonal sub-processes: (1) find out the set of par-
ticipating web service nodes in a composite web ser-
vice (we refer to this set as W), and (2) decide the
mapping.

2.2.1. Composite Service Topology Discovery. Find-
ing out W is important because otherwise all web ser-
vice nodes (whether participating in the composite
service or not) will be the potential recipients of sensi-
tive data, which leads to huge white and black lists
(SPEs). On the other hand, the knowledge about W can
give much better idea about which nodes should be
considered and result in much smaller white and black
lists.

WS-SensFlow requires that each web service node
provide the following meta-information:
• A URI which identifies the web service node;
• A list of the service routines provided and imple-

mented by this web service node;
• A list of external service routines (including the

URI of the provider) invoked by this service node.

Moreover, to support correlation of different web

services, e.g., to find out that Travel Agent passed on
phone and creditcard information from the client to
the Hotel, WS-SensFlow requires that such service
routine description on the various nodes support con-
sistent meaning for the input parameters (e.g., phone
means that the corresponding parameter is interpreted

as a phone number across all web service nodes). Web
Ontology [15] can be used for such purposes.

Using such meta-information, the complete, nested
invocation relationship of a composite web service
(e.g., the one in Figure 1) can be computed, which
helps answer the question of which web service nodes
can potentially receive a security-sensitive data item.
The collecting of such meta-information can be done
either statically (e.g., at development time), or dynami-
cally (e.g., at invocation time). We have implemented a
dynamic topology discovery tool which will be de-
scribed in section 4.1.

2.2.2. Generation of SPEs. The second sub-process
of security policy specification is to divide a set of web
service nodes into a white list and a black list. Exactly
which node goes to which list is application specific
and therefore beyond the scope of WS-SensFlow.
However, WS-SensFlow offers the following guideline
regarding how this can be done.

Based on the application’s knowledge about the
set of web service nodes, they can be classified into
three groups: nodes that are trusted, nodes that are not
trusted, and nodes that are not yet known well enough
to make a judgment. The application can set up a white
list for web service nodes that are trusted, and a black
list for web service nodes that are not trusted (Section
2.1).

For the unfamiliar nodes the application designer
can leverage on the extensive amount of research on
reputation systems (such as [25] and [6]). E.g., web
service nodes with good reputation should be put in the
white list, while others should be put in the black list.
The application designer can also make use of an exist-
ing trust service such as WebTrust [24]. Therefore we
assume that there is an agent which can answer queries
about a web service node’s reputation.

Once the white list and the black list for a data
item (e.g., frequent flyer number) are constructed, a
SPE (Section 2.1) can be generated and attached to the
data item in the invocation message (e.g. SOAP). Such
SPEs will be used on a participating web service node
to decide how to treat the corresponding data item.

2.2.3. Ease of Security Policy Specification. WS-
SensFlow will be less useful if it incurs unduly burden
on the end user in terms of specifying the security poli-
cies for each web service invocation. Therefore WS-
SensFlow separates three kinds of people who can
specify policies:
• Application designers who can embed common se-
curity policies at compile time (e.g., for nodes that are
well-known to be good or bad). Application designers
can also embed calls to reputation systems to dynami-
cally categorize component nodes.

• System administrators who can define or update se-
curity policies at setup time.
• Finally, end users who can define or override the
default security policies at run time.

The amount of specification effort is assumed to
be the most at the compile time, less at the setup time
and the least at run time. The goal is to minimize the
effort of the end user but reserve the rights of the end
user to specify her own security policies.

3. SF-Guard Architecture
In our architecture, each web service node will

have a SG-Wrapper that is responsible for enforcing
and propagating SPEs.

3.1. Threat Model
Our architecture makes the following assumptions:

(1) there is a Trusted Computing Base (TCB) [7] on
each web service node. This TCB includes the hard-
ware, the operating system, the web service supporting
middleware (e.g., Java Virtual Machine and Web Ser-
vice Framework), and SF-Guard. (2) The web service
routines (business logic) are untrusted.

Under the circumstance of this paper, (2) means
that a service routine can intentionally leak the secu-
rity-sensitive information to some unwanted subjects.
For example, the Airline web service routine in Figure
1 can leak the client’s frequent flyer number to the
Third Party Airline web service node in various ways
in addition to normal web service invocation: storing it
onto a removable disk and then copying it to the Third
Party Airline machine, or sending it directly to Third
Party Airline machine via FTP (File Transfer Proto-
col). The Airline web service routine can also trans-
form the frequent flyer number in arbitrary ways be-
fore propagating it to the Third Party Airline, which
then recovers it. Finally, the Airline web service rou-
tine can leak information to some other arbitrary ma-
chines not shown in Figure 1, using the above-
mentioned ways. Such leakage equals granting access
to the security-sensitive information to subjects unex-
pected by the end user, which may defeat the use of
SPEs.

This situation reminds us of the confinement prob-
lem [12], which prevents a program from transmitting
information to any other program except its caller. One
example confinement technique is sandboxing, which
restricts the access of a confined program to disk, net-
work or other output channels.

Confinement is easier if accesses to such legiti-
mate channels can be completely disabled. However,
many a time a web service routine needs to access
these channels to fulfill its normal task. Then in order
to confine the untrusted service routine we must be
able to mediate the access requests and check that only

permitted data is output. However, intercepting every
output request and checking every output data item is
non-trivial. Besides, even if this can be done, the un-
trusted web service routine can still exploit covert
channels [12] to leak information.

Thus we address this problem from a different an-
gle: instead of giving the security-sensitive information
to the untrusted web service routine and then trying to
confine the routine, we use capability-based access
control [13] to hide the sensitive information from the
web service routine in the first place, thus avoiding the
needs for confinement. The details and the justification
for this design are discussed below.

3.2. Capability-Based Protection
In current web service middleware, the data ex-

change format between the underlying framework and
the business logic (e.g. web service routines) is XML.
Request/response data (SOAP message body) is di-
rectly given to the business logic, and it is up to the
business logic to parse and interpret the SOAP mes-
sage. While this is a reasonable design (because the
underlying framework can not know the meaning of
every kind of SOAP message body), it poses difficul-
ties for confinement, because sensitive information, if
there is any, is always exposed to the business logic.

To address the problem of over-trusting the busi-
ness logic, we employ a capability-based access con-
trol on the sensitive data. We add the SG-Wrapper
(Figure 2) between the web service framework and the
business logic to hide the sensitive information from
the latter. Specifically, sensitive data is extracted from
the SOAP body and replaced by unique, non-forgeable
capabilities before it is delivered to the business logic.
Afterwards the business logic can access the sensitive
data only through pre-defined interfaces. E.g., when
the business logic needs access to the sensitive data, it
presents the capability and calls the pre-defined inter-
faces. In this way, the business logic does not see the
actual sensitive information. We put SG-Wrapper into
the TCB.

To make sure that capabilities can not be forged or
tampered with by the business logic, we can encrypt an
internal counter and use the result as capabilities, and
the significant bits of a capability should be large
enough (e.g., 128 as in Amoeba [1]).

Capability-based access control is suitable for en-
capsulating sensitive information in our problem do-
main because of the following observations.
• Such sensitive information does not need complex
computation. For example, it makes no sense to carry
out arithmetic operations on social security number or
a person’s religion. In particular, such sensitive infor-
mation is read only.

• Such sensitive information is a kind of atomic
object whose meaning will be lost or distorted if not
presented as a whole. For example, an individual digit
of a credit card number is not a secret, but putting all
the digits together in a particular order is.

Therefore, we assume that sensitive information
should be read-only and presented in entirety. This
enables us to encapsulate any of such sensitive infor-
mation into an object with a few pre-defined interfaces.
Following the two observations above, we only need
output interfaces (such as displaying, printing, writing
to a file, or sending out to the network).

However, although this design prevents direct ac-
cess to the sensitive information, it does not necessar-
ily prevent indirect accesses. For example, the business
logic can request the data to be written into a file that it
can read later. So SG-Wrapper must perform proper
declassification of the sensitive information in such
cases. For example, several digits of a social security
number can be masked off before it is written to a file.

3.3. The Wrapper-Style Design
We implement SF-Guard by adding SG-Wrapper

on each web service node to hide sensitive information
and enforce SPEs. SG-Wrapper is part of the TCB
(Trusted Computing Base) on the web service node.
TCB is required in this framework to make sure that
SG-Wrapper cannot be bypassed.

In detail, SG-Wrapper maintains a secure object
repository which holds the sensitive information. Each
secure object is instantiated from a sensitive data item
in the incoming SOAP message. A secure object also
provides a set of interfaces for outputting the sensitive
data.

As mentioned above, the secure objects are used to
conceal the sensitive information from the untrusted
business logic, such that the latter can only refer to the
sensitive information using capabilities. So SG-
Wrapper needs to maintain a mapping from the capa-
bilities to the secure objects.

3.3.1. Incoming Message Sanitization. When SG-
Wrapper receives an incoming SOAP message, it
transforms every data item with a SPE (section 2.1) in
the following steps:
- Extract the data item from the message, and create a
secure object for it. The SPE is also stored in the se-
cure object.
- Replace the original data item with the capability
associated with the corresponding secure object.
- Pass the sanitized SOAP message up to the business
logic.

3.3.2. Normal Operations on Sensitive Information
by the Business Logic. During execution, the business
logic can access a sensitive data item only through SG-

Wrapper by using its capability. That is, the business
logic invokes the pre-defined interfaces provided by
SG-Wrapper, and SG-Wrapper carries out the opera-
tion on behalf of the business logic. Based on the ob-
servations in Section 3.2, the set of pre-defined inter-
faces should be enough to satisfy the business logic’s
needs.

This design enables us to add different policies in
terms of how the business logic can access the sensi-
tive information. For example, we can deny a request
to dump the sensitive information into a publicly ac-
cessible file.

Figure 2: SG-Wrapper structure

3.3.3. Outgoing Message Processing. When the busi-
ness logic needs to invoke an external web service, it
forms a SOAP message which is intercepted by SG-
Wrapper. If any sensitive information is needed, the
business logic refers to it using a capability in the
SOAP message.

SG-Wrapper does the following things for each
capability in the message:
1. Map the capability to a secure object in the reposi-
tory.
2. Fetch the SPE from the secure object.
3. Apply the security policy associated with the secure
object. In this case, match the destination of the SOAP
message against the SPE. The outgoing SOAP request
will be rejected if the destination is on the black list, or
if it is not on the white list (if the white list is “allow
*”, the destination is considered to be on the white
list). Black list always takes precedence in making the
decision. To enforce richer policies, SG-Wrapper has
to be modified appropriately.
4. If the destination is on the white list and not on the
black list, fetch the original sensitive information as
well as the SPE from the secure object and put them
into the outgoing SOAP message.

If the SPEs of all capabilities allow the destina-
tion, the SOAP message is passed on to the next mod-

ule (e.g., WS-Security) for further processing. Other-
wise the output SOAP request is denied.

4. Prototype Implementation
We used the Axis2 web service framework [3] to

implement SF-Guard. In the following we first de-
scribe the implementation of a dynamic topology dis-
covery tool in Section 4.1. Then we discuss the imple-
mentation of SG-Wrapper in Section 4.2.

4.1. Dynamic Discovery of Composite Service
Topology
As mentioned in Section 2.2.1, we designed and

implemented a tool to dynamically compute the com-
posite service topology, which is very helpful in the
process of security policy specification. This tool is
implemented as a web service routine on each web
service node.

A composite web service may in turn invoke other
web services, so we represent the web service invoca-
tion topology as a call graph with the web services as
nodes and the invocations as edges. The goal of this
tool is to build this call graph. This computation is a
recursive process starting from the root web service
node, which offers the composite web service. Each
web service node collects information from its descen-
dents – the web services that it invokes, adds its own
information and sends the final results to its predeces-
sor.

The core of our topology discovery tool is a dis-
tributed algorithm called GetTopo, whose pseudo code
is shown in Figure 3. GetTopo uses two pieces of local
information: the names (URIs) of the web service
nodes that a service node invokes (Callees), and the
name (URI) of a service node itself (Name). We as-
sume that information about Callees is available on
each web service node.

The main body of GetTopo is derived from a dis-
tributed depth firth graph traversal algorithm. Since a
call graph may contain loops, the input parameter vis-
ited_sofar is used to convey the list of service nodes
already visited to the next service node, so that it will
not call GetTopo on these nodes again. Similarly,
when GetTopo returns, the list of service nodes that
have been visited is derived from the results by calling
NodesIn, and added to the list of service nodes already
visited.

4.2. Implementation of SG-Wrapper
SG-Wrapper (Section 3.3) is implemented as an

Axis2 module [2], which intercepts both incoming and
outgoing SOAP messages (Figure 2). In a SOAP mes-
sage body, each parameter is represented as an XML
element. SG-Wrapper works by checking and manipu-

lating XML attributes in such XML elements. For ex-
ample, the attribute named ‘whitelist’ gives the list of
web service nodes that can access the value of the cor-
responding input parameter (Section 2.1). Similarly,
when a sensitive parameter is replaced with a capabil-
ity (Section 3.3.1), an XML attribute called ‘capabil-
ity’ is inserted to the corresponding XML element.
This attribute lets the business logic know that the cor-
responding parameter is just a capability, not the true
input data.

When a sensitive parameter is replaced with a ca-
pability, a wrapper object for the Secure Object Re-
pository is passed on to the business logic through the
Axis2 message context [2], which is shared between
SG-Wrapper and the business logic. The business logic
then obtains this wrapper object and uses Java reflec-
tion API [19] to call the pre-defined interfaces (Section
3.3.2) if it needs to.

Figure 3: Pseudo code of GetTopo on each

web service node

5. Evaluation of SF-Guard
5.1. Experiment Setup

In order to evaluate SF-Guard, we implemented
the 6 web services shown in Figure 1. We assume that
the decision process (e.g., comparing prices and choos-
ing a hotel) has been done, and the client application
just wants to finalize the reservation. To do that, the
client application first invokes the getTopo web ser-
vice of Travel Agent to learn about the participating
web service nodes. Then the client application attaches
to the user’s information (e.g., credit card number and
frequent flyer number) the appropriate SPEs (Section
2.1), which in turn get translated into XML attributes
in the outgoing SOAP message. This finishes the boot-
strapping process.

 To provide end-to-end protection of sensitive in-
formation, we also applied WS-Security [17] on each

Set of String Callees;
String Name;
Set of Pairs GetTopo (Set of Strings visited_sofar) {
 WSNode N;
 Set of Pairs result = empty;
 Set of Strings visited = visited_sofar ∪ {Name};
 for (each C in Callees){
 result = result ∪ {<Name, C>};
 if (C ∉ visited){
 N = GetWSNodebyName(C);
 newpairs = N.GetTopo(visited);
 result = result ∪ newpairs;
 visited = visited ∪ C;
 visited = visited ∪ NodesIn(newpairs);
 }
 }
 return result;
}

web service node. Besides, each web service is run on
a dedicated host and synchronous web service invoca-
tions are used.

5.2. Effectiveness of Protection
We ran the Travel Agent application and con-

firmed that when the Airline web service tried to in-
voke the book service of the Third Party Airline, the
request was rejected by SF-Guard on the Airline node.
Therefore the client’s frequent flyer number could not
propagate to the Third Party Airline. Moreover, on
each web service node that was on the white list, the
business logic could not see the actual value of the
sensitive information. These observations show that
WS-SensFlow works.

A related question is how to protect SF-Guard it-
self. Here we assume that there is a TCB on each web
service node, and SF-Guard is in the TCB, such that
the web service routines can not modify or bypass it. In
the current design of SF-guard, we put the entire Web
Service Framework into the TCB. However, it is pos-
sible that the web service framework itself might be
compromised due to bugs in code or due to malicious
extensions or malicious configurations. Since we rely
on WS-Security processing to protect sensitive infor-
mation, we have to trust at least a portion of the web
service framework. The application of effective tech-
niques to reduce TCB complexity [18] and generate a
small and simple TCB is the subject of ongoing re-
search.

5.3. Performance Overhead
We used service completion time as a metric to

evaluate overhead introduced by SF-Guard, since it is
on the critical path of web service invocation. The ser-
vice completion time is measured as the elapsed time
between a web service routine (e.g., reserve service of
the Travel Agent) is invoked and the time when the
result comes back.

Table 1 shows the completion time of the 8 web
service invocations in the Travel Agent example, with
and without SF-Guard (Here we assume that the Air-
line always invokes the book service of the Third Party
Airline, and the Third Party Airline is not on the black
list of the SPEs, so this invocation is allowed). Each
invocation is denoted by a requester-provider pair. For
example, “Client-T.A.” means invocation of the re-
serve service of the Travel Agent by the Client (Due to
space constraint, most of the service names have been
abbreviated. For example, “T.P.A.” represents “Third
Party Airline”), and Table 1 tells us that this invocation
takes about 793 milliseconds without SF-Guard and
819 milliseconds when SF-Guard is used, therefore the
overhead is about 3.3%. Similarly Table 1 shows that
after receiving the Client’s request, the Travel Agent

experiences about 413 milliseconds (without SF-
Guard) completion time for invoking the rent service
of the Car Rental, which in turn invokes the charge
service of the Credit Card Company and experiences
about 305 milliseconds (without SF-Guard) in service
time.

From Table 1 we can see that the overhead of SF-
Guard on the 8 invocations ranges from 1.6% to 8.3%.
These measurements suggest that the overhead of SF-
Guard is low, which is not very surprising because SF-
Guard mainly performs XML and hash table process-
ing, which is much cheaper than encryption and sign-
ing operations by WS-Security. We have not per-
formed much optimization in the implementation (e.g.
efficient storing and querying of the SPEs), which may
further reduce this overhead.
Table 1: Overhead measurement of SF-Guard

(in ms)

 Client
–T.A.

T.A.–
C.Rtl.

C.Rtl.–
Cred.

T.A.–
Hotel

Hotel–
Cred.

T.A.–
Air.

Air.–
Cred.

Air.–
T.P.A.

Original 793 413 305 123 61 182 60 60
SF-guard 819 422 310 130 63 192 61 65

Overhead 3.3% 2.2% 1.6% 5.7% 3.3% 5.5% 1.7% 8.3%

6. Related Work
Information flow has received considerable atten-

tion in computer security research community, with the
milestones being Multi-Level Security [8][4], Lattice
Model [9], and Java Information Flow [14]. Recent
years have seen the application of such models to sin-
gle-host operating systems such as Asbestos [11].
However, as we mentioned in Section 1, composite
web services have unique properties, so the implemen-
tation techniques employed by such systems can not be
directly applied.

WS-Security [20] is a framework for providing
quality of protection to SOAP messages. WS-Trust
[23] is an extension to WS-Security that provides
means to establish trust relationships among different
trust domains. WS-SecureConversation [21] supports
the creation and sharing of security context to address
the shortcomings of WS-Security. These frameworks
or languages as well as P3P [16] and WS-
SecurityPolicy [22] can serve as the foundation of im-
plementing WS-SensFlow – for example, they can be
used to support SF-Guard. Finally, WS-Trustworthy
[27] provides a more generic framework for trusted
computing than WS-SensFlow. For example, the in-
formation flow constraint specified by a user can be
modeled as a specific property in that framework.

There has been significant research on access con-
trol in the composite web services [5]. However, they
mainly focus on protection of server side resources
instead of the sensitive information of a client. The

closest work to ours is a framework proposed by Xu
[26] for pulling “models” of composite web services to
the client site and checking if they violate the client’s
privacy policies. This framework assumes that the web
service nodes are trusted and the enforcement of pri-
vacy policies is above the service nodes. SF-Guard
relaxes this assumption and pushes the enforcement
into the participating web service nodes. SF-Guard
does not focus on the compliance checking, but can
leverage on Xu’s work for security-policy specifica-
tion.

7. Conclusion
Current web services enforce data access control

on a pair-wise fashion, between service invoker and
provider. In dynamically composed services, this kind
of access control may expose security-sensitive data
(e.g., credit card numbers) to a large amount of un-
trusted code. This paper presents the SF-Guard archi-
tecture to support fine-grain, policy-based access con-
trol of security-sensitive data in composite services.
SF-Guard is fine-grain because detailed access policy
specifications are attached to service invocation mes-
sages. These specifications, called WS-SensFlow, are
enforced by the participating web service nodes in
making access control decisions about the sensitive
data.

 SF-Guard has been implemented on Axis2 frame-
work (called SG-Wrapper) to support the WS-
SensFlow access control policy specifications. The
SG-Wrapper applies capability-based encapsulation to
enforce the detailed access control. An experimental
evaluation of SG-Wrapper using a demonstration
Travel Agent composite web service shows strong pro-
tection properties and low overhead of a few percent
increase in response time.

8. Acknowledgement
This research has been partially funded by Na-

tional Science Foundation grants CISE/IIS-0242397,
ENG/EEC-0335622, CISE/CNS-0646430, AFOSR
grant FA9550-06-1-0201, IBM SUR grant, Hewlett-
Packard, and Georgia Tech Foundation through the
John P. Imlay, Jr. Chair endowment. We also thank
Qinyi Wu for initial discussion of the problem and the
anonymous ICWS’07 reviewers for their insightful
comments.

9. References
[1] Amoeba. http://www.cs.vu.nl/pub/amoeba/
[2] Axis2 Architecture.http://ws.apache.org/axis2/1_0/
Axis2ArchitectureGuide.html
[3] Apache Axis2/Java. http://ws.apache.org/axis2.

[4] D. E. Bell and L. La Padula. “Secure computer system:
Unified exposition and multics interpretation”. T.R. MTR-
2997, Rev. 1, MITRE Corp., Bedford, MA, March 1976.
[5] Elisa Bertino, J. Crampton, Federica Paci. “Access Con-
trol and Authorization Constraints for WS-BPEL”. ICWS
2006.
[6] M. Chen and J.P. Singh. “Computing and Using Reputa-
tions for Internet Ratings”. Proc. 3rd ACM CEC, 2001.
[7] Trusted Computing Group.
https://www.trustedcomputinggroup.org/home
[8] Department of Defense. Trusted Computer System
Evaluation Criteria (Orange Book), December 1985. DoD
5200.28-STD.
[9] Dorothy E. Denning. “A lattice model of secure infor-
mation flow”. CACM, 19(5):236–243, May 1976.
[10] J. Dorn, P. Hrastnik, A. Rainer. “Web Service Discov-
ery and Composition for Virtual Enterprises”. In Intl. Journal
of Web Services Research, Vol. 4, No. 1, page 23 - 29, 2007.
[11] P. Efstathopoulos, et al. “Labels and event processes in
the Asbestos operating system”. In Proc. of the 20th SOSP,
pages 17–30, October 2005.
[12] Butler Lampson. “A note on the confinement problem”.
CACM, Vol. 16, Issue 10 (Oct. 1973), 613-615.
[13] Henry M. Levy. “Capability-Based Computer Systems”.
Digital Press, 1984.
[14] Andrew C. Myers, Barbara Liskov. “Protecting Privacy
Using the Decentralized Label Model”. ACM TOSEM, Vol. 9,
No. 4, October 2000.
[15] OWL Web Ontology Language Overview.
http://www.w3.org/TR/owl-features/
[16] The Platform for Privacy Preferences 1.0 (P3P1.0)
Specification, W3C Recommendation, April 2002.
http://www.w3.org/TR/P3P/
[17] Axis2/Java – Rampart. http://ws.apache.org/axis2/mod-
ules/rampart/1_1/security-module.html
[18] L. Singaravelu, C. Pu, H. Haertig and C. Helmuth. “Re-
ducing TCB Complexity for Security-Sensitive Applications:
Three Case Studies”. In Eurosys 2006.
[19] Trail: The Reflection API.
http://java.sun.com/docs/books/tutorial/reflect/index.html
[20] Web Services Security v1.1. http://www.oasis-
open.org/specs/index.php#wssv1.1
[21] Web Services Security Conversation Language.
http://www.w3.org/TR/wscl10/
[22] Web Services Security Policy Language.
http://xml.coverpages.org/WS-SecurityPolicyV11-
200507.pdf
[23] Web Services Trust Language. ftp://www6.software.
ibm.com/software/developer/library/ws-trust.pdf
[24] WebTrust. http://www.webtrust.net/
[25] Li Xiong, Ling Liu. “Peer-Trust: Supporting Reputa-
tion-Based Trust for Peer-to-Peer Electronic Communities”.
IEEE TKDE, Vol.16, No. 7. Special issue on Peer to Peer
Based Data Management. pp 843-857. July 2004.
[26] Wei Xu, V.N. Venkatakrishnan, R. Sekar, and I.V.
Ramakrishnan. “A Framework for Building Privacy-
Conscious Composite Web Services”. ICWS 2006.
[27] Jia Zhang, Liang-Jie Zhang, Jen-Yao Chung. “WS-
trustworthy: A Framework for Web Services Centered
Trustworthy Computing”. In SCC 2004.

